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Forewords

The 9th Slovak-Czech Conference on Geometry and Graphics
was held on September 11–14, 2023 in Slovakia, in the old mining Slovak
town Kremnica. This joint session of the 32nd Symposium on Compu-
ter Geometry SCG´2023 and the 43rd Conference on Geometry
and Graphics was the next successful common event of two traditional
conferences organized by national societies, the Slovak Society for Geo-
metry and Graphics and the Czech Society for Geometry and Graphics.

About 47 conference participants from 7 countries – Slovakia, Czech Re-
public, Austria, Slovenia, Poland, Hungary and India, West Bengal – en-
joyed rich programme with presentations related to a variety of geometry
areas with three interesting invited plenary lectures. Zbyněk Š́ır from the
Faculty of Mathematics and Physics, Charles University in Prague, Czech
Republic, presented lecture Seven versions of de Casteljau algorithm. He
summarized the most important properties of de Casteljau algorithm, and
demonstrated its utility on various interpretations and interesting exam-
ples. Invited lecture Geometric modeling: Variational principle presented
by Demeter Krupka from Lepage Reasearch Institute in Prešov, Slo-
vakia, introduced the current research in differential geometry, including
applications of geometric methods in control of the motion of mechani-
cal systems. Elementary ideas on the geometric control theory (geometric
robotics) and introduction of mathematical modeling of processes and
stability problems in physics and engineering using variational principles
were also discussed. Domen Kušar from the Faculty of Architecture,
Ljubljana University in Slovenia presented lecture entitled Descriptive
geometry in Slovenia, decline or oportunity, an overview of the develop-
ment of subject Descriptive geometry as part of curricula at educational
institutions in Slovenia in the current digital age. Activities were men-
tioned leading to finding balance between the use of modern techniques
and “classical” pedagogical approaches aiming to achieve the best possible
knowledge and the greatest possible spatial abilities that future architects
will need in their work.

Submitted 28 contributed talks from applied and pure geometry, graphics
and education of geometry are published in this proceedings. These in-
teresting contributions represent the variety of research carried currently
in the field of geometry and prove the inspirational power of this scien-
tific domain. High quality presentations delivered by experienced experts
and initial scientific works of young scientists, who could benefit from the
talks of their matured colleagues, proved to be a highly resilient mixture
bringing new valuable ideas on both sides.
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Conference was organized by the Slovak Society for Geometry and Gra-
phics, residing at the Institute of Mathematics and Physics, Mechanical
Engineering Faculty of the Slovak University of Technology in Bratislava,
Slovakia, and it was held in hotel Golfer located over Kremnica town.
Social programme included the visit to the old Mint factory in Kremnica,
where coins have been struck uninterruptedly for almost seven hundred
years. Participants could also visit City castle or Mining museum in the
old gold mine Andrej’s tunnel, and walk in the city historic centre. Con-
ference dinner was a nice social event with musical piano accompaniment.

We would like to thank cordially to all conference participants for the
great atmosphere of this event and its high scientific richness, which was
achieved primarily thanks to your applied presentations that were all at
a high level of professional and scientific quality.

It is our pleasure to invite you all to attend the next joint event, the
33rd Symposium on Computer Geometry SCG´2024 and the 44th

Conference on Geometry and Graphics, which is going to be held
in cooperation of representatives of both societies for geometry and gra-
phics in September 2024 in Czech Republic, as the 10th Czech-Slovak
Conference on Geometry and Graphics.

We are proud to be keeping on the good tradition of our common meetings
deeply rooted in the history.

Bratislava & Praha/Plzeň, November 25, 2023

Daniela Velichová
chair of SSGG

Miroslav Lávička, Zbyněk Š́ır
former, and new chair of CSGG
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Variational forces: Remarks 

Demeter Krupka 

Lepage Research Institute 

17 November St., 081 16 Prešov, Slovak Republic 

email: demeter.krupka@lepageri.eu 

Abstract. This research-expository paper is devoted to variational modelling of 

mechanical forces, depending on velocities.  

Keywords: Variational equation, Helmholtz conditions, Variational force  

1 Introduction 

This paper is based on several sources: lectures delivered by the author at the 

conferences Geometric Mechanics and Control, Beijing, BIT, 5th International 

Conference on Dynamics, Vibration and Control, Shijiazhuang, China, July 

2018, and the 23rd International Summer School on Global Analysis, LRI, 

Brasov, Romania, August 2018; main source, however, is the paper D. Krupka, 

Variational forces, Journal of Mathematical Sciences, accepted by 

Yu. Sachkov, in print 2019 (delayed), where complete proofs can be found. 

Recall that in classical mechanics a Lagrange function  

of a mechanical system is usually defined to be the difference of kinetic energy 

 and potential energy , . While  is in a sense a universal 

function of the form  

  
 

where gij are the components of a metric tensor on the configuration space U, 

potential energy  provides specific characteristic;  does not depend on , 

and the first-order form i  , where  

  
 

is the force, associated with . The Euler-Lagrange form of  is a family 

, whose components are the Euler-Lagrange expressions  

 

The Euler-Lagrange equations are differential equations for curves t  xi(t), 
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In this paper we study variationally compatible extensions of the concept of 

the force. The aim is to characterize a class of Lagrange functions  admitting 

a decomposition , in which  may depend on velocities .  

The problem of variational compatibility of forces is not new; its 

elementary version was considered, probably for the first time, by Novotny [5]. 

Recent applications of the inverse variational problem to ordinary differential 

equations and geometric mechanics can be found in Voicu, Krupka [6] and 

Krupka, Urban and Volna [4]. Extensive, relatively complete literature on the 

inverse problem can be found in Krupka, Saunders [3] and Zenkov [7].  

2 The Euler-Lagrange mapping   

In this section we study the dependence of the to Euler-Lagrange expressions 

, on the Lagrange functions . The family  is called the 

Euler-Lagrange form. We wish to characterize the kernel and the image of the 

Euler-Lagrange mapping . The domain of definition of the Euler-

Lagrange mapping is the vector space of C 

2-functions on I  U  Rm and its 

image space is the vector space of m-tuples of C 

2-functions on I  U  Rm  Rm; 

this mapping is obviously linear.  

A Lagrange function  is said to be (variationally) trivial, if  for 

all i.  

Theorem 1.  A Lagrange function  is trivial if and only if there 

exists a function f = f (t, xi) such that  

 

Theorem 1 characterizes the kernel of the Euler-Lagrange mapping 

.  

We shall now consider arbitrary systems i   of sufficiently 

differentiable functions i : I  U  Rm  Rm  R, where i = 1, 2, …, m; in 

agreement with the calculus of variations, differential geometry and mechanics 

the systems   are called source forms.  

A source form i   is said to be variational, if there exists a function 

 such that  

(2.1)   

If  exists, it is called a Lagrange function for  . Clearly, variationality of 

a source form   means that   belongs to the image of the Euler-Lagrange 
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mapping  in the set of source forms or, in a different terminology, 

integrability of equation (2.1) with respect to the unknown function .  

 

The following is a well-known integrability condition for the system (2.1).  

Theorem 2 (Helmholtz conditions).  If a source form i   is variational, 

then  

(2.2)   

(2.3)   

and  

(2.4)   

Theorem 3.  Suppose that a source form i   satisfies conditions (2.2), (2.3) 

and (2.4). Then there exist some functions ,j = j(t, xi) and 

h = h(t, xi) such that i  are the Euler-Lagrange expressions of a Lagrange 

function given by  

(2.5)   

In particular,   is a variational source form.  

Remark 1.  Formula  (2.5) defines a Lagrange function for the 

source form ; writing  (2.2), then the functions f and 

j can be determined in explicitly as functions of Pi and Qij , and h remains 

arbitrary.  

3 First order variational source forms 

Consider a first order source form i  , where 

(3.1)   

In this case Theorem 2 and Theorem 3 of Section 2 imply that the variationality 

of   is equivalent to the conditions  

(3.2)   

and  
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(3.3)   

(3.4)   

Note, however, that condition (3.3) follows from (3.2) and may be omitted.  

The following two theorems provide a complete classification of variational 

first-order source forms.  

Theorem 4.  Let i   be a first-order source form. The following two 

conditions are equivalent:  

(a)    is variational.  

(b)  There exist a system of functions   = i, i = i(t, xj), and a function 

h = h(t, xj) such that  

(3.5)   

Theorem 5.  If a first-order source form i   is variational and is expressed 

by (3.5), then   has a Lagrange function .  

4 Lagrange functions: Canonical decomposition  

Now we discuss possible extensions of the basic classical mechanics formula 

, where  is the kinetic energy and  is the 

potential energy, to the functions , which may depend both on positions xi 

and velocities .  

Let  be any Lagrange function. Setting  

 

we get another Lagrange function , called the kinetic energy, 

associated with , and a decomposition , where  is the potential 

energy, associated with . The Euler-Lagrange form of  is  

 

Lemma 1.  (a) The Euler-Lagrange form of  is expressed by  
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(b)  The Euler-Lagrange form of  is expressed as  

 

 (c)  The Euler-Lagrange form of  is expressed as  

 

5 Variational forces  

Now we study Lagrange functions  satisfying the metric 

homogeneity condition  

(5.1)   

Using the metric hij associated with , condition (5.1) can equivalently be 

expressed as  

 

Its meaning is explained by the following theorem.  

Theorem 6.  Let  be a Lagrange function. The following two conditions are 

equivalent:  

(a)   satisfies the metric homogeneity condition.  

(b)  The Euler-Lagrange form  of potential energy  is of order 1.  

Theorem 7.  Let  satisfy the metric homogeneity condition. Then  
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where  

(5.2)   

for some function f =f(xi).  The functions k and h do not depend on .  

Our aim now will be to find explicit form of the Lagrange functions 

satisfying the metric homogeneity condition. Our partial results can be 

summarized as follows.  

Given an arbitrary Lagrange function , we have the canonical 

decomposition , where  

 

Then the following conditions are equivalent:  

(a)   satisfies the metric homogeneity condition.  

(b)   do not depend on , that is, for all i and j, 

 

If these conditions are satisfied, then  is of the form  

 

for some function f =f(xi), and 

(5.3)  
 

The functions h and i  do not depend on and Euler-Lagrange expressions of 

 are  

(5.4)   

Remark 2. Equation (5.4) shows that for m = l (the case of mechanical systems 

with 1 degree of freedom) the Euler-Lagrange form cannot depend on .  

It has already been noted in Section 4 that the kinetic energy part in the 

canonical decomposition of  has some properties of the fundamental Finsler 
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functions in Finsler geometry. We shall now discuss these properties in more 

detail. We define a (possibly singular) Finsler metric as a system of real-valued 

functions  on U  Rm, satisfying the following conditions:  

(a)  The matrix gij is symmetric,  

(5.5)  gij = gji .  

(b)  The derivatives satisfy  

(5.6)   

Theorem 8. A Lagrange function  satisfies the metric 

homogeneity condition if and only if  

(5.7)   

Where gij is a Finsler metric and h and i  are some functions depending on xi 

only.  

Theorem 9.  For every Finsler metric gij  formula (5.7) defines a solution  of 

equations (5.3).  

Remark 3.  Note that i  can also be expressed as  

 

Integrating  

 

where  = (xi) is an integration constant. Since 

 

we have  

 
Our main goal is in this section is to study variational properties of first-

order source forms i : U  Rm  Rm; we call these forms forces. A force i is 

said to be variational, if there exists a Lagrange function  such 

that  
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(5.8)   

where  is kinetic energy associated with , or, equivalently, if , 

where  is potential energy associated with . Thus a variational force is 

exactly the Euler-Lagrange form of the potential energy . Allowing  to 

depend on positions and velocities, then we also admit variational forces 

depending on xl and . 

The inverse variational problem for a force i consists of finding 

integrability conditions and solutions  of the system (5.8). We 

already known that the integrability condition is given by equations (3.2) and 

(3.4),  

 

 

The following two theorems give a more detailed information. 

Theorem 10.  The following two conditions are equivalent:  

(a)  i is a variational force.  

(b)  There exist functions P = P(xi) and Qk = Qk (xi) such that 

 

Remark 4.  The class of variational forces admits a physical interpretation; it 

includes some dissipative forces, depending on velocities.  

Theorem 10 should be completed by description of all Lagrange functions 

defining a fixed variational force i . The following is a solution of the inverse 

variational problem for forces, depending on positions and velocities.  

Theorem 11.  Let i  be a variational force, let  be a Lagrange 

function for i . Then the following two conditions are equivalent:  

(a)   satisfies . 

(b)   is of the form , where  

 

for some Finsler metric gij . 

6 Newton’s equations   

As an example consider a source form i  , where  
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and gil and fi are functions of t, xi, .   is called a Newton’s source form.  

Lemma 2.  The Newton’s source form is variational if and only if  

 gij - gji  = 0,  

 

 

 

 

Now we easily find solutions  of the inverse problem equations  

 

Theorem 12.  The Newton source form is variational if and only if  
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Descriptive Geometry in Slovenia,  

decline or oportunity 

Domen Kušar 

Fac. of Architecture, Univ. of Ljubljana 

Zoisova 12, 1000 Ljubljana, Slovenia 

email: domen.kusar@fa.uni-lj.si 

Abstract. Descriptive geometry is a science that has been indispensable in all 

areas of technical education for many years. In addition to the way of representing 

spatial elements and their relationships on a two-dimensional medium, it also 

developed a spatial representation. We have been following the downward trend 

of spatial ability among students of the Faculty of Architecture of the University 

of Ljubljana since 1999.  

With the advent of computers, especially computer graphics, the attitude towards 

descriptive geometry also changed. Since computers took over the presentation 

of space, it was no longer necessary. Therefore, the number of hours was reduced, 

and in many faculties, it was simply abolished or combined with other similar 

subjects. In Slovenia, this happened at many technical faculties. Part of the blame 

is also on the side of educators who did not understand the situation and the role 

that descriptive geometry can play and adapted the material to current needs or 

even upgraded it.  

At the Faculty of Architecture of the University of Ljubljana, beside classical 

knowledge we included into the course computer programs and new teaching 

methods. Flexibility helped us to carry out the subject remotely without major 

problems during Covid. With the project of pilot updating the course using 

information and communication technology, we wanted to bring the course even 

closer to students and make it accessible at any time. However, it turned out that 

digitization also has its limitations, as pedagogical work also requires a personal 

approach and communication between the pedagogue/assistant and students. This 

means finding a balance between the use of modern techniques and "classical" 

pedagogical approaches with the aim of achieving the best possible knowledge 

and the greatest possible spatial representation that future architects will need in 

their work. 

Keywords: Descriptive geometry, teaching methods, Slovenia 

1 Descriptive Geometry at the faculties in Slovenia 

About 2 million people live in Slovenia. For them and others, there are six 

universities and 25 other higher education institutions offering education at 

various levels. The three largest universities are state-owned. 

The largest and oldest is the University of Ljubljana. Its beginnings date back 

to the 17th century when a Jesuit college was founded. The first university was 

established in 1810 during the French occupation. After the end of the Illyrian 

provinces in 1813, it was abolished. Instead, the Imperial Lyceum was 

established as a higher education institution. The current University was created 
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after the collapse of Austria-Hungary in 1919. It included five faculties: law, 

philosophy, technical theology, and medicine. It is interesting that between 1919 

and today, the university changed its name 7 times. Today, the University of 

Ljubljana consists of 23 faculties and 3 academies. Around 40,000 students study 

there annually. 

Second in size and age is the University of Maribor. It was founded in 1975 

although its beginnings date back to 1859 when the Higher Theological School 

was founded on the initiative of Bishop Anton Marin Slomšek. Today, 17 

faculties are included in the University of Maribor most of which are based in 

Maribor but some are also in Kranj, Celje, Ljubljana, Velenje, Krško, and 

Brežice. The number of students at the University of Maribor is approximately 

15,000. 

 

Table 1:  Descriptive Geometry and subjects directly related to it at higher 

education institutions in Slovenia. 

In addition to these two largest universities, there are four smaller ones and 

25 other smaller higher education institutions in Slovenia. Descriptive geometry 

or the contents of this subject are present in various programs of various technical 

faculties of the two largest universities (table 1). The objects comprising these 

contents have different names: 

- Descriptive Geometry (Faculty of Architecture, Biotechnical Faculty) 

- Technical Drawing and Descriptive Geometry (Biotechnical Faculty) 

- Technical Drawing and Computer Aided Modelling of Geometry (Faculty 

of Mechanical Engineering) 

- Engineering Communication (Faculty of Civil Engineering and Geodesy) 

- Geometry and Engineering (Faculty of Natural Science and Engineering) 

- Technical Documentation (Faculty of Mechanical Engineering) 

- Geometric Modelling and Descriptive Geometry (Faculty of Civil 

Engineering, Transportation Engineering and Architecture) 
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- Drawing, Visual Expression (Faculty of Civil Engineering, Transportation 

Engineering and Architecture) 

In addition to the contents that are part of descriptive geometry, most subjects 

also offer knowledge in the field of drawing, production of technical 

documentation, and the use of computer programs (CAD) for modeling and 

presentation. 

Interestingly, the Faculty of Mathematics does not directly offer the course 

described geometry nor can it be found at the Faculty of Education. The 

consequence of this is the fact that in previous primary education, fractals of 

descriptive geometry were present in only individual subjects of primary school, 

such as mathematics and technology. In high schools, descriptive geometry is 

taught as a subject only in certain courses of the high school of construction. 

Perhaps the reason for such a situation lies in the fact that, according to one 

of the lecturers of descriptive geometry, mathematicians should show disinterest 

in descriptive geometry saying that it is no longer relevant and stop dealing with 

it. Since there were still demands for this knowledge at the technical faculties, it 

was passed down from professor to assistant and then on in the last decades. This 

is probably the reason why architects, builders, and mechanical engineers teach 

these subjects at universities. In addition to descriptive geometry, they are active 

in other scientific fields specific to individual faculties. This method also has a 

positive side because teachers know the field of education well and know more 

precisely which knowledge in the field of descriptive geometry will be useful to 

students after the end of their studies. 

2 Descriptive Geometry at the Faculty of Architecture in 

Ljubljana 

Descriptive geometry has been part of the curriculum of the Faculty of 

Architecture since the faculty was established as the Department of Architecture 

within the Technical Faculty of the University of Ljubljana. It represented the 

only language for the presentation of three-dimensional objects (buildings) on a 

two-dimensional medium (paper). With this, it was also the basis of the language 

of communication between experts from different disciplines who participated 

in the construction. Therefore, it is understandable that the subject had a large 

number of hours. As construction became an increasingly complex task, which, 

with the development of technology, required the cooperation of several different 

experts, the architect's knowledge also had to increase. The development of 

computer graphics, on the other hand, brought innovations in the understanding 

and representation of space and the relationships within it, as well as 

communication between experts. With this, the importance of descriptive 

geometry as a means of presentation became smaller. As a result, fewer hours 

were devoted to the subject. If the total number of hours of lectures and exercises 

was 120 hours in the academic year 1991/92, it was 90 hours in 2019/20 and is 

60 hours today. 
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Every year, between 200 and 300 students want to enroll at the Faculty of 

Architecture. Since we can only enroll 115, students have an entrance exam. It 

tests the ability of candidates to study architecture in the form of a drawing exam 

and an interview. Even though part of the entrance exam also included a spatial 

representation test, study candidates come to the Faculty of Architecture with 

virtually no prior knowledge. Therefore, we want to give the key content of the 

course for one semester. These are the following types of space presentation 

methods: 

- Monge's method, 

- axonometry, 

- quoted projection, and 

- central projection. 

As part of this, we discuss the basics from the position of a point, a line, and 

a plane through the determination of lines and planes, some metric tasks 

(determining the correct size of angles and lengths), and cross-section and 

piercing. Shadows are a special chapter. 

In addition, we begin to familiarize students with the AutoCAD program right 

from the start. Within the scope of the course, students must complete exercises 

that are divided into basic exercises which are drawn with a pencil or computer 

and submitted weekly and three complex exercises that are drawn with a 

computer. The exercises were submitted to the online classroom. 

Students are motivated by three colloquiums. Together, these comprise all 

the material of the course, and, as long as they are evaluated positively, they can 

replace the exam. 

An online classroom, which has over 200 units of different learning materials, 

serves to help students. It contains information and instructions for creating 

exercises, solved examples of tasks, summaries of lectures and exercises, study 

sheets, material for monitoring exercises, and more. 

The presentation of material in lectures and exercises is classical with the use of 

a blackboard, chalk, ruler, and ruler. The good thing about this method is the 

development of the construction in slow steps. The downside is the limitation in 

terms of size, precision, obscuring the drawing with a body, padding, errors, and 

the like. For this reason, in lectures and exercises, we increasingly use 

PowerPoint presentations. The advantage of this method is especially accuracy 

and the possibility of repetition or later viewing. 

3 Teaching method during the Pandemia 

If before 2020 working and learning at a distance was more a matter of 

individuals and rare events, the COVID-19 crisis plunged us into a new way of 

education. At the FA, this happened within a week because the management 

received information that such a situation would last for a long time and not just 

the initially promised 14 days. For this purpose, the decision was made to close 

the FA and to conduct all activities remotely. As professors, we found ourselves 
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in different ways. First of all, it was a question of which method of remote 

working to choose or which program to use. At first, we used different programs 

(CISCO WEBEX, MS TEAMS, and ZOOM). The programs are mostly similar 

but each has its specifics. The FA management decided to use the Zoom program 

and provided all employees with the appropriate licenses. The selected uniform 

program for all also enabled the mutual education of employees which facilitated 

the transition to a new way of working. 

The leap to remote work was unproblematic for Descriptive Geometry. The 

reason lies in the fact that the vast majority of the content we discussed has 

already been digitized as presentations in PowerPoint, worksheets, solved tasks, 

etc.  

The lectures were thus held online with presentations in PowerPoint. It was 

similar to the exercises with the assistant preparing worksheets in advance that 

the students could print or draw and use in the exercises. Pictures of home 

exercises were uploaded to the online classroom where they were evaluated and 

corrected. 

The rich material of the online classroom was also already there However, it 

was necessary to supplement it with an explanation of each task. During the year, 

more than 200 units of teaching material were available in the online classroom. 

Certain contents were also added to the library. At the same time, it should be 

emphasized that the FA immediately started scanning key textbooks, books, and 

other literature from the faculty library. Thus, students could access study 

material and literature online. 

A special challenge was conducting remote colloquiums. Different questions 

have arisen: how to distribute tasks, ensure equal opportunities for everyone, 

supervise independent work and return solved tasks. Here, we proceeded by 

publishing in advance the data (coordinates of points) that were included in the 

colloquium. At the beginning of the colloquium, the students were given the task 

text. They were monitored utilizing the included cameras. For someone to 

quickly draw a solution, scan/picture it, and send it to someone else to redraw it 

turned out to be impossible in the given time. It showed that no copying was 

taking place. The main difference was that we let them use literature and notes 

at home. Therefore, the tasks were more complex. 

Considering the different ways of presenting the material and making 

exercises for conducting colloquiums and exams, we were interested in the 

advantages and disadvantages of individual systems or what would be 

worthwhile to use in the future as well.  

The mass media, at least in Slovenia, constantly told us about the severe 

consequences that the pandemic would cause in the educational process, 

especially about the great drop in knowledge. My personal experience with my 

four children was the opposite because I did not feel that the level of knowledge 

would drop significantly. In addition, they had more time because there were no 

more trips to school and back, and the lessons also turned out to be normal a lot 

of time for nothing. With all that in mind, we were wondering how about 
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descriptive geometry. Will the level of knowledge drop or not? What will be the 

grades for exercises and colloquiums? 

We conducted the research for the period 2014/15 to 2021/22. All students 

taking the descriptive geometry course were included in the research.  

The evaluation of the exercises of both the first and second semesters showed 

results that were slightly better than in previous years. There are probably several 

reasons for this:  

- Due to remote learning, students had more time because they did not have 

to travel to Ljubljana. A large part of the students did not live in Ljubljana and 

had to commute to Ljubljana every day. According to students who depend on 

public transport, they can spend up to 3 hours a day driving. 

- Remote consultations require monitoring what is happening because even a 

short absence can mean that you have to wait again for your turn. In addition, 

individual consultations in the lecture hall reach a significantly smaller number 

of students than remotely.  

The results of the colloquia show an interesting picture. The grades of the 

first colloquium were a little worse but then a little better. The results of the last 

– the 6th colloquium were worse. Since the tasks in individual colloquiums are 

similar, it is difficult to say why this happened. Possible reasons are the lack of 

time in certain terms (work on other subjects).  

More interesting is the comparison of the year 2018/19 as the last "normal" 

and the summer semester 2021/22 where the first semester was remote and the 

second was live. Here, we indulged in a risky experiment. We gave the 2021/22 

generation the same tasks as the 2018/19 year. We assumed that the 

intergenerational connection of the current generations was bad and that was why 

the students did not not have the tasks of the previous colloquiums. Based on the 

results, we can confirm this. The results of the 4th and the 5th colloquia this year 

were far worse than those of two years ago. This is partly due to the "new" 

method of live performance which is the same as in 2018/19 since the use of 

literature is not allowed when solving tasks on the FA. It took the students 

practically the whole semester to reach the average (6 colloquiums). The bad 

results of the 4th and the 5th colloquium could be attributed to a different method 

of solving than they were used to in the first semester.  

Working remotely has both positive and negative aspects. For remote work, 

the subject must be more organized and structured. The online classroom must 

also be better organized. On the other hand, this method requires fewer resources 

from the students since they do not have to go to college and stay in Ljubljana 

and it allows more time for other things. Therefore, it is not surprising that at the 

end of the year, more than half of the students preferred distance learning. Of 

course, they mostly missed social contacts. 

Based on this, we decided to keep some of the good practices of remote work 

and upgrade them. We included the subject as a pilot project of updating subjects 

using Information and Communication Technology for teaching purposes, which 
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was led by the Centre for the Use of ICT in the Pedagogical Process of the 

University of Ljubljana. 

4 Pilot project of using information communication 

technology at subject Descriptive Geometry 

In the academic year 2022/23, the FA started with a renewed study program. This 

also changed the content of the course Descriptive Geometry. 

     

   

Fig. 1:  Some improvements of the subject made within the Pilot Project (quiz, 

video, use of the GeoGebra program, and 3D printing) 

To maintain an appropriate level for the subject, we connected with the 

colleagues of the Digital University, and based on our experience and the 

experience of our colleagues from abroad, we designed the renovation and 

upgrade of the subject. We prepared a different set of study materials available 

in the online classroom. This included: examples of solved exercises, digitization 

of the textbook, quizzes, short videos, and presentations of various procedures in 

PowerPoint. As part of the course, we empowered students to use the AutoCAD 

program and tried to inspire them to use the GEOGEBRA program. The latter 

enables good visualization of the relationships between the elements in the room. 

For this purpose, simulations of some exercises were made. The exercises that 

the students created individually in the AutoCAD program were submitted to the 
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online classroom where they also received feedback. We also introduced them to 

3D printing and printed the best exercises on a 3D printer (Fig. 1). 

Students who regularly attended lectures and exercises praised the material 

available to them. Even better results would be achieved if students took more 

time to use all these options. Unfortunately, around the New Year, we noticed 

general fatigue among students. This may be the result of the large volume of 

assignments at the end of the semester in other courses because the FA has the 

largest workload for students at the end of the semester. In the future, we plan to 

add new shorter videos and integrate 3D printing more into the study process. 

5 Spatial ability and Descriptive Geometry 

An integral part of human ability is spatial intelligence, which includes spatial 

perception (Gilford, 1996, Mohrer 2008, McGee, 1979). Human abilities consist 

of linguistic, mathematical, kinesthetic, natural science, musical, and spatial 

intelligence. We know many components of spatial perception. Spatial 

perception covers a wide range of skills. It can be improved with experience and 

practice. It is well known that all engineers need good spatial perception, and so 

do architects. There are also studies examining the correlation between spatial 

perception and academic success. It is known that spatial skills and knowledge 

of mathematics are significantly related at all levels of students' education. 

Teaching descriptive geometry can improve students' spatial perception to some 

extent (Ilić, M., Kosić – Jeremić, S., Stavrić, M. (2020). According to experts, 

the right half of the brain participates in the perception of space (Soros, 2010) 

because it has been known for many years that the right hemisphere is larger in 

men and develops earlier than in women (de Lacoste, Hovarth, Woodwart, 1991). 

This is probably also the reason that confirms the differences between the sexes 

in the results of spatial representation tests. The difference is most evident in 

mental rotation tasks, less in orientation, and none in visualization (Linn, 

Peterson, 1986). Most experts agree that differences do not become apparent 

until late puberty and that growing up has a major influence on the development 

of this ability (Nyborg, 1983). The development of the study of spatial 

representation also required the development of measurement instruments. The 

first well-known test was developed in 1931 as the Mental Cutting Test (hereafter 

MCT), and in 1971 Shepard and Metzler developed the rotation test (MRT) 

(Fig. 2) (Gorska 2005). Both tests are generally applicable even though they are 

quite specialized in certain areas. MRT is more specialized for spatial perceptions 

of rotation and mirroring while MCT is for plane-object relationships. DAT 

(Differential Aptitude Test, developed in 1990) and TPS (Spatial Imagination 

Test, developed in 2003) aim to cover the comprehensive evaluation of spatial 

perception. All tests are subject to development and improvement. Suzuki and 

Shiina [1999] transformed and refined the MRT and standardized the difficulty 

of each case. 

30 Ku²ar Domen



 

 

Fig. 2:  Sample Mental Rotating Test Task. 

When it comes to spatial representation research, it is usually a one-time 

event that tries to cover a certain population in a certain and geographically 

limited area. The results of the tests are mostly similar and show the difference 

between the sexes and progress after the year of study (Leopold et al. 2001, 

Takeyama et al. 1999). The reasons for such a situation lie in a large number of 

factors that influence the development of the spatial perception of generations. 

At the same time, for a realistic comparison, it is necessary to have the same 

testing conditions, which means that various testing improvements are 

questionable in this case, regardless of the advantages they otherwise bring. 

Therefore, we set the conditions for the test at the Faculty of Architecture of the 

University of Ljubljana (hereafter FA) in 1999 and have always adhered to them 

since then. This allowed us to compare generations realistically. The long-term 

analysis is also important regarding the opinion that the level of knowledge of 

mathematics and technology among new students is declining across Europe. Is 

this decline also followed by a decline in the level of spatial representation? 

Reasons for supporting the thesis would probably be found in the environment 

where we live. New information technology has also brought new patterns of 

youth behavior. Traditional games for children and adolescents are becoming 

less and less popular because they are being replaced by digital and virtual 

games. The result of traditional spatial games was the development of the spatial 

representation that these games contained. It is difficult to say what the 

consequences of this exchange are because, on the other hand, information 

technology makes it easier to perceive space and the relationships within it. 

Therefore, results that would show long-term trends in this area are even more 

important (Kušar, 2014). 

Every year at the beginning of the academic year, at the Faculty of 

Architecture of the University of Ljubljana, we conduct a spatial representation 

test. Testing is carried out at the beginning of the academic year. First-year 

students participate in this. We have been carrying out this testing since 1999. 

For this purpose, we use the MRT (mental rotating test). Regardless of the 

possibilities that information technology offers us, the method of implementation 

remains the same every year. This ensures adequate conditions for the evaluation 

and comparison of results. So far, a total of 3,370 students have taken the test. 

Solved poles are evaluated according to the criteria given in the instructions for 

solving. We do this even though a different way of assessment might have given 
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better results – In terms of the normal distribution of results (Bolcskei et all, 

2013) that can be expected for this area and the new digital version of MRT 

(Kušar, D., Volgemut, M., Pletenac, L. (2018)). A comparison of the results 

shows fluctuations in the spatial representation of the entire population (Graph 

1). There is a downward trend in spatial perception. This is more pronounced in 

the male population while in the female population, there is even a trend of 

increasing the level of spatial representation. The gender gap shows up 

throughout the years of testing. A comparison with the results of work on FA 

showed interesting facts. The correlation between colloquium results and tests of 

spatial representation is small. This can be partly attributed to the fact that the 

MRT covers the area of mental rotation but the others do not or are significantly 

worse. This is also confirmed by comparing the results of exercises where the 

skill of spatial rotation is required. There, students who have excelled at the MRT 

also do better in school exercises. 

 

 

Graph 1:  Average of MRT results and trend lines. 

6 Conclusion 

The classical importance of descriptive geometry as a way of communication 

between experts of different disciplines in the form of representing 3D objects 

on a 2D medium (plan) is decreasing in Slovenia. The result of this process is 

first seen in reducing the number of hours or, in some cases, even canceling the 

course. On the one hand, new content has been added to the descriptive geometry 
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subject, mostly related to the production of technical documentation and/or 

geometric modeling using computer programs and 3D printing. In Slovenia, this 

is also related to the fact that the majority of professors who teach descriptive 

geometry are no longer mathematicians by education. Instead, they are civil and 

mechanical engineers and architects. This is probably because descriptive 

geometry is no longer appreciated by mathematicians. On the other hand, 

however, technical fields still need it. 

In Slovenia, this is also related to the fact that the majority of professors who 

teach descriptive geometry are no longer mathematicians by education. Instead, 

they are mechanical engineers and architects. This is probably because 

descriptive geometry is no longer appreciated by mathematicians. On the other 

hand, however, technical fields still need it. Since it is known that work in the 

descriptive geometry course improves spatial representation, the abolition of 

these contents also manifests itself as a drop in the level of spatial representation. 

This is also related to changes in society which is comparable to the results of 

some research outside of Slovenia. A good spatial representation is absolutely 

necessary in most technical and natural science fields. Since descriptive 

geometry is usually a demanding subject for students, we wanted to bring it 

closer to them as part of the Pilot Project. To this end, we have updated the 

learning material with quizzes, videos, problem-solving examples, 3D printing, 

and the like. At the same time, we wanted to equip students with additional 

knowledge of using some computer programs. Surveys completed by students at 

the end of the year show the correctness of the decision. 
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Abstract. In memory of Paul de Casteljau (1930-2022) we will present
several remarks on his famous algorithm. First, we will outline the original
affine version. Then we will analyze the projective version (Farin 1983) and
will present two interpretations within the classical projective geometry. We
will also study alternative versions of the rational algorithm based on the
factorization of the curve denominator (Šı́r and Jüttler 2015). Finally, we will
show the generalizations of the de Casteljau algorithm to the case complex
curves.
Keywords: Bézier curve, de Casteljau algorithm, subdivision, knot insertion,
bipolar coordinates

1 Affine de Casteljau algorithm
The affine version of the algorithm was first published in [1]. In this version the
recursion given as

P0
j := Pj

Pk
j := (1− t) Pk−1

j + t Pk−1
j+1 =

(
Pk−1

j Pk−1
j+1

)(1− t
t

)
,

see Figure 1, provides Bézier curves

Pn
0 =

n∑

j=0

Bn
j (t)P

0
j =

n∑

j=0

(
n

j

)
tj (1− t)(n−j) P0

j .

Many properties follows directly from the definition such as the affine co-
variance, tangent property, subdivision property, convex hall property or the nu-
merical stability.

2 Rational de Casteljau algorithm
The rational version of the algorithm, see [2], involves real weights wi and their
recursion in the following way:

Pk
j :=

(1− t)wk−1
j

(1− t) wk−1
j + t wk−1

j+1

Pk−1
j−1 +

t wk−1
j+1

(1− t) wk−1
j + t wk−1

j+1︸ ︷︷ ︸
wk

j :=

Pk−1
j+1 (1)
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Fig. 1: Affine algorithm (left) and its computational structure (right).

and provides the rational Bézier curve

Pn
0 =

∑n
j=0 B

n
j (t)w

0
jP

0
j∑n

j=0 B
n
j (t)w

0
j

. (2)

Note that, while the expression (1 − t) Pk−1
j + t Pk−1

j+1 is the only affine pa-
rameterization of the segment Pk−1

j Pk−1
j+1 over t ∈ [0, 1], (1) provides infinitely

many such rational parameterizations, depending on the weights.
The most elegant projectively covariant geometric interpretation of the ratio-

nal algorithm uses so called Farin points defined for each computational level

fkj :=
wk

jP
k
j + wk

j+1P
k
j+1

wk
j + wk

j+1

.

The position of the new control point is the given by prescribing the the cross-
ratio

(Pk
j ,P

k
j+1, f

k
j ,P

k+1
j ) =

1− t

t
,

see Figure 2.

3 Alternative rational algorithms
In [5] some alternative algorithms for rational curves were presented. They are
based on the factorization of the denominator of (2)

n∑

j=0

Bn
j (t)w

0
j =

n∏

k=1

(
(1− t)uk + t vk

)
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Fig. 2: Rational algorithm with the Farin points (magenta).

and use the recursion

Pk
j =

(1− t)uk

(1− t) uk + t vk
Pk−1

j−1 +
t vk

(1− t) uk + t vk
Pk−1

j .

For a curve of degree n there are up to n! possible orderings of the factors and
thus n! possible algorithms, see Figure 3. While the alternative algorithms do not

Fig. 3: Two of the six possible alternative algorithms.

anymore possess the tangent and subdivision properties, they present a compu-
tational advantage due to constant division ration for each level of the algorithm.
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4 Rational algorithm for complex curves
Quite remarkably, the rational de Castelau algorithm (1) can be considered also
over the complex numbers, [4]. In this case the underlying geometry is that of
Möbius geometry and bipolar coordinates, see [3] for details. All linear seg-
ments are replaced by circular segments producing a rather impressive geomet-
rical configuration, see Figure 4.
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Fig. 4: Complex algorithm with the Farin points f ji .

5 Conclusion
We have seen several interesting version of the famous de Casteljau algorithm.
Among others variants let us mention several algorithms for surfaces, be Boor
algorithm for B-spline curves or algorithms for trigonometric splines. Even after
more then 60 years de Casteljau algorithm still stimulate new research ideas.
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[2] Farin, G.: Algorithms for rational Bézier curves. Computer-Aided Design
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[3] Jüttler, B.; Schicho, J. and Šı́r, Z.: Apollonian de Casteljau–type algorithms
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Abstract. The digital form of study materials gives students a more effective way 
to learn geometric terms and constructions. The university textbook Descriptive 
geometry construction study programs was published by a collective of authors 
in 2022 in electronic form and is suitable for students of study programs focused 
on civil engineering, architecture, landscape planning, geodesy and cartography. 
In the paper, we will show the use of various forms of dynamic presentations of 
geometrical content, which include theory and visualization of concepts and 
constructions using 2D images, anaglyph images, animations and videos, taking 
into account the type of software environments and tools used. This approach 
greatly supports students' understanding and their spatial imagination. 

Keywords: university textbook, AutoCAD, GeoGebra, anaglyph image, video 
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1 Dynamická učebnica deskriptívnej geometrie 
Modernizácia učebných materiálov a ich elektronická forma s interaktívnymi 

a dynamickými prvkami je významným faktorom efektívnej výučby geometrie 

na technických vysokých školách. Vo výučbe na technických odboroch sa 

ukázalo efektívne využite elektronických dynamických učebníc publikovaných 

autormi zo Stavebnej fakulty [2], [3], [4], [5] a Strojníckej fakulty STU [6]. 
Vysokoškolská učebnica Deskriptívna geometria pre stavebné odbory [1] bola 
publikovaná kolektívom autoriek z Katedry matematiky a deskriptívnej 

geometrie na Stavebnej fakulte STU v Bratislave v roku 2022 ako jeden 
z výstupov projektu KEGA 008STU-4/2020. Učebnica je určená pre študentov 

na bakalárskom stupni študijných programov zameraných na staviteľstvo, 

architektúru, krajinné plánovanie, geodéziu a kartografiu. Učebnica pokrýva 

učivo prednášok a cvičení predmetov Deskriptívna geometria na Stavebnej 

fakulte, Deskriptívna geometria a matematické zručnosti I na Fakulte 
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architektúry a dizajnu a Deskriptívna geometria na Ústave manažmentu STU 

v Bratislave. 
Kapitoly učebnice sú vo forme dynamických prezentácií jednotlivých tém 

v prostredí softvéru PowerPoint, pričom geometrické pojmy a princípy 

konštrukcií sú vizualizované stereoskopickými obrázkami a videami, čo vo 

veľkej miere podporí pochopenie a  priestorovú predstavivosť študentov. 

Obrázky, ktoré slúžia ako podklady pre vyhotovenie animácií a videí boli 

vytvorené v prostredí AutoCADu a GeoGebry. Animácie textov a obrázkov majú 

logickú nadväznosť a umožňujú študentom plnohodnotné pochopenie 

problematiky aj v samostatnom štúdiu.  
Takmer 700 strán učebnice je členených do 12 kapitol, ktoré sú delené na 

podkapitoly tvoriace samostatné prezentácie. Prezentácie obsahujú teóriu, ale aj 

široké spektrum riešených konštrukčných úloh a príkladov. V obsahu 
jednotlivých kapitol je daný dôraz na vedomosti potrebné v príprave inžiniera 

a aplikácii zobrazení a zobrazovacích metód v práci s objektami stavebnej praxe. 

2 Proces tvorby dynamických prvkov učebných materiálov 

s geometrickým obsahom 
V tvorbe vysokoškolskej učebnice Deskriptívna geometria pre stavebné odbory 

boli použité viaceré softvéry a programovacie prostredia.  
Webová stránka s interaktívnym obsahom bola vytvorená pomocou 

Microsoft Visual Studio Code. Kapitoly učebnice sú vo forme PowerPoint 

prezentácií, ktoré okrem textovej zložky obsahujú množstvo obrázkov a videí. 

Presnosť grafického vyjadrenia geometrických objektov a grafických podkladov 
pre konštrukčné úlohy bola zabezpečená ich tvorbou v softvéri AutoCAD. 

Nástrojmi softvéru GeoGebra boli vyhotovené 3D objekty a anaglyfy, a tiež 

2D a 3D objekty a ich animácie. Nasnímanie videí z animácií spustených 

v GeoGebre bolo realizované pomocou softvéru oCam a následne boli videá 

úpravené a strihané pomocou Video Editora. Na ilustráciu geometrických 

pojmov a ich aplikácií v stavebníctve a architektúre boli použité fotografie, a tiež 

ilustrácie obrázkami vytvorenými v prostredí Wolfram Mathematica. 

2.1 Podklady pre konštrukčné úlohy vytvorené v AutoCADe 
Geometrické objekty boli nakreslené a úlohy boli vyriešené v programe 

AutoCAD, ktorý sa využíva na presné kreslenie, a to bez textového označenia, 

bez nastavení farby, hrúbky a iných vlastností (Obr. 1). Následne boli 

exportované ako Windows Metafile a vložené do PowerPointu, kde boli 

doplnené o formáty, animácie a texty, ktoré popisujú obrázok aj celý postup 

konštrukcie (Obr. 2). Animácie geometrických objektov (bodov, priamok, 

kružníc, kriviek a pod.) sú synchrónne ladené so súvisiacou teóriou. 
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Obr. 1:  Ukážka obrázku nakresleného v prostredí AutoCADu 

Obr. 2:  Ukážka obrázku s doplnenými formátmi a popismi na snímke 

v  PowerPoint prezentácii 
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2.2 Zobrazenie objektov v 3D priestore vytvorených 

v AutoCADe a v GeoGebre 

Pre lepšiu priestorovú predstavivosť boli v AutoCADe a v GeoGebre zobrazené 

3D modely objektov, ktoré boli použité v prezentáciách učiva v PowerPointe.  

Na Obr. 3 je ukážka 3D modelu plôch konštantného spádu ako obálky 

kužeľových plôch vytvoreného v AutoCADe a aplikovaného na snímke 

v PowerPointe, a to s výkladom učiva o projektovaní násypových a výkopových 

plôch pozdĺž korunných hrán cesty v tvare kriviek ležiacich vo vodorovných 

rovinách.  

Obr. 3:  Stránka v PowerPoint prezentácii s 3D modelmi vytvorenými v softvéri 
AutoCAD  

Na Obr. 4 je ukážka 3D modelu rovín daného spádu ako obálky kužeľových 

plôch vytvorený v GeoGebre a na Obr. 5 je tento model aplikovaný na snímke 

v PowerPointe s výkladom učiva o projektovaní násypových a výkopových 

rovín pozdĺž vodorovných priamych korunných hrán cesty, príp. pozdĺž hrán 

vodorovnej plošiny. 
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Obr. 4:  3D model nakreslený v softvéri GeoGebra 

Obr. 5:  3D model použitý na snímke v PowerPointe 

2.3 Využitie softvéru GeoGebra a ďalších softvérov pri 

tvorbe videí 
Niektoré témy a postupy konštrukcií v deskriptívnej geometrii sú náročné na 

priestorovú predstavivosť a nie vždy je možné zabezpečiť 3D model. Veľkou 

pomôckou sa ukázali videá, ktoré prezentujú celý objekt zo všetkých strán alebo 

zobrazia celý postup, napr. otáčanie roviny v stredovom premietaní. Na Obr. 6 
je ukážka strany učebnice, kde je vložené video zobrazujúce strechu so 

zakázaným odkvapom. Strecha je vyriešená v kótovanom premietaní a priložené 

video zobrazuje 3D model tejto strechy otáčajúci sa, a teda poskytujúci pohľad 
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na riešenie zo všetkých strán. 3D model bol nakreslený v softvéri GeoGebra 
a v GeoGebre bol tiež vytvorený spôsob animácie tohto objektu. Následne bola 

animácia v GeoGebre spustená a nasnímaná pomocou oCam. Video vytvorené 

v prostredí oCam bolo upravené pomocou Video Editora a vložené na snímku 
v PowerPointe. Na každej strane učebnice obsahujúcej video je žltá značka, pri 

ktorej je popísaný postup opakovaného spustenia videa. 

  Obr. 6:  Ukážka snímky v PowerPoint prezentácii s vloženým videom  

2.4 Využitie softvéru GeoGebra pri tvorbe anaglyfov 
Ako ďalší spôsob názorného zobrazenia geometrických 3D objektov sú 
v učebnici zakomponované anaglyfy. Z 3D modelov, ktoré boli nakreslené 

v softvéri GeoGebra sú vytvorené anaglyfy a tie sú zobrazené na snímkach 

v PowerPointe. Pre ich použitie sú potrebné 3D okuliare. Na Obr. 7 je anaglyf 
modelu riešenia návrhu strechy pomocou rovín s rovnakým spádom vytvorený 

v softvéri GeoGebra. 

Obr. 7:  Anaglyf vytvorený v softvéri GeoGebra 
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2.5 Interaktívny obsah na webovej stránke vytvorenej 
v Microsoft Visual Studio Code 

Učebnica Deskriptívna geometria pre stavebné odbory [1] je dostupná na stránke 

www.math.sk v časti Výuka v predmete Deskriptívna geometria alebo na stránke 
www.svf.stuba.sk v časti Dokumenty/Edičná činnosť/Skriptá. Obsah učebnice 

bol upravený a vložený na stránku vytvorenú pomocou Microsoft Visual Studio 
Code. Architektúra webovej stránky obsahuje interaktívny výber jednotlivých 

kapitol a ich podkapitol. Každú podkapitolu je možné otvárať a stiahnuť v dvoch 
formátoch, a to ako pdf súbor pre potreby tlače a ppsx súbor s prezentáciou 

vytvorenou v PowerPoint vhodnou na štúdium a výučbu, nakoľko zahŕňa 

animácie a všetky dynamické prvky kapitol učebnice.  

Obr. 8:  Úvodná stránka učebnice s interaktívnym obsahom vľavo 

Obr. 9:  Stránka učebnice Deskriptívna geometria pre stavebné odbory  
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Na Obr. 8 je úvodná stránka učebnice s interaktívnym obsahom vľavo a na 
Obr. 9 je stránka s otvorenou podkapitolou 11.6, kedy sa zobrazuje aj jej prehľad 

snímok. Na hornej časti sú ikony s výberom formátov súborov pdf a ppsx. 

3 Záver 
V tomto článku sme chceli ukázať využitie kombinácie softvérov, a to 

AutoCADu a Geogebry, podporujúcich presné vykreslenie 2D a 3D objektov, 
tvorbu anaglyfov a videí (GeoGebra, oCam, Video Editor). Zároveň sme 

ukázali efektívne zakomponovanie týchto výstupov do PowerPoint prezentácií 
tvorených kapitoly učebnice Deskriptívna geometria pre stavebné odbory.  
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Faculty of Mathematics, Physics and Informatics,
Comenius University in Bratislava
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Abstract. Intersection multiplicity of two plane curves F and G at
some point P has a well-known property of IP (F,G) ≥ mn, where
m and n are the multiplicities of the point P on the curves F and
G respectively. To each common tangent of F and G at P can be
assigned a nonnegative integer, a number equal to its contribution to
the intersection multiplicity. This can be done via local investigation
methods. The sum of these contribution numbers of all common
tangents is equal to the remainder R = IP (F,G)−mn, We investigate
the values of this contribution number for common tangents of the
multiplicity 1.

Keywords: algebraic geometry, intersection multiplicity, tangent, curve

1 Introduction
Intersection multiplicity is an important notion in algebraic geometry. It
is a number which reflects the complexity of an intersection of two plane
curves. Our goal is to contribute to the research of the connection of the
local geometric and algebraic properties of the curves with the multiplic-
ity of their intersection.

Let F ∈ k[x, y] be a polynomial over some algebraically closed field k.
For F =

∑
ci,jx

iyj (ci,j ∈ k), we define the order of the polynomial F
(ord(F )) and the degree of the polynomial F (deg(F )) as

ord(F ) = min{i+ j | ci,j ̸= 0},
deg(F ) = max{i+ j | ci,j ̸= 0}. (1)

Polynomial F is called homogeneous, if ord(F ) = deg(F ). For a non-
constant polynomial F , we define an affine algebraic curve (curve) as a
subset of the affine plane A2(k), the set

{P ∈ A2(k) | F (P ) = 0}. (2)

We shall use the same capital letter F both for the polynomial and the
curve it defines. If deg(F ) = 1, the curve corresponding to F is called a
line.
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We are interested in the local algebraic and geometric properties of an
intersection of two such curves. In this article, by local we shall always
mean in the Euclidean topology. Therefore, we focus on the situation in
a small neighbourhood of the origin, the point O = (0, 0). If we need to
investigate a situation in some other point P ̸= (0, 0), we simply apply
a change of coordinates, which maps the point P onto O and proceed
analogously.

2 Local properties of plane curves
Let ord(F ) = m. Then the polynomial F can be written as

F = Fm + Fm+1 + · · ·+ Fm+M ,

where Fi ∈ k[x, y] is either a homogeneous polynomial of the degree i or a
zero polynomial and Fm ̸= 0. We define the multiplicity of the origin on
the curve F as the number mO(F ) = m. Since the field k is algebraically
closed, the polynomial Fm can be written as a product ofm (not necessary
different) linear polynomials. These define m lines, called the tangents of
F at the origin. If Fi =

∏
T ei
i , where ei ∈ N and Ti define pairwise dis-

tinct lines, we call the number ei the multiplicity of the tangent Ti.

In a small neighbourhood of the origin, the curve F can be decomposed
into a finite set of branches b1, · · · , br. Each branch bi is defined by a
parametrization bi(t) = (tci , βi(t)) for some ci ∈ N and a (possibly infinite)
power series βi(t). Each branch has a uniquely defined tangent and a
multiplicity mi, where mO(F ) = m =

∑r
i=1 mi.

Proper proofs of the properties above and more about branches can be
found in [2], [3] or [1].

Example 2.1. Let F be a curve defined by the polynomial

F = x4y2 − x2y4 + x5y4 + y7 − x8. (3)

Then mO(F ) = 6, and the tangents of F at this point are T1 = x (with
the multiplicity 2), T2 = y (with the mult. 2), T3 = y− x (with the mult.
1) and T4 = y + x (with the mult. 1). The curve F decomposes at the
origin into five branches, b1, · · · , b5. Their parametrizations, multiplicities
and tangents are listed below.

branch mult. tangent
b1(t) = (t3, t2 − 1

3 t
4 + · · · ) m1 = 2 x = 0

b2(t) = (t,−t+ 1
2 t

2 + · · · ) m2 = 1 y + x = 0
b3(t) = (t, t+ 1

2 t
2 + · · · ) m3 = 1 y − x = 0

b4(t) = (t, t2 + 1
2 t

4 + · · · ) m4 = 1 y = 0
b5(t) = (t,−t2 + 1

2 t
4 + · · · ) m5 = 1 y = 0
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The branches of the curve F are illustrated on Figure 2.1.

b1
b2

b3

b4

b5

F

Fig. 1: The curve F and its five branches in a small neighbourhood of the
origin.

Following lemma describes how the branches look like in a case of a
tangent of the multiplicity 1. It is later used in the proof of our main
result, Theorem 4.1.

Lemma 2.2. Let F be a curve defined by the polynomial

F =
∑

i∈{0,...,M}
j∈{0,...,M′}

fi,jx
m+i−jyj . (4)

Let y = 0 be a tangent of F at the origin of the multiplicity 1. Then there
is exactly one branch of F at the origin with the tangent y and it can be
parametrized by

b(t) =
(
t, th+1

(
−f0,h − V (H)tH + (terms of higher degree)

))
, (5)

where h ∈ N is the smallest number such that fh,0 is nonzero. The
function V (H) is defined as follows. For H ≥ h, there is exactly one pair
of integers e, i ∈ N, such that H = eh+ i, where i < h. Then

V (H) = V (e, i) =
e+1∑

j=0

(−fh,0)e+1−jfjh+i,e+1−j (6)
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Proof. We omit the proof of this lemma. It can be proven by a direct
(and a rather lengthy) calculation of the Puiseux expansion.

3 Intersection multiplicity of two plane curves
Let F and G be two curves which intersect at the origin. We define their
intersection multiplicity at this point as

IO(F,G) = dim k[x, y]/(F,G) (7)

where by dim we mean the dimension of k[x, y]/(F,G) as a vector space.
More about the intersection multiplicity can be found in numerous books
about algebraic geometry, for example [5], [4] or [3].

Let mO(F ) = m and mO(G) = n. Their intersection multiplicity
at the origin has a well known property IO(F,G) ≥ mn. By adding a
remainder R, we can change this inequality to the equality

IO(F,G) = mn+R. (8)

Example 3.1. Let F and G be two curves (illustrated in Figure 3.1)
defined by the polynomials

F = x2 − y5,

G = x3 − y4.
(9)

F

G

Fig. 2: Intersection of the curves F ans G.

Then m = mO(F ) = 2, and n = mO(G) = 3. They intersect at the
origin with the multiplicity IO(F,G) = 8. Therefore the remainder for
this example is equal to

R = IO(F,G)−mn = 8− 2 · 3 = 2. (10)
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For each common tangent T of F and G at O we can describe how
much it contributes to the remainder R in the following way. Let F
decompose into r branches at the origin, the branches b1, · · · br. Then

IO(F,G) =

r∑

i=1

IO(bi, G), (11)

where IO(bi, G) = ordG(bi(t)). Let mi denote the multiplicity of the
point O on the branch bi. Then m = mO(F ) =

∑r
i=1 mi.

Let bt1 , · · · bts be the set of all branches of F with the tangent T . Then
the the contribution of a tangent to the intersection multiplicity is the
number CT , such that

s∑

j=1

IO(btj , G) = (mt1 + · · ·+mts)n+ CT . (12)

Therefore, if τ is a set of all common tangents of F and G at O, we have
the property

IO(F,G) =
r∑

i=1

IO(bi, G) = mn+
∑

T∈τ

CT (13)

Different approaches for the algebraic and geometric description of the
remainder R can be found in [8] and [7].

4 Contribution of a tangent of multiplicity 1
Let F and G be two plane curves, let the point O be of the multiplicity m
and n on the curves F and G respectively. Then F and G can be defined
by the polynomials

F =
∑

i∈{0,...,M}
j∈{0,...,M′}

fi,jx
m+i−jyj , G =

∑

i∈{0,...,N}
j∈{0,...,N′}

gi,jx
n+i−jyj . (14)

for some fi,j , gi,j ∈ k and M,M ′, N,N ′ ∈ N0.
Let the line y = 0 be a common tangent of F and G. Then f0,0 = g0,0 = 0.
Let the tangent y = 0 be of the multiplicity 1 on the curve F . Then
f0,1 ̸= 0. We denote Q =

−f1,0
f0,1

.

Theorem 4.1. Let F an G be curves defined as above. Let Cy be the
contribution of the tangent y to their intersection multiplicity at O. Then

� Cy ≥ 2 if, and only if,

f0,1 (g0,1Q+ g1,0) = g0,1 (f0,1Q+ f1,0) , (15)
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� Cy ≥ 3 if, and only if,

f0,1
(
g0,2Q

2 + g1,1Q+ g2,0
)
= g0,1

(
f0,2Q

2 + f1,1Q+ f2,0
)
, (16)

� Cy ≥ 4 if, and only if,

f0,1
(
g0,3Q

3 + g1,2Q
2 + g2,1Q+ g3,0

)
− f1,1 (g2,0 + g0,2) =

= g0,1
(
f0,3Q

3 + f1,2Q
2 + f2,1Q+ f3,0

)
− g1,1 (f2,0 + f0,2) .

(17)

Proof. This can be proven by direct calculation. Since the multiplicity of
the tangent y on the curve F at the origin is 1, there is exactly one branch
b of the curve F with this tangent and it can be parametrized by

b(t) =
(
t, th+1

(
−f0,h − V (H)tH + (terms of higher degree)

))
, (18)

where h is the smallest number such that fh,0 is nonzero, as defined in
Lemma 2.2.
The intersection multiplicity of G and b at O is equal to the order of the
polynomial G(b(t)) and has the property

IO(b,G) = 1n+ Cy. (19)

We show the proof for the case Cy ≥ 2. Let the multiplicity of the tangent
y on the curve G be s. Then g0,0 = · · · = g0,s−1 = 0, g0,s ̸= 0 and

G(b(t)) =
∑

i∈{0,...,N}
j∈{0,...,N′}

gi,jt
n+i−jtj(h+1)

(
−f0,h − V (H)tH + (· · · )

)j
=

= tn+hs

(
g0,s

(−fh,0
f0,1

)s)
+ tn+1 (g1,0)

+ (terms of degree ≥ n+ 2).

We need to find the conditions under which the order of the polynomial
G(b(t)) is n+ 1. One of the following two cases happen.

1. Let h = s = 1. Then

G(b(t)) = tn+1·1
(
g0,1

(−f1,0
f0,1

)1
)

+ tn+1 (g1,0) + (· · · ) =

= tn+1

(
g0,1
−f1,0
f0,1

+ g1,0

)
+ (· · · ),

(20)

therefore the order of the polynomial G(b(t)) is n+1 if, and only if

g0,1
−f1,0
f0,1

+ g1,0 ̸= 0.
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2. Let h > 1 (hence f0,1 = 0), or s > 1 (hence g0,1 = 0). Then
n+ hs > n+ 1 and the order of the polynomial G(b(t)) is n+ 1 if,
and only if g1,0 ̸= 0.

Both these cases can be described by a single common condition, ord(G(t)) =
n+ 1 if, and only if

g1,0f0,1 ̸= g0,1f1,0, (21)

otherwise, it is greater. In other words Cy = IO(b,G)−n ≥ 2 if, and only
if,

g1,0f0,1 = g0,1f1,0. (22)

This is equivalent to our desired condition,

f0,1g0,1
−f1,0
f0,1

+ g1,0f0,1 = f0,1g0,1
−f1,0
f0,1

+ g0,1f1,0,

f0,1

(
g0,1
−f1,0
f0,1

+ g1,0

)
= g0,1

(
f0,1
−f1,0
f0,1

+ f1,0

)
,

f0,1 (g0,1Q+ g1,0) = g0,1 (f0,1Q+ f1,0) .

(23)

Analogous process can be repeated for the proof of the cases of Cy ≥ 3
and Cy ≥ 4.

Remark 4.2. Currently we do not have an equivalent result for Cy ≥ 5
and higher. However, the results of Theorem 4.1 show a certain pattern
in the conditions. This suggests what the conditions for the general case
of Cy ≥ z (z ∈ N) could look like.

5 Conclusion
Contribution of an tangent to the intersection multiplicity (Ct) is a ge-
ometrical property of an intersection connected to the intersection mul-
tiplicity. In this article, we are focused on the simplest case, where the
multiplicity of a given tangent is 1. We have calculated necessary and
sufficient conditions for small values of the number Ct in this case.
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československých matematik̊u a fysik̊u, 1948.
[2] William Fulton: Algebraic Curves: An Introduction to Algebraic

Geometry, http://www.math.lsa.umich.edu/∼wfulton/.
[3] Egbert Brieskorn, Horst Knörrer: Plane Algebraic Curves,
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Abstract. In a broader sense, a Schwarzschild spacetime is a smooth
manifold, endowed with an action of the special orthogonal group
SO(3) and a Schwarzschild metric, an SO(3)-invariant metric field,
satisfying the Einstein equations. Explicit formulas of all Schwarzschild
metrics on 4-dimensional manifold R× (R3 \{(0, 0, 0)}) are introduced,
using spherical charts. Existence of a Schwarzschild metric on different
manifolds is also disscused.
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1 Introduction
This contribution concerns mathematical foundations of the general rela-
tivity theory published by Albert Einstein in 1915 [1]. The theory provides
a unified description of gravity as a geometric property of four-dimensional
spacetime. Relation between the curvature of spacetime and the matter
of spacetime is given by the Einstein field equations. In generally, these
equations represent a system of second order partial differential equations
for metric fields. Its exact solution for a case of a single spherical non-
rotating mass was found by Karl Schwarzschild in 1915 [5]. The solution
is well-known as Schwarzschild metric and is formulated in adapted coor-
dinates on the subset R×(R3 \{(0, 0, 0)}) of R4 where the mass is placed
in its origin. This space with the Schwarzschild metric represents one of
the basic models of the general relativity called Schwarzschild spacetime.

In this contribution we revise the process of finding the solution of the
corresponding Einstein equations on the manifold R × (R3 \ {(0, 0, 0)})
by geometric approach. The resulting family of Schwarzschild metrics is
parametrized by a function and two real parameters, the integration con-
stants. For any Schwarzschild metric, one of the parameters determines a
submanifold, where the metric is not defined, the Schwarzschild sphere. In
particular, the family admits a global metric whose Schwarzschild sphere
is empty.

By the winding mapping of the real line R onto the circle S1, these
results are transferred to the manifold S1 × (R3 \ {(0, 0, 0)}) which topo-
logically differs from R× (R3 \ {(0, 0, 0)}).

All our assertions are derived independently of the signature of the
Schwarzschild metric; the signature can be chosen as an independent ax-
iom.
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2 The special orthogonal group and the rotations
Let us consider R3 as a real Euclidean vector space of dimension 3 en-
dowed with the canonical (Euclidean) scalar product. A square matrix A
of dimension 3 with real entries

A =




a11 a12 a13
a21 a22 a23
a31 a32 a33




is said to be orthogonal, if its row vectors (a11, a12, a13), (a21, a22, a23),
(a31, a32, a33) constitute an orthonormal basis of R3. The set of orthog-
onal matrices is denoted by O(3). The matrix multiplication defines on
the set O(3) a group structure. Its subgroup consisting of all orthogonal
matrices with determinant 1 is called the special orthogonal group and is
denoted SO(3). With a smooth structure SO(3) is also a Lie group.

The group SO(3) is related with the rotations of R3. Equations of
counter-clockwise rotations of R3 around the x-axis, the y-axis and the
z-axis in the canonical oriented frame in R3 are

x̄ = x, ȳ = y cosβ1 − z sinβ1, z̄ = y sinβ1 + z cosβ1,

x̄ = x cosβ2 + z sinβ2, ȳ = y, z̄ = −x sinβ2 + z cosβ2,

x̄ = x cosβ3 − y sinβ3, ȳ = x sinβ3 + y cosβ3, z̄ = z,

respectively, where β1, β2 and β3 are the corresponding rotation param-
eters (angles). We call these transformations of R3 elementary rotations.
By rotation of R3 we mean any composition of elementary rotation around
the x-axis, the y-axis and the z-axis. Each rotation ρ of R3 is uniquely
determined by its matrix B given by ρ(x, y, z) = B · (x, y, z) for all
(x, y, z) ∈ R3.

Lemma 1. A matrix of dimension 3 is special orthogonal if and only if
it is a matrix of some rotation of R3.

3 Spherical atlas
Let us denote by U,U, V open subsets of R3 determined as

U = R3\{(x, y, z) ∈ R3|x ≥ 0, y = 0},
U = R3\{(x, y, z) ∈ R3|x ≤ 0, z = 0},
V = (0,∞)× (0, 2π)× (0, π),

and by Λ : V ∋ (r, φ, ϑ) → (x, y, z) ∈ U the mapping, defined by the
equations

x = r cosφ sinϑ, y = r sinφ sinϑ, z = r cosϑ.
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Analogously, denote by Λ : V ∋ (r̄, φ̄, ϑ̄) → (x, y, z) ∈ U the mapping,
defined by equations

x = −r̄ cos φ̄ sin ϑ̄, y = −r̄ cos ϑ̄, z = −r̄ sin φ̄ sin ϑ̄,

Both Λ and Λ are invertible. Denoting Ψ = Λ−1, and Ψ̄ = Λ̄−1 we have

Lemma 2. The charts (U,Ψ), (Ū , Ψ̄) constitute a smooth atlas on R3 \
{(0, 0, 0)}.

Now consider X = R×R3\{(0, 0, 0)} with the atlas formed by two charts
(R × U,Φ), (R × U,Φ), where Φ = (t,Ψ) = (t, r, φ, ϑ), Φ = (t,Ψ) =
(t, r̄, φ̄, ϑ̄), and t is the canonical coordinate on R.

In this paper, we call this atlas the spherical atlas on X; the charts
(R×U,Φ), (R×U,Φ) are called first and second spherical charts on X.

4 Invariant metric
A metric of X is everywhere non-degenerate and symmetric (0, 2)-tensor
field on X. A (0, 2)-tensor field g on X is said to be invariant with respect
to a diffeomorphism α : X → X, if its pullback α∗g satisfies

α∗g = g.

In the first spherical chart on X, a (0, 2)-tensor field g has an expression

g = gttdt⊗ dt+ gtrdt⊗ dr + gtφdt⊗ dφ+ gtϑdt⊗ dϑ

+grtdr ⊗ dt+ grrdr ⊗ dr + grφdr ⊗ dφ+ grϑdr ⊗ dϑ

+gφtdφ⊗ dt+ gφrdφ⊗ dr + gφφdφ⊗ dφ+ gφϑdφ⊗ dϑ

+gϑtdϑ⊗ dt+ gϑrdϑ⊗ dr + gϑφdϑ⊗ dφ+ gϑϑdϑ⊗ dϑ.

Our aim is to determine (0, 2)-tensor fields g on X invariant with respect
to the following transformations of X:
action of SO(3)

SO(3)×X ∋ (A, (t, x, y, z)) 7→ (t, A · (x, y, z)) ∈ X,

time translations

R×X ∋ (ε, (t, x, y, z))→ τε(t, x, y, z) = (t+ ε, x, y, z) ∈ X,

time reflection

X ∋ (t, x, y, z)→ σ(t, x, y, z) = (−t, x, y, z) ∈ X.

Theorem 1. Each (0, 2)-tensor field g on X invariant with respect to the
action of SO(3), to the time translations, and to the time reflection, is in
the first spherical chart expressed by

gR×U = J(r)dt⊗ dt+ P (r)dr ⊗ dr +Q(r)(sin2 ϑdφ⊗ dφ+ dϑ⊗ dϑ),

where J , P , and Q are arbitrary functions of r on R× U .
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Analogous result can be obtained for invariant (0, 2)-tensor field gR×U
in the second spherical chart. Taking gR×U and gR×U such that the
corresponding components coincide on the intersection of domains we get
invariant (0, 2)-tensor field g globally defined on X (see [4] for details).

5 Einstein equations
In this section our aim is to find all invariant metrics on X satisfying the
Einstein equations. First we recall the basic notation and concepts to this
purpose. If we have a metric g on X, i.e. symmetric, regular (0, 2)-tensor
field g on X, its chart expression using coordinates (xi) is

g = gijdx
i ⊗ dxj .

The symmetry requirement is in this chart expression represented by the
condition gij = gji for all i, j; regularity means that det(gij) ̸= 0 every-
where. The functions

Γk
ij =

1

2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij

∂xl

)
,

where gkl are functions defined by gjkg
kl = δlj , are the Christoffel symbols,

the components of the Levi-Civita connection associated with the metric
g, in a chart (U,φ). The curvature tensor of the Levi-Civita connection
is a (1, 3)-tensor field on X, expressed by

Rl
kij

∂

∂xl
⊗ dxk ⊗ dxi ⊗ dxj ,

where

Rl
kij =

∂Γl
jk

∂xi
− ∂Γl

ik

∂xj
+ Γl

imΓm
jk − Γl

jmΓm
ik.

The Ricci tensor is a (0, 2)-tensor field on X, expressed by

Rijdx
i ⊗ dxj ,

where the components Rij is defined by a (1, 3)-contraction of the curva-
ture tensor,

Rij = Rk
ijk.

Contracting the (1, 1)-tensor field Ri
j = gimRmj we obtain a function R

on X, the scalar curvature of g, or the Ricci scalar. In coordinates,

R = gijRij .

Extremals of the Hilbert variational functional, in which the scalar curva-
ture stands for the Lagrangian, are determined by the Einstein equations,

Rij −
1

2
Rgij = 0. (1)
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We consider invariant metric g onX, in first spherical chart determined by
Theorem 1. Due to the regularity condition, smooth functions J, P,Q are
non-zero at every point of their domain. Just three of the Einstein equa-
tions (1) are non-trivial and independent. Due to the functions J, P,Q
depend on r only we get the system of three ordinary differential equations

P ′

P

Q′

Q
+

1

2

(
Q′

Q

)2

− 2
Q′′

Q
+ 2

P

Q
= 0,

J ′

J

Q′

Q
+

1

2

(
Q′

Q

)2

− 2
P

Q
= 0,

J ′

J

Q′

Q
+ 2

Q′′

Q
+ 2

J ′′

J
− P ′

P

Q′

Q
− J ′

J

P ′

P
−
(
J ′

J

)2

−
(
Q′

Q

)2

= 0,

(2)

where ′ denotes the derivative with respect to r. Supposing Q(r) > 0 on
its domain, the structure of the equations (2) allows us to denote q(r) =√
Q(r) where q(r) can be viewed as a smooth function depending on r,

and the coordinates (t, r, φ, ϑ), on R × U , can be replaced by (t, q, φ, ϑ).
If Q(r) < 0, for all r, then we denote q(r) =

√
−Q(r), and proceed as

above. Setting

j(q) = J(r), p(q) = P (r)

(
dr

dq

)2

,

a metric g can be rewritten in the form

g = j(q)dt⊗ dt+ p(q)dq ⊗ dq + q2(sin2 ϑdφ⊗ dφ+ dϑ⊗ dϑ),

and the system (2) turns to easily solvable system

j

qp

(
p′

p
− 1

q
(1− p)

)
= 0,

−1

q

(
j′

j
+

1

q
(1− p)

)
= 0,

−1

4

q2

p

(
2

q

(
j′

j
− p′

p

)
+ 2

j′′

j
− j′p′

jp
− (j′)2

j2

)
= 0.

(3)

Theorem 2. (Schwarzschild solution) For any constants C,C ′, C ′ ̸= 0,
formula

g = C ′
(
1− C

q

)
dt⊗dt+

(
1− C

q

)−1

dq⊗dq+q2(sin2 ϑdφ⊗dφ+dϑ⊗dϑ)

defines a solution of the Einstein equations (3). The domain of definition
of this solution is an open set of R× U defined by q ̸= C.
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Again, analogous result can be obtained in the second spherical chart.
Taking values of q, C,C ′ coinciding at the intersection of the chart domains
we get the solution defined globally on R×(R3 \{(0, 0, 0}) (for C ≤ 0), or
on open subset of R× (R3 \ {(0, 0, 0}) given by equation q ̸= C (C > 0).
For any fixed q, the Theorem 2 defines a metric g on R× (R3 \{(0, 0, 0}).
We get a family parametrized by the constants C and C ′. Any element of
this family is a Schwarzschild metric. The manifold R× (R3 \ {(0, 0, 0})
endowed with a Schwarzschild metric g, is a Schwarzschild spacetime.

6 Schwarzschild solution on S1 × (R3 \ {(0, 0, 0)})
Let us consider the canonical product manifold structure on the topolog-
ical space S1 × (R3 \ {(0, 0, 0)}), and a winding mapping κ0 from R to
S1. This mapping induces a surjection

κ : R× (R3 \ {(0, 0, 0)})→ S1 × (R3 \ {(0, 0, 0)})

by κ(t, x, y, z) = (κ0(t), x, y, z). Our objective is to introduce an ana-
logue a Schwarzschild metric for the manifold S1× (R3 \{(0, 0, 0)}) which
topologically differs from the manifold R×R3 \ {(0, 0, 0)}.

Theorem 3. Let g be a Schwarzschild metric on R × R3 \ {(0, 0, 0)}.
The metric h on S1 × (R3 \ {(0, 0, 0)}) such that

g = κ∗h

is a globally well defined solution of the Einstein equations.
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Abstract. City air mobility transport with vertical take-off and landing 

capabilities challenges engineers across development spectra. Fast prototyping of 

parametric propeller geometry will be introduced as well as start-up approach to 

new geometry requirements. Capabilities and deficiencies of open propeller 

geometry software will be compared to classical licensed software approach. 

SLA 3D printer used as a suitable tool for basic geometry evaluation and aero-

acoustic testing will be described. 

Keywords: VTOL, propulsion unit, propeller, blade, parametric CAD model. 

1 Introduction 

There are 3 main propulsion systems used for VTOL. First one and the easiest to 

design is separate propeller units for horizontal and vertical flight. This system 

allows effective design of each horizontal and vertical propellers however creates 

higher drag forces during horizontal flight and ads weight of non-used system. 

This problem can be solved by second type which is tilting rotor system. Here 

transition phase of flight is carried by rotating rotors. The problem of this system 

is need of compromise on propeller design for both vertical and horizontal flight 

propeller efficiency and technical complexity of rotating rotor system. The last 

system is ducted fan configuration where turbofan stator and rotor systems are 

located inside wings ducts for vertical flight with benefits of higher ground effect 

and other physical phenomena. Ducted fan approach provides batter aero-

acoustic optimization possibilities also allowing rotation of whole unit during 

transition phase. 

2 Propeller design approach 

Procedure of every propeller design starts with analytical computation of 

propeller design parameters based on aircraft performance demands [1]. From 

propeller diameter, propeller revolutions per minute, desired power and air 

conditions (pressure and density), main propeller design parameters (angle of 

attack, angle of incidence, chord length, twist/lean/sweep angles) are computed. 
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These parameters give complete description of propeller design which can then 

be constructed by one of following approaches. [2] 

2.1 Design engineer with commercial CAD software  

This approach means construction of whole propeller by design engineer, starting 

with propeller profile construction (usually from NACA library), manual 

positioning of profiles along stacking line and final surface creation with desired 

surface continuity. Problems of this approach are time consumption, cost 

(engineer with commercial CAD software such as CATIA) and complicated 

possibilities of geometry optimization and modification. 

2.2 Parametric CAD of propulsion unit 

Parametric CAD tools for propeller/blade design are the best option for fast 

prototyping. Qprop for propeller and Xrotor for blade design opensource tools, 

constantly being developed on MIT, give complete independent control of 

parametric design together with low-fidelity aero-acoustic analyses. After 

mastering non-intuitive environment, user is able to generate, quickly analyze 

and optimize propulsion unit geometry. [3] 

2.3 Parametric CAD of aircraft  

Another parametric CAD tool for description of whole aircraft is than 

implemented into design procedure to give geometry control of the whole 

aircraft. NASA OpenVSP is a simple .exe opensource software allowing user to 

create and parametrically describe simplified geometry of whole aircraft with all 

avionic systems (wings, flaps, propulsion units, landing gear). This geometry is 

than used for advanced high-fidelity aero-acoustic analyses to give complete 

mathematical model of aircraft behavior. [4] 

2.4 In-house parametrical geometry software 

For the final stages of blade/propeller design, to capture all details and prepare 

geometry built specifically for specific aircraft, python/c++ in-house software 

are used. The main benefit of this step is high quality CAD generation with easy 

and fast possibility of very fine parameter optimization. 

3 SLA 3D printer – fast prototyping tool 

Stereolithography (SLA) 3D printing is the most common resin 3D printing 

process that has become vastly popular for its ability to produce high-accuracy, 

isotropic, and watertight prototypes and end-use parts in a range of advanced 

materials with fine features and smooth surface finish. 

Most common desktop SLA 3D printer works on a simple principle of 

submerging horizontal plate into vane with transparent bottom. LCD UV display 
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than lights on printed area. By repeating process of lifting, submerging and 

printing each layer, the desired resin object is printed. 

The process of preparation consists of several steps. Firstly watertight 

geometry needs to be transformed into mesh .stl  format. Then in slicing software 

the model is pre-processed by setting up internal (honeycomb, triangular etc.) 

and external (supports) structures. Display and layer parameters are also set in 

slicing software. 

Final 3D print can be postprocessed directly in post-processing machine or 

by cleaning in alcohol and hardening in UV oven. 

Accuracy of average desktop SLA printer is the accuracy of LCD display 

(full-HD, 4K) in horizontal plane and 0.01mm in vertical plane. 
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Abstract. Subdivision surfaces are commonly used to simulate addi-
tional detail for mesh objects on the scene. For certain problems, such
as Lagrangian shrink-wrapping, determining the number of vertices
of the subdivision surface is crucial for estimating vertex density.
Furthermore, gauging the number of mesh primitives relative to the
subdivision level becomes useful for memory preallocation during the
surface creation process. We propose a general method for estimating
these values using solutions to simple systems recurrence equations.

Keywords: Subdivision, mesh, level-of-detail, recurrence.

1 Introduction

Subdivision surfaces, created by refining a base cage surface, are used
in geometric design [7] and real-time rendering [8]. This paper presents
counting formulas for estimating mesh primitive (vertices, edges, faces)
counts based on the connectivity of the base mesh and the recursive prop-
erties of subdivision (see Fig. 1 (a)). These formulas help in computing
vertex density [6] and in efficient memory allocation for subdivision sur-
face construction.

Fig. 1: (a) The amount of mesh vertices Ns
V and edges Ns

E with respect
to subdivision level s = 0, 1... depends on the initial connectivityM0. (b)
Three snapshots of the evolution of an icosphere with subdivision level
s = 3 under an advection-diffusion shrink-wrapping model introduced in
[6]. The detail shows a chosen mesh vertex Fi (red) with its corresponding
barycentric Laplacian co-volume Vi (blue).
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2 Motivation

According to Section 2.4 of [6] a semi-implicit formulation of a parabolic
advection-diffusion evolution applied to manifold mesh surfaces, requires
us to ensure that the time step size τ > 0 is close to the value of mean
area µ(V ) of a barycentric Laplacian co-volume V surrounding each mesh
vertex (see Fig. 1). The most straightforward approach is to compute a
2-dimensional scaling factor

ϕ =

√
τ

µr(V )
, where µr(V ) =

4πr2

Ns
V

. (1)

This assumes a spherical evolving surface with uniform vertex distribu-
tion. To achieve stability and return to the original scale, the mesh is
scaled using ϕ and then reverted with 1/ϕ.

For a surface formed by s > 0 subdivision steps, a counting formula
evaluates Ns

V from the recursive nature of the subdivision operation. A
typical example of such surface is an icosphere which is a form of spherical
geodesic grid used as a discrete computational domain for applications
such as climate modeling [13] and global data visualization [16]. Starting
from initial vertex count of an icosahedron N0

V = 12 we have

N1
V = 42, N2

V = 162, N3
V = 642, N4

V = 2562, N5
V = 10242, ... .

Other, more general surfaces with different initial valences for each vertex,
would need individual evaluation, which is clearly impractical.

3 Related work

In acoustic simulations Alarcão et al. [2] subdivided an icosahedron’s radi-
ation pattern for ray direction determination, with formulas for counting
vertices and faces:

Ns
V = 5

(
22s − 2s + 2

2s∑

m=1

m

)
+ 2 , Ns

F = 20 · 4s. (2)

[12] discusses the OLAM geodesic grid construction, beginning with an
icosahedron inscribed in the earth. Each triangle subdivides into N2

smaller triangles, introducing 30(N2 − 1) new edges and 10(N2 − 1) ver-
tices. This approach differs from the icosahedron counting formula (2) as
it does not consider recursion and solely focuses on 4:1 triangle subdivi-
sions.

Both techniques, however, only handle a single type of triangular base
surface under a 4:1 triangle subdivision.
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4 Manifold mesh subdivision theory
Polygonal meshes are perhaps the most widely adopted representation
in the realm of 3D data storage and display. We evaluated the formal
definitions of meshes in the prominent literature from the field, such as
Botsch et al. [3], and Hoppe et al. [10], and formulated the following
definition:

Definition 4.1. Let K be an abstract simplicial complex containing at
most 2-simplices (triangles). Let V = {v1, ...,vNV

} ⊂ E3 a finite set
of points referred to as the vertex set. Then (K, V ) is called a triangle
mesh. A polygon is a union of 2-simplices (triangles) each of which is edge-
adjacent to another triangle1. Let M ⊇ K possibly contain polygons in
addition to triangles in K. Pair (M, V ) is then called a polygonal mesh.

Fig. 2: Each tri-
angle has 3 half-
edges, and each
interior edge has
two opposing half-
edges, and there is
a single half-edge
for each boundary
edge.

A pure point-set surface image M ⊂ E3 of the
mesh is known as the geometric realization of (M, V ).
This notion is explained in more detail in Section 2
of [10].

Meshes approximating smooth surfaces require
distinguishing between general simplicial realizations
and those approximating smooth surfaces. Hence,
we distinguish between manifold and non-manifold
meshes.

Definition 4.2. Let X be a topological 2-manifold,
and F : X → E3 its immersion. A polygonal mesh
(M, V ) is then said to be a manifold mesh if M =
F [X]. If the geometric realizationM does not have
a boundary ∂M, we say that (M, V ) is watertight.

A 2-manifold mesh is sometimes referred to as a
surface mesh for which there exists an efficient data structure [15] which
uses ordered 1-simplices - half-edges (see Fig.2).

Now define a map M → M∗ referred to as a tessellation-changing
operation onM, such thatM∗∩M ̸= ∅ whereM∗ is also an extension of
the resulting simplicial complex K∗ containing modified polygons forming
a polygonal mesh (M∗, V ∗). An example of such operation is evidently
subdivision:

Definition 4.3. Let T = {i0, i1, i2} ∈ M be a triangle in a surface
mesh M. A tessellation-changing operation Σ : M → M∗ which in-
troduces new 0-simplices (vertices) {i∗01}, {i∗12}, and {i∗20} per each edge

1For example, triangles T0 = {i, j, k} and T1 = {j, i, l} are edge-adjacent sharing
edge {i, j} ∈ K.
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{i0, i1}, {i1, i2}, {i2, i0} ∈ M, and replaces T with four triangles:

T0 = {i0, i∗01, i∗20}, T1 = {i∗20, i∗01, i∗12},
T2 = {i∗01, i1, i∗12}, T3 = {i∗20, i∗12, i2},

(3)

is called a 4:1 triangle subdivision on M. If the change in connectivity
information (for triangles and edges) also propagates to all three possible
edge-neighboring triangles T (01), T (12), and T (20) of T , we say that Σ is
compatible with T (01), T (12), or T (20). If Σ is targeting all triangles ofM,
and compatible with respect to all neighbors of all triangles, we say that
Σ is globally-compatible.

A subdivision of T compatible with respect to T (e), e ∈ {01, 12, 20}
provided that no neighbors of T (e) are also subdivided yields two edge-

adjacent triangles T (e) 7→ T
(e)
0 , T

(e)
1 sharing vertex {i∗e} ∈ M∗. For the

purposes of this paper, however, we only consider globally-compatible
subdivisions, that is: if T subdivides into T0, T1, T2, and T3, so do its edge
neighbors T (e), e ∈ {01, 12, 20} if they exist.

An approximating2 variant of such subdivision is a scheme proposed
by Loop [11]. An interpolating variant would be, for example, a simple
spherical projection scheme

v∗
e ← projS2(v

∗
e) = v∗

e/∥v∗
e∥. (4)

for constructing an icosphere.
This is, of course, not the only way to subdivide triangle faces inM.

If we also add an interior vertex {i∗012} = {i∗} ∈ M∗ subdividing T into
three quadrilaterals

Q0 = {i0, i∗01, i∗, i∗20}, Q1 = {i∗01, i1, i∗12, i∗}, Q2 = {i∗, i∗12, i2, i∗20}, (5)

we formulate the combinatorial Catmull-Clark subdivision variant for tri-
angles with its approximating scheme described in [4] and [5]. This scheme
can be extended to subdivide an arbitrary mesh (m ≥ 3)-gon with the
resulting quads Q0, ..., Qm−1 sharing the inserted interior vertex {i∗}. For
example, if m = 4, we get

{i0, i∗01, i∗, i∗30}, {i∗01, i1, i∗12, i∗}, {i∗, i∗12, i2, i∗13}, {i∗30, i∗, i∗13, i3}. (6)

The subdivision operation can, of course, be repeated s > 0 times

where we write Σs =

s-times︷ ︸︸ ︷
Σ ◦ ... ◦ Σ. Infinite application of subdivision then

leads to a limit surface.

2Such that ({i},vi) ̸= Σ({i},vi) because of the movement of positions vi of the
original vertices {i} ∈ M under Σ.
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5 Counting formulas

Recall that in Section 2, we wanted to evaluate the number of mesh ver-
tices NV as a function of the subdivision level. This number is closely
related to both the count of edges NE and faces NF through the Euler
polyhedron formula [9]. In this section, we utilize all the tools at our dis-
posal to prove such ”counting formulas” for different types of subdivision.

Theorem 5.1. LetMs = Σs(M), s ∈ N+
0 be a watertight triangle surface

mesh, and let Σ : Ms−1 7→ Ms, s > 0 be a globally-compatible 4 : 1
subdivision inserting a single vertex for each edge e ∈ Ms. Let Ns

V , N
s
E,

and Ns
F denote the number of vertices, edges, and faces ofMs respectively.

Then given starting counts N0
V , N

0
E, and N0

F we have:

Ns
E = 4sN0

E , Ns
F = 4sN0

F , (7)

Ns
V =

1

3

(
N0

E(4
s − 1) + 3N0

V

)
. (8)

Proof. First, we consider that Σ subdivides each face into 4 faces, that is
Ns

F = 4Ns−1
F which yields Ns

F = 4sN0
F for any s ∈ N. However, since we

insert a new vertex for each existing edge, the number of added vertices
in step s will be equal to edge count Ns−1

E . This gives rise to a system of
recurrence equations:

Ns
V = Ns−1

V +Ns−1
E ,

Ns
E = 4Ns−1

E .
(9)

Before solving this system, we need to verify that under Σ the number of
edges inMs−1 increases to 4 times the count in previous step (the second
equation for NE).

Since for a triangle mesh without boundary, the total number of half-
edges is:

NH = 2NE = 3NF , (10)

and subdivision from Definition 4.3 updates the number of edge by dou-
bling the amount of existing edges, and adding 3 new interior edges per
each triangle, we have

Ns
E = 2Ns−1

E + 3Ns−1
F = 4Ns−1

E ,

using (10).

After solving (9) using the s-th power of the matrix of the system, we
get Ns

E = 4sN0
E and (8).
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Fig. 3: (a) subdivid-
ing interior (Theorem
5.1) (b) and bound-
ary triangles (Theo-
rem 5.2).

The fact that the proof of the above theorem
depends only on identity (10) yields:

Corollary 5.1. The statement of Theorem 5.1 is
independent from the genus of the surface mesh.

Introducing boundary violates idenity (10)
which must be replaced by

NH = 2NIE +NBE = 3NF , (11)

where NE = NIE+NBE with interior and bound-
ary edge counts NIE , NBE respectively.

Theorem 5.2. Let Ms = Σs(M), s ∈ N+
0 be

a possibly non-watertight triangle surface mesh,
and let Σ : Ms−1 7→ Ms, s > 0 be a globally-
compatible 4 : 1 subdivision inserting a single ver-
tex for each edge e ∈ Ms. Let Ns

V denote the
number of vertices, Ns

IE the number of interior
edges, and Ns

BE the number of boundary edges of
Ms. Then:

Ns
V =

1

6
(4s − 4 + 3× 2s)N0

BE +
1

3
(4s − 1)N0

IE +N0
V ,

Ns
IE = 2s−1

(
(2s − 1)N0

BE + 2s+1N0
IE

)
,

Ns
BE = 2sN0

BE .

(12)

Proof. Recurrence relation (9) needs to be adjusted, so that it handles
edge vertex insertion differently for interior, and for boundary edges.
Σ applied to boundary edges simply doubles their amount Ns

BE . For
counting interior edges Ns

IE requires us to use the generic identity Ns
E =

2Ns−1
E + 3Ns−1

F combined with (11) which yields the second equation in:

Ns
V = Ns−1

V +Ns−1
IE +Ns−1

BE ,

Ns
IE = 4Ns−1

IE +Ns−1
BE ,

Ns
BE = 2Ns−1

BE .

(13)

(12) is then the solution of system (13).

Theorem 5.3. Let Ms = Σs(M), s ∈ N+
0 be a watertight quad surface

mesh, and let Σ : Ms−1 7→ Ms, s > 0 be a globally-compatible 4 : 1
subdivision inserting a single vertex for each edge e ∈ Ms, and a vertex

72 �avarga Martin



for each face Q ∈Ms, according to connectivity scheme (6). Then

Ns
E = 2s(N0

E + 2(2s − 1)),

Ns
F = 4sN0

F ,

Ns
V = (2s − 1)2N0

F + (2s − 1)N0
E +N0

V .

(14)

Proof. Similarly to the derivation of previous recurrence formulas, we con-
clude that the amount of pre-existing edges doubles during subdivision,
and we add four additional interior edges connecting from the newly in-
serted edge vertices {i∗e}, e ∈ {01, 12, 23, 30} to the new interior vertex
{i∗}. Analogously, the newly inserted vertices {i∗01}, {i∗12}, {i∗23}, {i∗30},
and {i∗} contribute to the updated vertex count:

Ns
V = Ns−1

V +Ns−1
E +Ns−1

F ,

Ns
E = 2Ns−1

E + 4Ns−1
F ,

Ns
F = 4Ns−1

F .

(15)

Solving (15) then yields (14).

6 Tests and performance improvement
We tested the simplest triangle case in Theorem 5.1 for an icosphere,
and additional watertight input meshes. We also verified the validity of
counting formulas (8) for tori with higher genus (see Fig. 4 (b)). An
icosphere with two holes (see Fig. 1 (a) and Fig. 4 (a)) was used to verify
Theorem 5.2. Moreover, the utility of theorems in Section 5 was tested
via time measurement speedup for Loop subdivision on dataset in 4 (c)
while using preallocated memory with the a priori known mesh vertex,
edge, and face counts (see Table 1).

Armadillo Blub Bunny Max Planck 3Holes Rocker Arm
0.85% 3.61% 2.08% 2.08% 2.06% 2.08%

Table 1: Speedup percentages for various test meshes.

s 1 2 3 4 5 6
Speedup [%] -94.43 -31.23 -7.23 9.13 15.15 12.83

Table 2: Recursive vs preallocated icosphere construction speedup with
respect to subdivision level s.

Evidently, the computation of new vertex positions in Loop subdivi-
sion [11] limits the potential gain from preallocation. For this reason we
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Fig. 4: Three different tests carried out on mesh datasets: (a) icosphere
with boundary, (b) testing counting formulas for arbitrary genus, and
measuring preallocation performance on standard datasets (c).

performed another set of tests for an icosphere subdivision scheme (4). We
tried to mitigate the expensive vertex position computation by performing
simple barycentric interpolation within base triangles of an icosahedron
followed by more complex connectivity construction. As can be seen in
Table 2, we sacrifice a lot of computation time to the construction of con-
nectivity up to subdivision level s = 3 after which we start to save as
much as 15 % of the time.

Note that for the test mesh collection (c), we perfomed isotropic remesh-
ing [1] to obtain better vertex distribution. This step was done in Mesh-
Lab�by the Visual Computing Lab team from ISTI, Pisa, and the final
3D visualizations were rendered in ParaView�by the Kitware team.

7 Conclusion
Originating from the motivation for vertex counting formula, specifically
for 4:1 subdivision aimed at stabilizing the semi-implicit formulation of
Lagrangian evolution (refer to Section 2), this paper derives and justifies
the utility of counting formulas for mesh vertices, edges, and faces under
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recursive face subdivision operations (see Section 4). Theorems in Section
5 formulate the ”counting formulas” for triangle 4:1 subdivision for meshes
with arbitrary genus, and extend the statement even for meshes with
boundary loops (Theorem 5.2), and for Catmull-Clark scheme on quad
meshes (Theorem 5.3).

We validate the theoretical results with tests in Section 6 including
the measurement for performance improvement under memory preallo-
cation which yields up to 3.6% speedup for Loop subdivision and 15%
acceleration in parametric icosphere construction.
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Abstract. The article is focused on the use of Sliceforms in the education of 

architecture students at CTU. It shows not only historical models created via this 

method, but also the work of current students who used the latest technologies for 

their creation (CAD modelling, GeoGebra, laser cutting, 3D printing). Sliceforms 

are useful in improving cross-subject relationships, most notably showing a close 

relationship between mathematics and descriptive geometry. 

Keywords: Sliceforms, models of surfaces, geometry 

1 Introduction  

Sliceform models are models of surfaces, solids or other objects, which are 

designed by slicing them at regular distances in two directions. Although these 

models have a long history, their potential is still growing. The term ‘Sliceforms’ 

was coined by Gerald Jenkins, the publisher of the first book written by John 

Sharp about these types of models.  

2 Historical background 

The first models of this type, called moving models, were created towards the 

end of the 19th century. In 1874 Alexander von Brill (1842-1935) proposed a 

series of paper models of second order surfaces. These models were inspired by 

a model of an elliptic paraboloid made from circles which was created by the 

German-educated mathematician Olaus Henrici (1840-1918). Alexander Brill 

apparently first simply displayed these, but by 1888 his brother, the publisher 

Ludwig Brill, was selling them as ‘Carton Models’.  

In the nineteenth century mathematical models were made for teaching and 

understanding geometry. Currently, these historical models can be seen in 

several places around the world, such as the British Museum of Science in 

London or the Smithsonian National Museum of American History in 

Washington. 

 John Sharp, a chemist by education, played a fundamental role in reviving 

this method nowadays. He was a strong supporter of both artists and 

mathematicians who wanted to join forces in creating, investigating, and 

disseminating ideas connecting the two practices. His colourblindness implies 

the importance of shape, forms and illusions.  
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At the Czech Polytechnic in Prague (nowadays CTU) this idea was used in 

the year 1876 to make models of translation surfaces and models of paraboloids. 

The reference is published in the book KKK ([1] p.441). 

Presently, RNDr. Marie Kupčáková is credited for the rediscovery of this method 

in the Czech republic [2]. 

Fig. 1: Torus – Villarceau circles (foto J.Ryszawy) 

2.1 Sliceforms at the Faculty of Architecture in Prague 

Architecture students in their first year of their studies within the subject of 

descriptive geometry create models of geometric objects. This year they were 

tasked to do it using Sliceforms technology. They used the latest technologies for 

their creation (CAD modelling, GeoGebra, laser cutting, 3D printing).  

 

Fig. 2: Slice form model of the building of the Faculty of Architecture CTU 

(foto J. Ryszawy) 

 

Sliceforms are useful for improving cross-subject relationships, most notably 

showing a close relationship between mathematics and descriptive geometry. 

Photos of other models are published here:  
https://media.cvut.cz/cs/foto/20230517-slice-forms-fa 
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2.2 Recommended Model Realization 

We prepared instructions on how to create a sliceform model and published them 

on the web site of subject descriptive geometry at FA CTU. The following 

example shows a circular conoid. GeoGebra modelling was used. 

Fig. 3: Model of circular conoid made by GeoGebra (Čečáková) 

 

The location of the conoid in the coordinate system is very important.  

Parametric representation was used: 

Directrix is a semi-circle 

  𝑘(𝑡) = [0;6+6 cos t;6 sin 𝑡], 𝑡∈〈0; 𝜋〉 

Directrix line 

  𝑟(𝑢) = [9;8−8𝑢;8𝑢], 𝑢∈𝑅 

Directrix plane 

 𝜗 (𝑥, 𝑧): 𝑦=0. 

Surface 𝑝 (𝑡, 𝑠) = [9𝑠;6+6cos𝑡;6sin𝑡+𝑠 (2 − 6cos𝑡 − 6sin𝑡)], 𝑡∈〈0; 𝜋〉, 𝑠∈〈0;1〉. 
 

 

Fig. 4: Slices of conoid in two directions 
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3 Conclusion 

Modelling is an important component in the education of architectural students. 

The Sliceforms method combines a mathematical background with a creative 

approach in modelling. By simply connecting these approaches, we show 

students the meaning behind theoretical subjects. Geometry is represented here 

on the boundary between science and art. Finally, we would like to quote from 

John Sharpe's book: “Geometry is a part of mathematics that does not belong to 

mathematicians. It plays a role in all cultures in defining aesthetics from patterns 

through architecture to other aspects of day to day design.” 
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Abstract.  We survey the research of ´Multicriteria Optimized Triangulation´. 

This approach extends the classical Delaunay triangulation by incorporating 

optimization objectives such as edge lengths, angles, and even user-defined 

constraints. Multiple authors preferred stochastic methods mainly containing 

genetic optimization and edge flip. This approach proves useful in various 

applications, where different factors need to be considered simultaneously for 

constructing accurate and adaptable geometric structures. Hence we will search 

for the explorations done and results achieved in successive experiments 

afterwards, and discuss the classification of edge-based criteria. 

Keywords: Optimal triangulation, genetic optimization, Delaunay triangulation, 

minimum weight triangulation. 

1 Introduction 

Triangulating a planar point set S of n>2 points, nN, is a fundamental task 

with applications across diverse fields, including computer graphics, computer 

vision, and robotics. We distinguish optimal and locally optimal triangulations. 

Fig. 1: Two criteria triangulating 39 points [33]. 

An optimal triangulation, denoted as OT(S), is one that, with respect to 

specific criteria, outperforms all other possible triangulations of the given point 

set S. Locally optimal triangulation, referred to as LOT(S), means that every 

convex quadrilateral formed by two adjacent triangles shares an edge that 

aligns with the given criterion. LOT(S) is, e.g., the Greedy, GT(S) [16].   

Achieving local optimality is often made possible through the ingenious use 

of the local edge-flip procedure [35]. Any initial triangulation can be flipped 

into the Delaunay Triangulation (DT) within a O(n2) number of steps [22]. 

One can find the notation and terminology of the field in [38], [1] or [3] (in 

Slovak). 
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Often, two primary criteria come into play; the first minimizes the total 

length of edges, Minimum Weight Triangulation (MWT) [16], while the 

second maximizes the smallest angle, DT [6].  They may have flipping distance 

zero, see Fig. 2a, in an almost minimal example not containing the Travelling 

Salesman Cycle (TSC) [7]. Moreover, T(S7) is Hamiltonian triangulated [5], 

since the triangles can be connectively stripified. 

 
 

Fig. 2a: Graph T(S7) for dataset S = { A (4,6), B (0,0), C(5,0), D (11.1,0.1), E 

(9,2), F (7,2), G (6,10) } [7]  ; 2b: T(S7) including the flipped edge with 

universal notation and colour encoding and the Dash-ed edge converts DT into 

MCT and enables the TSC as a subgraph [5]. 

 

Apart from the metric or angular criteria of MWT and DT, there exist a user-

defined criteria of selective edge insertion, i.e., Constrained Delaunay 

Triangulation (CDT) [4]. If the constraints depend on the characteristics and 

attributes of the input-data points, then the triangulation is termed as Data 

Dependent Triangulation (DDT) [17].  

If we require the TSC in T(S7), the removal of CE and insertion of edge DF, 

see Fig. 2b, has to be done. This single flip leads to the inclusion of the path 

ABCFDEGA, which is the TSC for T(S7). The modified T(S7) is thus either 

CDT or (flipped) multicriteria [5]. The solution, shown in Fig. 1, was achieved 

by genetic algorithm using flipping procedure [33]. In the following, we survey 

the published results and discuss the classification of criteria.  

2 Multicriteria Optimized Triangulation (MCT) 

The approach of applying multiple triangulation criteria to achieve a single, 

optimized triangulated version was termed as ‘Multicriteria Optimized 

Triangulation’ [33]. Genetic Optimization (GO) has been used to provide the 

approximate solution of triangulation of a set of points, S, in the Euclidean 

plane, employing biological terminology, referring to the set as 'a population,' a 

potential solution as 'an individual,' the binary operation as 'a crossover, named 

'De Wall'', and the unary operation as 'a mutation'. It has been performed for 
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100 or 200 generations and a well-designed fitness function is used in two 

versions. 

 
where T(S) is a triangulation; m is the total number of triangulation criteria; wi, 

i = 1, 2..., m are weight coefficients. Here wi ∈ <0; 1>, ∑wi = 1; and fi, i = 1, 

2..., m are functions for particular criteria. The overall computational time 

complexity of the procedure was O(n2), due to the crossover operation. The 

underlying operation is edge flip. Though DT and MWT provides the base for 

formulating triangulation, the versatile GO encompasses several other criteria, 

e.g., Maximum Height, Minmax Length, Minmax Aspect Ratio, Minmax 

Angle, Minimization of Maximum Angle Sum and Maximization of Sum of 

Minimum Angles, Maximizing the Minimum Radius and Minimizing the 

Maximum Radius and Minimum Sum of Radius Triangulation. A slight 

difference in the preferred criteria can bring prominent changes in a 

triangulation, see Fig. 1. The left side is representing the max edge length 

triangulation and the right side is incorporating DT. The number of successful 

cases is directly proportional to the probability of crossover, which is inversely 

proportional to the computational time. 

     MCT was mentioned as an useful approximation method in the survey of 

triangulations [29], [31] and in the survey of probabilistic methods of 

triangulation [30] and the author included MCT as a tool to obtain specific 

triangulations as a part of Computational Geometry Education [27], [28]. MCT, 

as a type of triangulation, was referred for yeilding applications of 

computational geometry [2], [26]. The author contributed a discussion on 

multiple edge-based criteria and a valuable bibliography comprising 60 items in 

[32]. In [21], the authors presented a comprehensive dataset of astronomical 

data for 88 star constellations and assessed edge quality. Notably, only 7 star 

constellations contained subjective edges that did not adhere to Delaunay 

criterion, which is potentially attainable through combining several criteria and 

constructing MCT. 

       Dorzan et al. proposed Ant Colony Optimization (ACO) metaheuristics to 

find the MWT [9-11], [13], [15], [23]. ACO is a metaheuristic that employs a 

colony of artificial ants to solve challenging discrete optimization problems. 

These algorithms construct solutions incrementally by adding specific 

components to an evolving solution, utilizing both pheromone trails and 

heuristic information to guide their actions, instead of using genetic 

information, like [33]. Pheromone values stored in variables influence their 

probabilistic decisions when navigating a graph. They explained an ACO 

algorithm comprising two specific components; ‘Initialization’, which sets 

algorithm parameters, and ‘BuildSolution’, which extends a partial solution by 

adding feasible components from current neighbors. The authors designed an 
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instance generator and the ACO-MWT algorithm was implemented in C with 

twelve parameter settings and for each setting, 30 runs were performed. They 

considered the computation as “parametrically expensive”. In a series of papers 

published from 2010 onwards, they conducted experiments using the ACO 

algorithm on previously used instances and compared its performance to the 

Simulated Annealing (SA), which involved five different parameter settings 

[12], [14]. This made the SA a relatively more cost-effective option in terms of 

parameter tuning. Though GO appears to be qualitatively superior and also 

mentioned as an evolutionery algorithm for MCT in [47], the complexity has 

been increased in the case of Re-triangulation of Standard Tessellation 

Language (STL) meshes in [44]. 

In 2009 and consecutive years, Feciskanin R. discussed the generation of 

Triangular Irregular Networks (TINs) for modeling georelief surfaces from 

irregularly distributed input points using Lawson’s General Optimization 

Algorithm (LOP) [18-20], whether SA has been used for DDT construction as a 

part of texture reconstruction in [42]. It explores two types of triangulation 

criteria: shape-dependent and data-dependent and in 2016, Rodriguez N. & 

Silvera R. proposed a Higher Order Delaunay Triangulation (HODT), 

satisfying both the data dependent criterion and good triangle shape, to build 

the TIN, using similar process of LOP [39].  

The authors of three research papers [36], [45], [46] refer to [33] in the 

context of parallel computing. The two short papers in Chinese aim to use 

stochastic optimization for MWT. The immune algorithm is inspired by the 

immunologic defense metaphor. 

In 2002, Hlavaty T. and Skala V. outlined a deterministic procedure that 

employed a brute force approach to generate triangulations based on specific 

criteria [24]. In the same year, Skvortsov explored various applications and 

constructions of DT in the field of geoinformatics. The study highlighted 

Multicriteria Triangulation as an approximate algorithm for DT [41]. 

Karbowski K. incorporated MCT into a chapter discussing point cloud filtration 

and triangulation in a mechanical engineering monograph [25].  

For the educational purposes, we are building a triangulation, named Dash, 

providing the Distance Matrix and Edge-Crossing Matrix for optimizing the 

qualitative and demanded edge insertion and flipping procedure for estimating 

subgraphs of triangles like Euclidean Minimum Spanning Tree (EMST), 

eventually to verify the TSPLIB dataset and the experiments are in the pre-

processing stage. Dash is a deterministic method that involves three stages: I. 

Forming outer and inner convex hull with the extreme and internal points 

respectively, i.e., the Nested Convex Hull (NCH) [38], II. Performing  DT in 

the NCH, and III. Flipping of Edges. The color encoding and universal 

notation has been proposed to reduce visual complexity, see Fig. 2b. The time 

complexity for computing the first two stages has an upper bound O(nlogn). 

    The Distance Matrix of Dash is organized with vertices as indices, where 

values above the diagonal indicate edge lengths, and values below represent the 
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sequence of the three stages. However, Ludo is a stochastic procedure that 

incorporates random edge insertion and flipping. The Edge-Crossing Matrix 

representation provides essential information: I. Whether the edges intersect or 

remain unconnected, and II. If connected, the angle between them [5]. We 

surveyed the above papers in the context of investigating the usage of MCT. 

3 Discussing Single Criteria Edge-Based Classification  

There are multiple criteria to obtain the triangulation, out of which DT and 

MWT satisfy the two most promiment criteria of maximization of minimum 

angle and minimization of the weight, respectively. Though the former one has 

the optimal time complexity of Ɵ(nlogn), the later one is NP-hard [37]. The 

time complexity for getting a triangulation combining two specific criteria 

incorporated with angle and height is O(nlogn) or O(n2) (worst case scenario 

for the crossover operation in most of the cases) [33]. The criteria of generation 

of triangulation incorporating predefined edges, i.e, CDT is an appropriate way 

of getting the demanded triangulated version and it can be achievable in 

O(nlogn) time [4]. This is a user-defined criteria and another similar criterion is 

DDT, whose complexity is dependent on the characteristics and attributes of 

the vertices [17]. The Minmax Angle and Maxmin Height Triangulation can 

be computed in O(n2logn) and the Minmax Height Triangulation can be 

computed in O(n2) time [40]. Achieving the inclusion of TSC, i.e., Minimum 

Hamiltonian Cycle (MHC) goes beyond a specific optimal triangulation with 

singular criteria. In Fig. 2b, it becomes evident that when Delaunay criterion is 

coupled with flipping, it results in the incorporation of the subgraph MHC. In 

T(S7), employing Delaunay Triangulation within the  NCH significantly 

reduces time complexity at a specific level. This is because it provides the 

necessary edges, thus eliminating the need for flipping. Consequently, the 

number of edges that can be flipped is reduced to just three, which greatly 

simplifies the computational process. Hence, criteria based on subgraph 

inclusion in triangulation hold promise for a substantial reduction in time 

complexity. 

4    Conclusion 

In [21], the authors observed that 7 edges of star constellations were not 

satisfying the Delaunay criterion, which can be probably obtained further 

through MCT, hence one promising avenue is the continued collection and 

exploration of MCT. Delaunay triangulations are fundamental in computational 

geometry and characterizing and analyzing specific subgraphs [43] within DT 

is very crucial. We arrived at constrained edge insertion criteria, leading to 

containing a prominent subgraph MHC and EMST [5]. Hence, there is a 

significant potential for synergy between multicriteria triangulations and 

subgraph analysis. Combining these approaches, such as using alpha shapes to 

describe complex data in geographic regions can yield valuable insights.  
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Abstract. The teaching of geometry, especially planimetry, in high schools focuses 

on basic constructions and the use of congruences and similarities in construction 

problems. In optional seminars or in technically oriented schools, construction 

techniques for conics are introduced, but the construction of ovals tends to be 

in the background. Students are usually not exposed to the problem until they are 

at university. This paper will illustrate various oval constructions on original 

technical documentation (blueprints) of buildings in 19th century Moravian Ostrava 

and introduce the issue closer to students. 

Výuka geometrie, zejména planimetrie na středních školách je zaměřena na základní 

konstrukce a využití shodností a podobností v konstrukčních úlohách. V nepovinně 

volitelných seminářích nebo na technicky orientovaných školách se představují 

konstrukční techniky pro kuželosečky, ale konstrukce oválů bývá na pozadí. Studenti 

se s problematikou setkávají povětšinou až na vysoké škole. Příspěvek bude 

ilustrovat různé konstrukce oválů na původní technické dokumentaci budov 

v Moravské Ostravě 19. století a přiblížení této problematiky studentům 
 

Keywords: Serlio's oval, arches, architecture Ostrava  
 

Klíčová slova: Serliův ovál, oblouky, architektura Ostrava 

1 Teaching ovals from the perspective of high school 

mathematics and engineering practice 

The teaching of geometry in the Czech and Slovak Republics within the subject 

of mathematics is divided into planimetric and stereometric parts in secondary 

schools. Planimetry is mostly included in the second year of secondary schools, 

where mathematics is taught at the rate of 4h/t. According to the RVP, the main 

outcomes of this part are Fundamentals of Planimetry and Geometric 

Representation. Due to the time allocation, ovals are not included. Technically 
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oriented secondary schools of civil or mechanical engineering offer courses 

in descriptive geometry, where basic constructions of ovals can follow 

the teaching of constructions of conics. At the high school level, the teaching 

of conics constructions is incorporated into an elective seminar following 

the seminar on quotation and Monge. Due to the long-standing common teaching 

system, the situation in Slovakia is similar, so that the teaching of ovals is 

incorporated into the teaching of descriptive geometry at technical colleges or is 

mentioned in the teaching of curve geometry. The aim of our paper is also 

to point out and introduce basic constructions that are understandable by high 

school students or could be used in project activities that would be focused 

on the discovery of ovals within architectural elements of buildings or 

in construction. The pilot integration therefore took place in the Synthetic and 

Constructive Geometry lecture, which is attended by mathematics students 

at the OU. Therefore, we decided to rediscover the construction practices that 

were used by builders in their designs, and we priroritically focused on ovals, 

which are widespread in building practice and were already used in Baroque 

buildings [4]. 

 

1.1 The historical context of Ostrava 

Ostrava is the third largest city in the Czech Republic and is located in the North 

Moravian region very close to the borders with Poland and Slovakia. Overall, it 

is mostly perceived as a city with heavy industry and automotive industry. 

However, within the city there is an emphasis on the development and 

accessibility of services for the population and the improvement of their quality 

of life. 

 If we look back to the beginning of the 18th century, there was no indication 

that the small mining town would later become one of the important cities not 

only within the Habsburg monarchy, but especially later in the newly founded 

republic (more in [1]). Coal had already been discovered in the area in 1763 

in the Burňa valley, where mining was expected to take a maximum of 10 to 20 

years. As there was not such a great demand for this raw material, 

the development of mining was slow and the main boom did not come until 

the second half of the 19th century, when the industrial revolution in our territory 

began to gain momentum. This involved a sufficient amount of labour, and 

the first mines in the Ostrava region used miners from the surrounding area. 

In later years, a large migration from Halych began, from which only miners and 

then their families were the first to arrive. This also increased the demand 

for housing and buildings to provide for the basic needs of the population. 

Therefore, within Ostrava, quarters and colonies were built for the incoming 

population, as well as hospitals, schools, pubs and other cultural facilities. [2] 

Since the planning or architectural aspect of the individual buildings in the first 

half of the 19th century was under the Moravian Ostrava, it was only in later 
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times that the first architectural studios opened and independent architects and 

builders began to work in Ostrava, mostly from the Viennese schools, such as. 

František Fiala, Ottokar Böhm, Hans Ulrich, Alois Schön, Felix Neumann.[6][7] 

Today some of their buildings have been preserved and underline the Art 

Nouveau appearance of the historical centre of Ostrava, so they can be used 

for further research. 

2 Oval and their construction 

The oval from the point of view of mathematics can be understood in different 

Ways. Brun, in his work Ueber Ovale und Eiflächen, conceives of an oval as 

a finite plane closed curve having two and only two points in common with every 

line in its plane that passes through it. He then specifies other properties of the 

curve in question, that it has no nodal points, is convex, etc. Overall, this is 

a comprehensive work focusing on ovals using the knowledge of the time. [3] 

In terms of engineering practice, it defines an oval using properties as a plane 

closed curve satisfying the following properties:  

• They are differentiable (smooth-looking), 

• simple (not self-intersecting), convex, 

• their shape does not depart much from that of an ellipse, 

• there is at least one axis of symmetry. 

The word oval derived from the Latin word "ovus" for egg, because oval is 

a closed curve in a plane which "loosely" resembles the outline of an egg. 

In technical practice, it is used quite a lot, mainly because it can approximate 

the elliptical shape appropriately and quite accurately, and thus not only 

architecturally interesting buildings could be created, but also their decoration 

and other structural elements.  

Among the most famous ovals are the so-called Serlio's ovals, described 

by Sebastiano Serlio in Il primo libro d'architettura [5]. 
 

 
 

Fig. 1: The constractures of Serlio's ovals 
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Four types of Serlio's ovals are drawn in the figure, where in case a) the ratio 

of the length of the major and minor semi-axes is not constant, in case b) the ratio 

𝑎/𝑏 =  (√2 +  1) / (2√2 –  1) and the ratio of the radii of the defining circles 

is 1/2. For case c) je 𝑎/𝑏 =   √2 and the ratio of the radii of the circles is √2 –  1, 

for case d) is 𝑎/𝑏 =  3 / (4 − √3) and the ratio of the radii of the defining 

circles is 1/2. (Fig. 1) 

3 Identification of ovals on specific buildings and their use in 

project-based learning 

One way to incorporate the construction of ovals into the curriculum in high 

school is through project-based learning. After teaching conics and therefore 

the application of circles in practice, we would recommend supplying basic 

information about ovals and, for example, the reconstruction of objects, where 

students should decide whether a given structural element is an oval or a circle. 

A simple awareness of the basic property of a circle given by three points, 

for example, will show that a design feature involves the use of a circular arc 

(Fig. 2). When reconstructing, they can use a simple tool within GeoGebra and 

insert the chosen engineering feature as a background. 

 

  

Fig. 2: Reconstruction of the circular arch in the technical drawing [8] 
 

If this is not a use of circles, then by looking for constructions of ovals, 

students will become more in depth about the properties of circles and in fact 

the ellipse, which is a curve of non-constant curvature. 

A nice example of the use of ovals is in 19th century Ostrava architecture, 

where in the original plans one can still see the individual insertions - the centres 

of the circles used to define the drawn oval. In order to strengthen the cross-

curricular links, the students will also explore the historical context of the time 

in their home area. The technical documentation of the German House, which 

was built to the design of Felix Neuman and was a response by the German 
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population to the planned construction of a Czech house, was used 

as a demonstration.[1] The building still stands in front of today's Hotel 

Imperiale and contained a representation area and a hall, a restaurant with 

a capacity for 600 people. In the garden there was a music pavilion for 120 

people. The opening ceremony took place in 1895. The Dutch Renaissance style, 

popular in Germany, was used with a red facade that attracted attention from afar. 

During World War II, the building was damaged during the bombing of Ostrava 

and it was subsequently decided to demolish it.[1][7] 

 

 

Fig. 3: Original technical documentation of the German House [9] 

 

And as we can see, Serlio's constructions according to types a) and c) were 

probably used (Fig. 4). 
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Fig. 4: Detail of the technical documentation [9] supplemented 

by the construction of part of the oval. Left: construction according to type a) 

of  the Serlio's construction. Right: construction of type c) in red to draw 

the contour arc, other constructions of type a) 

 

If the teacher does not have the original building documentation directly 

available, he or she can use project-based learning and students can find 

individual architectural elements on their own in the field. These are usually 

different types of facade decoration, arches over windows or doors of buildings. 

The student takes a photograph and then tries to find the oval using 

an approximation. For example, at Ostrava Architecture we can see that the oval 

is also a popular design element used to decorate buildings. It appears 

in individual elements on the building of the Kindergarten in Dvořákova Street, 

which was originally the villa of Judr. Karel Richter. It is a neo-baroque villa 

from 1896, designed by architect Felix Neumann, when villa construction was 

already regulated in Ostrava and the nearby original cemetery was converted into 

a park for capacity reasons. Since the building was reconstructed with sensitivity, 

the valuable facade, richly articulated with historicizing elements and even 

fragments of the original stucco decoration in the interior space, has been 

preserved.[6][7] Most probably Serlio's construction of type a) was used 

in the creation of the window above the entrance (Fig. 5). 

 

    

Fig. 5: Detail of a window on the building of the kindergarten  

in Dvořákova Street, Ostrava 
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Another example is located near the kindergarten and is a building 

on Milíčova Street, which originally served as a tenement villa for the architect 

Paul Hawlik (1908), who designed it and embodied the Nordic inspiration based 

on asymmetrical vertical composition unusual in Ostrava at that time. He thus 

managed to combine Neo-Romanticism and Anglophilia with the receding 

Vegetable Art Nouveau.[6][7] 

 

 

Fig. 6: Building and its detail on Milíčova Street, Ostrava 

4 Conclusion 

At the beginning of the geometry lecture, when students sketch plane shapes and 

curves, an oval was included in the assignment. The result was that the vast 

majority of students sketched a "running oval" i.e. a plane symmetrical curve 

which is bounded by two segments and two circular arcs, other answers included 

a sketch of an ellipse and only in one case an oval in the shape of an "egg" was 

sketched. Subsequently, the construction of ovals and their application 

to practical demonstrations and reconstruction of buildings was incorporated into 

the lesson, during which students consolidated and deepened their knowledge 

of the properties of the circle. As the incorporation took place after the teaching 

of conics, students already had an awareness of the properties of ellipses. One 

student response was that an oval could be an approximation of an ellipse, which 

they based on their knowledge of ellipses using occluding circles. They are also 

aware of the realization of the basic properties of a circle given by three points 

on it. From the technical practice, they mostly mentioned bridge structures, 

the use of circular arches by supra-orbital arches, etc.  

Therefore, we recommend that also in connection with the setting of teaching 

standards for knowledge usable in practical applications, that, for example, 

the basic properties of ovals be added to the part of teaching about conics. 
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Abstract. In the frame of the KEGA project No. 004KU-4/2022 "Personalities of 

Slovak Mathematics II" we continue the successful edition „Personalities of 

Slovak Mathematics “. The project is aimed at capturing the life and work of 

of important personalities of Slovak mathematics in the 20th century in their own 

words. Within the paper we want to present the processed materials about doc. 

RNDr. Daniela Velichová, CSc. She is an important personality in the field of 

geometry and geometric modelling. She is also involved in computer graphics, e-

learning in teaching mathematical disciplines. Her example can serve as an 

inspiration for young and prospective scientists, and it shows that even 

mathematics can be an interesting and wonderful discipline accessible to the 

young people.  

Keywords: mathematics education, personalities of Slovak Mathematics, Daniela 

Velichová, the ideas of personalities, publications about personalities 

Kľúčové slová: vyučovanie matematiky, osobnosti slovenskej matematiky, 

Daniela Velichová, myšlienky osobností, publikácie o osobnostiach 

1 Ciele a základné informácie o projekte 

Cieľom prebiehajúceho projektu KEGA „Osobnosti slovenskej matematiky II - 

životné vzory pre budúce generácie“ je zmapovanie osobností slovenskej 

matematiky – matematikov a matematičiek, ktorí zasvätili svoj život tejto 

krásnej, a bohužiaľ, v súčasnej dobe tak neobľúbenej a nepreferovanej vede.  

Na základe oslovenia všetkých relevantných pracovísk, kde sa na Slovensku 

matematika vyučuje na vysokých školách, vznikla databáza významných 

slovenských matematikov. Ide o otvorenú databázu, kde postupne pribúdajú 

ďalšie osobnosti, podmienkou je, aby svoj životný príbeh vyrozprávali svojimi 

vlastnými slovami. Následné spracujeme ich životné príbehy, tiež názory na 

kardinálne otázky súčasnosti (napr. ich vzťah k matematike, k spôsobu 
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vyučovania matematiky, k smerovaniu súčasnej matematiky, ...) a ich výsledkov 

v oblasti matematiky, s dôrazom na ich odkazy mladej generácií.  

Čiastkovými cieľmi je vydanie publikácií o živote a diele osobností 

slovenskej matematiky, vytvorenie webovej stránky poskytujúcej informácie o 

týchto osobnostiach, propagácia výsledkov a šírenie svedectiev osobností. 

Prostredníctvom projektu chceme sprístupniť materiál nielen pre učiteľov 

matematiky, ale aj pre zachovanie nášho kultúrneho dedičstva a v neposlednom 

rade chceme žiakom a študentom základných i stredných škôl priblížiť, že aj na 

Slovensku žijú a pracujú svetoví matematici. Domnievame sa, že tak by sme 

mohli v nich vzbudiť záujem a motiváciu pre matematiku pomocou 

osobnostných vzorov a odkazu významných osobností slovenskej matematiky. 

Projekt prebiehal v 2 častiach, ten prvý začal v roku 2018 a trval do roku 

2021. Súčasný projekt prebieha v rokoch 2022 – 2024. Na jeho riešení sa 

podieľajú Pedagogická fakulta Katolíckej univerzity v Ružomberku, Vysoká 

škola Dubnický technologický inštitút v Dubnici nad Váhom, Prírodovedecká 

fakulta Univerzity Pavla Jozefa Šafárika v Košiciach, Pedagogická fakulta 

Univerzity Komenského v Bratislave.   

2 Vytvorenie databázy a edície publikácií o osobnostiach 

slovenskej matematiky 

Za účelom vytvorenia databázy o významných slovenských matematikoch sme 

oslovili predstaviteľov stavovských organizácií: 

• Matematický ústav Slovenskej akadémie vied, 

• Jednota slovenských matematikov a fyzikov, 

• Slovenská matematická spoločnosť. 

• Vysokoškolské pracoviská, kde sa vyučovala matematika (učiteľská 

alebo vedecká). 

Každé pracovisko navrhlo 10 žijúcich významných osobností a na základe 

spoločného prieniku a odporúčania vznikla databáza, z ktorej postupne 

oslovujeme jednotlivé osobnosti. 

Riešitelia prvého projektu PdF KU, FPV UKF, VŠ DTI a PdF KU iniciovali 

vznik Edície Osobnosti slovenskej matematiky. V rámci nej sa dohodla štruktúra 

publikácií, vzhľad a forma a základné otázky pre jednotlivé osobnosti. Najprv sa 

prostredníctvom Slovenskej národnej knižnice v Martine získali rešerše domácej 

a zahraničnej publikačnej činnosti 25 významných osobností. Následne sa 

komunikovalo s autorským zväzom LITA (p. Berglová), aby pri uverejňovaní 

neboli dotknuté autorské práva. Významným krokom bolo vytvorenie Vedeckej 

rady edície Osobnosti slovenskej matematiky. Nakoniec sa schválila predbežná 

štruktúra publikácií a jednotlivé otázky, ktoré boli v publikáciách položené: 

• oficiálny životopis osobnosti, 

• životopis a dôležité medzníky v živote prerozprávané danou 

osobnosťou, 
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• otázky a odpovede, ktoré dopĺňajú významné udalosti v živote 

danej osobnosti, 

• otázky týkajúce sa aktuálnych otázok postavenia matematiky, 

jej vyučovania, systému vzdelávania, 

• publikačná činnosť, 

• obrazová príloha. 

3 Vydané publikácie o matematických školách a osobnostiach 

V rámci tohto aj predošlého projektu už boli publikované (porovnaj s [1] až [7]): 

1. Mikulášska matematická škola 

2. Košická matematická škola 1. diel - Seminár z teórie množín a topológie 

3. Osobnosti slovenskej matematiky Roman Frič (1. diel) 

4. Osobnosti slovenskej matematiky Milan Hejný (2. diel) 

5. Osobnosti slovenskej matematiky Lev Bukovský (3. diel) 

6. Osobnosti slovenskej matematiky Anatolij Dvurečenskij (4. diel) 

7. Osobnosti slovenskej matematiky Stanislav Jendroľ (5. diel) 

8. Osobnosti slovenskej matematiky Ondrej Šedivý (6. diel) 

9. Osobnosti slovenskej matematiky Daniela Velichová (7. diel) 

V nasledujúcej časti príspevku sa budeme venovať osobnosti Daniely 

Velichovej (pozri [7]). V tlači sú pripravené ďalšie 2 diely o Kataríne 

Cechlárovej a Jánovi Čižmárovi.  

4 Osobnosť Daniely Velichovej  

Jej profesijný rast predznamenal jej neskoršiu prácu v akademickom prostredí: 

1969 – 1974 Prírodovedecká fakulta Univerzity Komenského v Bratislave, 

špecializácia Matematika a Deskriptívna geometria 

1981 Matematicko-fyzikálna fakulta Univerzity Komenského v Bratislave, 

štátna rigorózna skúška, titul RNDr., Diplomová práca Zväzy v geometrii, 

vedúci doc. RNDR. Milan Hejný, CSc. (Milan Hejný (2. diel)) 

1992 Matematicko-fyzikálna fakulta Univerzity Komenského v Bratislave, 

dizertácia v odbore geometria - topológia a počítačová grafi-ka, titul CSc., 

Dizertačná práca Kreatívna geometria – modelovanie útvarov  

trojrozmerného priestoru, školitelia doc. RNDr. Ján Čižmár, CSc., prof. 

RNDr. Václav Medek, 

1999 Fakulta elektrotechniky a informatiky Slovenskej technickej univerzity 

v Bratislave, habilitácia – komisia pre Aplikovanú matematiku, titul doc. 

Habilitačná práca Modelovanie masívov 

2012 Strojnícka fakulta Slovenskej technickej univerzity v Bratislave, 

mimoriadna profesorka v odbore Aplikovaná matematika 
 

Pracovne pôsobila: 

1975 – 1976 Stavebná fakulta Slovenskej technickej univerzity v Bratislave 

externá asistentka na Katedre matematiky a deskriptívnej geometrie 

Osobnosti slovenskej matematiky � in²pirácia a ºivotné vzory 99



 

 

1982 – 2022 Strojnícka fakulta Slovenskej technickej univerzity 

v Bratislave,  odborná asistentka, docentka, mim. prof. na Katedre 

matematiky 

2011– 2021 Strojnícka fakulta Slovenskej technickej univerzity 

v Bratislave, vedúca Ústavu matematiky a fyziky 

S jej pracovným pôsobením úzko súvisí aj jej vedecká a publikačná činnosť 

zameraná na oblasti: 

Diferenciálna geometria kriviek, plôch a masívov (MDT: 514.1, MSC:  

         53A04-A07) 

     – modelovanie nehomogénnych buniek masívov (MDT: 514.18,  MSC:  

        68U07) 

     – modelovanie diferencovateľných variet pomocou Minkowského 

        množinových operácií, 

Geometrické modelovanie s podporou počítačov (MDT: 514.1, MSC: 

65D17) 

     – počítačová geometria (MDT: 514.1, MSC: 65Y25)  

     – interpolačné útvary (MDT: 514.182, MSC: 65D05, 65D010) 

     – simulácie (MDT: 514, MSC: 68U20)  

Deskriptívna geometria (MDT: 514.182.1-7, MSC: 51N05) 

     – premietacie metódy (MDT: 514.182.1-7) 

     – algoritmy vizualizácie viacrozmerných priestorov (MSC: 51N10 - 25) 

 Pedagogika/didaktika matematiky na technických univerzitách 

      – e-learning (MSC:97 U50) 

      – tvorba elektronických učebných textov (MSC:97 U20)  

Docentka Daniela Velichová má aj bohatú činnosť v rôznych organizáciách: 

 Členka riadiaceho výboru európskej spoločnosti pre vzdelávanie 

inžinierov SEFI Mathematics Special Interest Group - SEFI MWG 

 Členka výboru European Women in Mathematics EWM, národná 

koordinátorka pre SR 

 Ambasádorka ICM – medzinárodného výboru pre ženy 

v matematike pri Medzinárodnej matematickej únii IMU  

 Predsedníčka Slovenskej Spoločnosti pre Geometriu a Grafiku - 

SSGG 

 Členka výboru Medzinárodnej Spoločnosti pre Geometriu a Grafiku 

- ISGG 

 Čestná členka Polskiego Towarzystwa Geometrii i Grafiki 

Inžynierskiej - PTGiGI 

 Členka Jednoty slovenských matematikov a fyzikov - JSMF,  resp. 

Slovenskej matematickej spoločnosti SMS 

Cenné sú aj jej myšlienky o učiteľoch matematiky a o jej vyučovaní: 

„Jediným východiskom je navrátiť učiteľom spoločenské uznanie, ktoré im 

právom patrí, a obnoviť vážnosť postavenia učiteľov v hierarchii spoločenského 

rebríčka reflektujúcu ich zodpovednosť za formovanie mladej generácie. 

Zástupcovia štátnej moci by mali aklamatívne prejaviť učiteľom patričný rešpekt 
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a oceniť ich nezastupiteľnú úlohu, ktorú zohrávajú zodpovednou prácou pri 

formovaní budúcnosti celej spoločnosti a jej hodnôt. Spoločnosť, ktorá si neváži 

prácu učiteľov, je nevyhnutne odsúdená na neúspech. Kvalitné vzdelanie 

učiteľov je zárukou rozvoja vzdelanosti a prosperity, napredovania spoločnosti, 

udržateľného rastu a zachovania dedičstva našich predkov. Nezáujem o učiteľské 

povolanie, nedostatok učiteľov, najmä matematiky a prírodovedných predmetov, 

ktorý začína naša spoločnosť intenzívne pociťovať, je dôsledkom narastajúcej 

náročnosti tejto zodpovednej práce v dôsledku významných spoločenských 

zmien. Tieto sú vo veľkej miere spôsobené paradigmou 21. storočia, ktorou je 

digitalizácia všetkých procesov spoločenského diania, zasahujúca až do základov 

kognitívnych procesov pri utváraní poznatkov a svetonázoru jednotlivcov, 

spoločenstiev, resp. ľudského vedomia všeobecne. Kvalita vzdelávania, 

či kvalita prípravy budúcich učiteľov, a to nielen učiteľov matematiky, sú takmer 

vždy predmetom a témou celospoločenskej diskusie; ale skutočná zodpovednosť 

stále ostáva na pleciach spoločnosťou systematicky nedoceňovaných a sústavne 

kritizovaných učiteliek a učiteľov, skutočných nositeľov, strojcov a realizátorov 

toľko glorifikovaného kvalitného vzdelávania. Ale kto si trúfa s istotou povedať, 

čo máme považovať za kvalitné vzdelávanie? A je vôbec možné pokúsiť sa 

o jeho zabezpečenie bez náležitej podpory, uznania a celospoločenského 

rešpektu?“  

5 Záver 

V súčasnosti sa pripravuje publikácia o profesorke Kataríne Cechlárovej 

a profesorovi Jánovi Čižmárovi. Predpokladáme pokračovať v Edícií Osobnosti 

slovenskej matematiky aj v nasledujúcom roku. Máme záujem spracovať ďalšie 

semináre a konferencie v rámci košickej matematickej školy. Zameriame sa na 

konferencie  

 Konferencia (Cycles and Colourings), 

 Konferencia košických matematikov v Herľanoch. 

Riešiteľský kolektív je otvorený ďalším nápadom, ako sú vývoj, vzdelávanie 

a výchova matematických talentov vrátane matematickej spoločnosti. 

Z uvedených dôvodov predpokladáme spoluprácu aj so Slovenskou 

spoločnosťou pre geometriu a grafiku.   
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Abstract. How to exactly interpolate quadrilateral grid of points?
In this article, some possibilities of using a Bézier bicubic patch for 
interpolation surface modelling are presented.
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ity, patching, accuracy

1 Introduction

A Bézier surface [1] is a type of mathematical representation used in
computer graphics and computer-aided design (CAD) to describe freeform
curved surfaces. It is an extension of the concept of Bézier curves, which
are widely used for defining smooth and precise curves in two-dimensional
space. The great advantage of Bézier surfaces is a possibility of patching
that allows to describe a much more complex shape without increasing the
surface degree (in both directions). The main topic of this article is to use
Bézier bicubic surfaces to interpolate the same set of definition points in
different ways and compare the accuracy of the interpolation CADmodels.
In this article, the grid of definition points was selected from a set of points
obtained by means of real tactile measurement of CTU freeform standard
Pharaoh [2] on coordinate measuring machine (CMM), fig. 1 left. The
measured area (47 mm × 30 mm) with 58622 measured points and the
grid of selected 8× 8 definition points is shown in fig. 1 right. Maximum
distance between two adjacent definition points is 11.0553 mm. From the
same set of measured points, the test set of 24719 points was chosen to
compare the accuracy of the interpolation CAD models.

This paper is organized as follows. In section 2, some key properties
of Bézier bicubic surface are mentioned and the basic assignment of the
task is outlined. An example of the simplest use of a such surface for
this kind of shape reconstruction is given in subsection 2.1. Subsection
2.2. contains several examples of solving a more difficult variant of the
assignment, subsection 2.3. compares all solutions in terms of accuracy.
Section 3 concludes the paper.
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Fig. 1: CTU freeform standard Pharaoh (left), CAD model of its func-
tional freeform surface (right) with all measured points (black) and the
grid of definition points (red).

2 Interpolation and Bézier bicubic surface
A Bézier bicubic surface P(u, v) is defined by a grid of control points Vi,j

(where i = 0, 1, 2, 3 and j = 0, 1, 2, 3), arranged in a 4x4 matrix

M =




V0,0 V0,1 V0,2 V0,3

V1,0 V1,1 V1,2 V1,3

V2,0 V2,1 V2,2 V2,3

V3,0 V3,1 V3,2 V3,3


 .

Vector equation of such surface is given by

P(u, v) = B(u) ·M ·BT (v), (u, v) ∈ [0, 1]2,

where B(w) = (B0,3(w), B1,3(w), B2,3(w), B3,3(w)), w ∈ {u, v}
and Bk,3(w) =

(
3
k

)
(1− w)(3−k)wk, k = 0, 1, 2, 3 are Bernstein polynomi-

als.
The mesh of these 16 control points determines the shape of the surface

and allows to create a CAD model of a smooth, C2 continuous, and curved
surface. Although it is an approximation surface, the Bézier surface can
be used for interpolation, because it interpolates the four control corner
points V0,0,V0,3,V3,0 and V3,3 and four boundary Bézier cubic curves
given by boundary control polygons.

2.1 The basic task and Example 1

Suppose, we have a quadrilateral grid of definition points Qi,j ,
i ∈ {0, 1, . . . ,m}, j ∈ {0, 1, . . . , n} for the surface to pass through and we
need to find the solution how to simply interpolate these points using
Bézier bicubic surfaces.

104 Hlavová Marta



Thanks to the fact, that Bézier bicubic surfaces allow C2 continuous
patching, the simplest solution is a uniform clamped bicubic B-spline sur-
face, which is just composed of C2 joined Bézier bicubic patches. The
corner points of each Bézier patch are the definition points and the re-
maining 12 control points (of each patch) are calculated according to the
C2 condition of continuity. In fig. 2 (left), the grid of definition points
(red), control points of each Bézier patch (black) and boundary curves of
each Bézier patch (blue) are shown. Visual evaluation of this CAD model
accuracy is depicted in fig. 2 (right). The distances of the 24719 test
points from surface were processed using the Rhinoceros tools.

Fig. 2: C2 continuously joined Bézier patches (Example 1).

2.2 The task modification

However, the result of the tactile measurement on the CMM does not have
to be only the coordinates of the measured point, but also information
about the normal vector of the measured surface (at the given point) [3].
This insight will certainly lead to an improvement in the shape of the fitted
surface, but due to the requirement to use the Bézier bicubic surface, it
will be necessary to reduce the demands on the continuity of the joined
patches. The C1 continuous patching is possible in the case of a Hermite
bicubic surface with zero twist vectors at corner points, also known as
Ferguson 12 vector surface [4]. This kind of surface can be easily redefined
as Bézier bicubic patch, because each triplet of corner neighboring control
points with this corner point have to form a parallelogram. To meet
the normal vector requirement at all definition (i.e. corner) points, this
parallelogram must lie in the tangent plane of the patch. Consequently,
there are countless possibilities to place the remaining 12 control points
of each Bézier patch in ”their” tangent planes to form parallelograms of
four. In the following, three examples of the specific location of these
points will be presented and the accuracy of the resulting CAD model
will be evaluated.
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2.2.1 Example 2

For interiorQi,j (i ∈ {1, 2, . . . ,m− 1}, j ∈ {1, 2, . . . , n− 1}) definition points,
the missing boundary Bézier control points (for each Bézier patch) are ob-
tained by orthogonal projection of points

Qi,j ±
1

6

−−−−−−−−−→
Qi−1,jQi+1,j , Qi,j ±

1

6

−−−−−−−−−→
Qi,j−1Qi,j+1

into the tangent plane at definition point Qi,j . In each Bezier patch,
the quartet of interior remaining control points is then added from the
parallelogram condition. In fig. 3, all definition points with control points
of each Bézier patch and visualization of C1 continuity are shown.

Fig. 3: C1 continuously joined Bézier patches (Example 2).

2.2.2 Example 3

Using the same notation as in Example 2, the missing boundary Bézier
control points (for each Bézier patch) are obtained by orthogonal projec-
tion of points

Qi,j ±
1

5

−−−−−−−−−→
Qi−1,jQi+1,j and Qi,j ±

1

5

−−−−−−−−−→
Qi,j−1Qi,j+1

into the tangent plane at point Qi,j , remaining inner control points are
computed via parallelogram condition. This CADmodel is just a variation
of previous Example 2, but from fig. 4 it is clearly seen that increasing
the distance between the boundary control point and corner point in the
tangent plane has a favorable effect on the accuracy of the surface.

2.2.3 Example 4

In the last example, the missing boundary Bézier control points are given
by orthogonal projection of points

Qi,j +
bi

3ci(ai + bi)
,Qi,j −

ai
3ci(ai + bi)

,
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Fig. 4: Visual comparison of accuracy, Example 3 (left) and Example 2
(right).

(ci = ∥−−−−−−−−−→Qi−1,jQi+1,j∥, ai = ∥
−−−−−−−→
Qi−1,jQi,j∥, bi = ∥

−−−−−−−→
Qi,jQi+1,j∥)

Qi,j +
bj

3cj(aj + bj)
,Qi,j −

aj
3cj(aj + bj)

,

(cj = ∥−−−−−−−−−→Qi,j−1Qi,j+1∥, aj = ∥
−−−−−−−→
Qi,j−1Qi,j∥, bj = ∥

−−−−−−−→
Qi,jQi,j+1∥)

into the tangent plane of point Qi,j . Thanks to the proportional distribu-
tion of the boundary control points created in this way, the patches will
not be connected with parametric C1 continuity, but only with geometric
continuity G1, fig. 5.

Fig. 5: G1 continuously joined Bézier patches (Example 4).

2.3 Accuracy evaluation

The accuracy of each CAD model exampled was evaluated using the set
of 24719 test points selected independently on the set of definition points
from the set of 58622 measured points. In table 1, all important values
obtained by Rhinoceros tool were collected. From this table it can be seen
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CAD model average distance standard deviation max. distance

Ex. 1 (C2) 0.1199 0.1129 0.6500
Ex. 2 (C1) 0.0612 0.1029 0.6346
Ex. 3 (C1) 0.0606 0.0639 0.4216
Ex. 4 (G1) 0.0603 0.1078 0.6833

Table 1: Statistical evaluation of accuracy, all values in mm

that the use of normal vectors leads to a decrease in average distance com-
pared to Example 1 and the maximum distance of test points from CAD
model is the smallest in the case of Example 3. These two values, together
with the largest distance between two interpolated points (11.0553 mm),
is very significant for comparing the accuracy of the given model.

3 Conclusion
Some possibilities of using the Bézier bicubic patch for shape reconstruc-
tion via interpolation are described and demonstrated on specific assign-
ments in the paper. It is clear, that the idea of preserving the normal
surface vectors to make the most accurate CAD model of surface leads to
many solutions. In our case, the proposed result models consist of only
C1 resp. G1 joined Bézier bicubic patches, but this degree of continuity is
for CAD models and its further processing quite sufficient. A significant
advantage of this approach is the modifiability of Hermite/Bézier patch
control point locations, which will be addressed in future work.
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posium on Computer Geometry, STU, Bratislava, 2006

108 Hlavová Marta



The most famous illusions of Adalbert
Ames Jr.
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Abstract. Last year, as usual, we participated in the Czech European
Researchers’ Night at MENDELU. Since the theme was “With all the
senses”, as geometers we focused on vision. We created two of Adelbert
Ames Jr.’s most famous illusions, namely the Ames Room and the
Ames Window. In this paper we will describe how these illusions work
and how we recreated them.

Keywords: Ames window, Ames room, illusion, perception.

1 Introduction
Adalbert Ames, Jr. (1880 – 1955) was an American ophtalmologist and
perceptual psychologist.

As an ophtalmologist, he is credited with diagnosis of aniseikonea, a
malformation of the eyes in which the right and left retinal images are so
distinctively varied in size that they cannot readily be fused by the brain.

He is more widely remembered as a perceptual psychologist and the
creator of a series of visual illusions, most of them summed up in the
Ames Demonstrations in Perception [2]. There is about 22 laboratory
demonstrations, probably the most famous are Ames window and Ames
room.

2 Ames window
The shape of the Ames window is an isosceles trapezoid created as anamor-
phosis of the rectangular window with 6 openings. It is usually mounted
on a vertical shaft that rotates, driven by a small electric motor.

The rotating trapezoid should be viewed from a short distance monoc-
ularly, or binocularly from a long distance. Most of the observers would
not see the window as rotating, but oscilating back and forth. The per-
ception of the illusion is better when the center of the trapezoid is at
eye-level height, illumination of the object and the surrounded scene is
uniform and the viewer can focus only on the rotating window.

It was believed that the only reason of this illusion lies in the fact that
we are living in the environment where most of the objects as houses,
rooms, furniture, windows are rectangular, but we usually see them as
trapezoids. When looking on the Ames window, our brain suppose it is
rectangle. This hypothesis was mostly declined by Harvard study among
Zulus [3]. Two groups of children were formed, one from the city and the
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Fig. 1: Ames window.

other one from the villages, where they were living in round huts. There
was expected difference of perceiving the illusion when looking with two
eyes from 10ft distance, but nearly no difference when looking with one
eye from 20ft distance.

Experiments with percieving the illusion among small babies [5] con-
firmed that the ability of percieving the illusion is connected to the depth
perception.

To make the illusion even more interesting, various objects can be
attached on the trapezoid and rotate with it. For example, a tube can
be suspended through one of the openings, or a cube can be attached to
side edge of the trapezoid. The attached object looks rotating while the
window looks oscilating, which is quite confusing for the viewer.

It is possible to find templates for making the Ames window on the
internet. These templates are usually not drawn in perspective correctly.
Therefore when creating model, we started by drawing the window in per-
spective projection. Our first model was made from paper and cardboard.
It was clear at first glance that it was not ideal. After gluing the layers
together, the window bowed. In addition, we later discovered that it did
not have the ideal proportions to create a strong optical illusion. Despite
these flaws, the illusion worked.

We always supposed that not every trapezoidal window gives illusion of
the same strength. Later on, we came upon the experiment [4], where the
authors looked for the best dimensions of the trapezoidal window. They
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selected nine various trapezoids of various parameters. These parameters
were ratios of the lengths of the segments marked on the Fig. 1. The
parametres and the presence or absence of shadows are given in next
tabular.

1 2 3 4 5 6 7 8 9

|DF |
|AC| 1 1 1,07 1,07 1,07 1,15 1,15 1,5 1,5

|BE|
|AC| 1 1,5 2,25 1,5 1 2,25 1 1,5 1

shadows 0 0 0 1 1 1 1 1 1

They asked observers to report changes in the direction of rotation and
investigated how different shape of the window affect the illusory effect.
Results of observation are given in Fig. 2.

0%
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20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9

Fig. 2: Results of experiment.

Conclusions of the experiment:

• The bigger the |DF |
|AC| ratio, the stronger the illusory perception.

• The longer the horizontal length of the window, the weaker the
illusory perception.

• The application of shadows increases the illusory effect.

We followed these results when making the second attempt to create
the Ames window from the board. You can see our final plan for Ames
window on Fig. 3.
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Fig. 3: Our Ames window.

3 Ames room
The Ames room is somehow deformed room, but when viewed from a
proper point with one eye, it looks like ordinary orthogonal room. That
is one part of the illusion. The viewing point is usually placed in one of
the walls as a peephole and it has to be the center of projection which
was used to project some parts of ordinary shaped room (or whole room)
to get the deformed one.

When looking for the Ames room on internet for the first time, we
came across many templates which used such construction that the floor
and ceiling were surfaces of higher degree (not developable). That was
not solution for us, because we wanted to create the room from boards.
Therefore we gave up trying to make our work easier and started again
from scratch with modeling the room. We wanted to get such distorted
room, that would be easy to construct. Such a shape is in Fig. 4. Walls,
floor and ceiling are planar and two side walls are parallel.

We found out later that this shape is probably the most common,
when creating the Ames room and the construction is similar to the one
Ames used. The difference is in the shape of original room. Ames used a
cube and he projected most of it to get the resulting deformation.

There are infinitely many possibilities how the Ames room can be
shaped and Ames was aware of that. He first created two such rooms in
laboratory size and later one of them in full size (roughly corresponded
twelve–foot cube). There is a detailed construction of that room in [2]
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Fig. 4: Projection of the orthogonal room.

To make the illusion more believable, it is good to have windows in
there and furnish the room. It is necessary to think about the location of
these objects in advance, because their position in the room clearly deter-
mines their deformation as well (moving of the furniture is not possible
later on).

Fig. 5: Our model of the Ames room viewed from the peephole.

The other part of the illusion lies in the fact that we can put in the
corners (facing the viewing point) two objects of the same size, but one
of them will look smaller. We used paper dolls, which can switched the
places. When viewed through the peephole, the one in the more distant
corner will always look smaller (Fig. 5).

The illusion does not work when viewed with both eyes or from another
point of view (Fig. 6).
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Fig. 6: Model of the Ames room from other then viewing point.

4 Conclusion
Ames did not propose only these illusions. The room we call by his
name, Ames called monocular room and also proposed and constructed
less known binocular room. We advise the reader to see [2] for the details
of other illusions Ames created.
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Abstract. The work is focused on the applicability of the Box Counted Method for 
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1 Základné definície a vzťahy 

Mandelbrotova kniha [1] a v nej zavedený pojem fraktálu má dodnes veľký ohlas 

(napr. [5]). Google dnes nachádza pre pojem „fraktálna množina“ viac ako 

44 000 000 odkazov a pre pojem „fraktálna dimenzia“ takmer 20 000 000 

odkazov. Záujem o túto metódu vyjadrenia geometrie je motivovaný tým, že 

v prírode často nachádzame objekty so zložitou štruktúrou, ktorá pri prechode na 

podrobnejšie zobrazenie má tendenciu sa opakovať, napr. [1], [2], [3].  

V článku chceme ukázať určitú spornosť používaných konštrukcií. 

Obmedzíme sa na analýzu samopodobných štruktúr, ktoré sú tvorené iteračne 

lineárne lomenou čiarou, kde v nasledujúcej iterácii každú jej úsečku nahradíme 

adekvátne škálovanou replikou generátora (Lindenmeyerovské systémy). 

1. Kochova krivka K, kde generátorom pre úsečku AB= je lineárne lomená 

čiara 𝐴𝐶𝐷𝐸𝐵, s dĺžkami úsečiek 

  |𝐴𝐶| = |𝐶𝐷| = |𝐷𝐸| = |𝐸𝐵| = |𝐴𝐵|

3
   

a uhlami medzi úsečkami  

𝛼(𝐴𝐶, 𝐶𝐷) = 𝛼(𝐷𝐸, 𝐸𝐵) = 120°, 𝛼(𝐶𝐷, 𝐷𝐸) = 60° 

2. racionálny variant Kochovej krivky V1, (napr. v [4] pod názvom Vicsek 

growth model). Generátorom pre AB= je ortogonálna lineárne lomená čiara 

𝐴𝐶𝐷𝐸𝐹𝐵, kde 

𝐴𝐶 ⊥ 𝐶𝐷, 𝐶𝐷 ⊥ 𝐷𝐸, 𝐷𝐸 ⊥ 𝐸𝐹, 𝐸𝐹 ⊥ 𝐹𝐵  

a dĺžky úsečiek sú  

|𝐴𝐶| = |𝐷𝐸| = |𝐹𝐵| = |𝐴𝐵|

3
 , |𝐶𝐷| = |𝐸𝐹| = |𝐴𝐵|

6
, 

3. racionálny variant Kochovej krivky V2, s generátorom 𝐴𝐶𝐷𝐸𝐹𝐺𝐻𝐵, kde 

 𝐴𝐶 ⊥ 𝐶𝐷, 𝐶𝐷 ⊥ 𝐷𝐸, 𝐷𝐸 ⊥ 𝐸𝐹, 𝐸𝐹 ⊥ 𝐹𝐺, 𝐹𝐺 ⊥ 𝐺𝐻, 𝐺𝐻 ⊥ 𝐻𝐵 2 

a dĺžky úsečiek sú  

|𝐴𝐶| = |𝐻𝐵| = |𝐴𝐵|

3
 ,  |𝐷𝐸| = |𝐸𝐹| = |𝐹𝐺| = |𝐴𝐵|

6
,  |𝐶𝐷| = |𝐺𝐻| = |𝐴𝐵|

12
. 
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Obr. 1: Prvá a druhá iterácia použitých štruktúr K, V1 a V2 

Fraktálnou dimenziou nazývame hodnotu 

𝐷 = lim
𝑟→0

log𝑁𝑟

log 1
𝑟

 ,  (1) 

kde r je dĺžka jednotkového elementu a Nr je počet jednotiek, pokrývajúcich 

analyzovaný objekt. Je jednoduché sa presvedčiť, že vyššie uvedené štruktúry 

majú fraktálnu dimenziu  

𝐷𝐊 = 𝐷𝐕𝟏 = 𝐷𝐕𝟐 =
log 4

log 3
=̇ 1,2619.   (2) 

Pre odhad hodnoty fraktálnej dimenzie sa spravidla používa metóda zvaná Box 

Counting (BCM). V našom prípade to znamená, že 

1. skonštruujeme k-tu iteráciu objektu,  𝐅𝑘  ⊂ [0,1] × [0,1], 
2. 𝐅𝑘 preškálujeme a rasterizujeme v celočíselnej rastrovej mriežke 

𝐅𝑘,𝑛  ⊂ {1,2, … , 𝑛} × {1,2, … , 𝑛},  

3. fraktálnu dimenziu odhadneme z hodnôt 

𝐷𝐅𝑘,𝑛
=

log𝑁𝑘,𝑛

log 𝑛
   (3) 

kde 𝑁𝑘,𝑛 je počet pixelov reprezentujúcich 𝐅𝑘,𝑛 a 𝑛 definuje jemnosť rastrovej 

mriežky. 

2 BCM pre rôzne scenáre zjemnenia rasterizačnej siete 

Snaha o určenie fraktálnej dimenzie reálnych objektov naráža na to, že v reálnych 

situáciách vždy máme len konečný počet analyzovaných rastrových obrazov 

rôznych rozlíšení. Preto vo vysoko zjemnenej rastrovej mriežke, keď je veľkosť 

pixelu podstatne menšia ako najmenší detail analyzovaného objektu, vzťah (3) 

zjavne konverguje k 𝐷 = 1. Je to dôsledok Shannonovho vzorkovacieho 

teorému. V tomto kontexte je analýza fraktálnej dimenzie založená na analýze 

podvzorkových obrázkov. 
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Obr. 2: „Dĺžka“ rastrového obrazu krivky pre rôzny počet iterácií a rôzne 

scénare zjemnenia rastrovej mriežky pre štruktúry K, V1 a V2 

Na Obr. 2 vidíme rôzne modifikácie dĺžky 𝐿𝐅𝑘,𝑛
=

𝑁𝑘,𝑛

𝑛
. Iteráciám 𝑘 = 1, … 6 (tj. 

jemnosti reprezentácie jednotlivých fraktálov) odpovedajú postupne farby 

R,G,B,K,C,M. Rôznym scénarom zjemňovania diskrétnej mriežky odpovedajú 

kódy  

(2x) – tj. zdvojnásobovanie diskrétnej mriežky: 

 𝑛 ∈ {3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097} 

(3x) – tj. strojnásobenie diskrétnej mriežky: 

 𝑛 ∈ {4, 10, 28, 82, 244, 730, 2188, 6562} 

Na horizontálnej osi je logaritmická škála hodnoty 𝑛. Vidíme, že s narastajúcou 

hodnotou 𝑛 každá z kriviek postupne prechádza “z exponenciály na priamku”. 

Vidíme taktiež, že strojnásobenie rastrovej mriežky je vzhľadom na konštrukciu 

použitých fraktálov prirodzenejšia ako zdvojnásobenie, čo sa prejavuje menším 

zaťažením diskretizačnou chybou (grafy vykazujú hladší priebeh). 

Exponenciálnosť ľavých častí grafov je viac patrnejšia z Obr. 3, kde obe osi sú 

v logaritmickej škále (𝑥 = log 𝑛 , 𝑦 = log 𝑁𝑘,𝑛 − log 𝑛). Vzhľadom na vzťah (3) 

by v ideálnom prípade všetky krivky mali v ľavej časti splývať do jednej úsečky. 

 Obr. 3: Odhad fraktálnej dimenzie pre 𝑘 = 3, … 6  a 𝑛(2𝑥) ≥ 9,   𝑛(3𝑥) ≥ 28.   
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Názornejšie vyjadrenie odhadov fraktálnej dimenzie (3) je na Obr. 4, kde červená 

čiara reprezentuje skutočnú hodnotu (2) fraktálnej dimenzie. 
 

 

Obr. 4: Odhad fraktálnej dimenzie pre 𝑘 = 3, … 6  a 𝑛(2𝑥) ≥ 9, 𝑛(3𝑥) ≥ 28.  

3 Záver 

Výsledky ukazujú, že BCM metóda odhadu fraktálnej dimenzie je veľmi citlivá 

na scenár diskretizácie použitej rastrovej mriežky. Jej použitie sa zdá byť veľmi 

problematické pre fraktály, v ktorých sa vyskytuje zložitejšia štruktúra prvkov 

generátora (rôzne veľké elementy generátora). 

Naviac, i pre najjednoduchší prípad (Kochova krivka) je nutný vysoký stupeň 

iterácie (𝑘 = 5, 𝑘 = 6), ktorý môže byť v praxi ťažko dosiahnuteľný. 
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Abstract. The paper covers a marching triangle approach for triangu-
lating an implicitly defined surface in E3. The surface is allowed to have
singularities which are given or can be computed. The singularities
are of ADE type or non-isolated regular curves. Local approximations
around singularities are extended over the regular part of the surface.
Comparisons with SingSurf using quntitative criteria as well as using
visualized examples are provided.
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1 Introduction

During the processing of surfaces (e.g. modeling), they are often given in
an implicit way. The approximation and visualization of such surfaces
is one of the key items in a long list of procedures with them. We also
propose a method of visualizing for certain isolated and non-isolated sin-
gularities on a surface as well as marching triangle type of approach for
approximation of a regular part of an implicitly defined surface. Since the
determining the position and type of isolated singularities is a difficult
task on its own, we suppose such data are given for the surface in a suit-
able way. The non-isolated singularities, which are spatial regular curves
can be often computed (traced) as intersection of induced surfaces.

An implicitly defined surface (IDS) Z(F ) = {x ∈ R3 : F (x) = 0} is a
zero set of a suitable function F : R3 → R. We often work with polynomial
F , hence arbitrary order differentiability of F is guaranteed.

Typically, the set Z(F ) can be locally parameterized by a regular sur-
face in a suitable neighborhood of almost each of its points. However,
singular points given by an additional condition ∇F = 0⃗ might not have
this property. Among them, we distinguish between simple isolated sin-
gularities (having a regular ring neighborhood and ADE structure) and
non-isolated singularities along regular curves laying on the surface.

Visualization of IDS has already been done by several approaches for
several decades – Marching cubes [4], Marching Triangles [1, 5], raytrac-
ing (developing rapidly with hardware acceleration), volumetric methods
(used in many scanning techniques in medicine), particle based images
and others.
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(a)

(b) (c)

Fig. 1: Steps and results of Marching Triangles algorithm (a) estimation
of the new triangle vertex (b) projecting the new vertex to a surface and
forming a new approximation triangle, (c) results of the MT of torus using
several starting lengths of the edge of the triangle with adaptive approach
(top row) and uniform approach (lower row).

2 Triangulation

A triangulation approximating the surface can be obtained in several ways.
Marching Triangles (MT) algorithm is briefly introduced for regular sur-
faces.

In general, finding a first point of a triangulation is a difficult task
due to the fact that it deals with its existence. Suppose we are given
such a point and it is a regular one. Using a triangle in its tangent plane,
we might obtain the first triangle of the triangulation using a projection
of this tangent triangle onto the given IDS. The edges of the projected
triangle form a starting boundary of the triangulated region.

Continuing from such a triangle, one adds another neighboring triangle
at a time along the boundary of the triangulated region so that a final
triangulation is obtained (see Fig. 1). A boundary has to be updated
and maintained when a new triangle is added. Such a boundary can
have several connected components that appear or are enclosed. It is a
technically complex problem.

The approach of the determining of the new triangles can be modified
using several additional properties of the surface Z(F ). Often, various
functions of curvature of the approximated surface (principal, Gaussian,
mean, see Fig. 2) are taken into account. They are important local and
after integration also global characterization of a surface. In the proposed
approach, the lengths of the triangle edges are computed adaptively ac-
cording to curvedness (see [2]) resulting in the triangulation shown in
Fig. 1 (c), top row.
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Fig. 2: Various types of curvature measured on a surface. Blue represents
high values, white corresponds to middle values, red means low values (by
the authors of [6]).

Fig. 3: Local behavior of ADE singularities.

3 Singularities
Isolated singular points on a surface can have a complicated and numer-
ically unstable structure. Hence, only ADE singularities are considered
(see Fig. 3). Although there are infinitely many ADE singularities, they
can be classified into several groups locally given up to a smooth change
of coordinates by the equations

An±± : f(x, y, z) = xn+1 ± y2 ± z2, n ≥ 1

Dn±± : f(x, y, z) = yx2 ± yn−1 ± z2, n ≥ 4

E6±± : f(x, y, z) = x3 ± y4 ± z2

E7±± : f(x, y, z) = x3 ± xy3 ± z2

E8±± : f(x, y, z) = x3 ± y5 ± z2

Singularities come into play in many circumstances. One of them
considers finite subgroups of SO(3) corresponding to the isometries of
regular or semi-regular polyhedra (see Fig. 4). Certain types of non-
isolated singularities (curves in this case) are considered as well.

Considering their shape, there have been created only few mesh pat-
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Fig. 4: Isometries of some polyhedra form ADE singularities.

Fig. 5: Local meshes for the ADE singularities.

terns for their approximation (see Fig. 5). Using the symmetry and ge-
ometrical characteristics of the canonical isolated singularities, a set of
parameters is determined for each type of singularity for the enhance-
ment of a local approximation which is computed (see Fig. 6). One still
has to take into account numerical limitations of such triangulations.

4 Results of the algorithm and their evaluation
The computed triangulations are compared using several criteria of quality
(see Fig. 9).

• k1 – the mean ratio of the length of the sides of the triangle.

• k2 – a discrete approximation of the Hausdorff distance of the orig-
inal surface and its approximation.

• k3 – the mean distance of the gravity center and its perpendicular
projection for each triangle.

• k4 – the mean distance of the neighbor vertices from a vertex and
the standard deviation of the distance from the mean.

Main comparison was between adaptive and non-adaptive approaches to
the SingSurf program [5].

Visual comparisons of the results in several setups follow.
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Fig. 6: Local approximation of singularities based on local parameters.

Fig. 7: Visual comparison of the approximation with Marching Triangles
approach (left) and Marching Cubes (right) approach.

Fig. 8: Example of the surface with isolated singularities (left) and non-
isolated singularities (right) constructed using CSG operations.
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Fig. 9: Comparison of the computed triangulations with singularities us-
ing the criteria k1-k4.

Fig. 10: Uniform triangulations of ADE singularities.

Fig. 11: Adaptive triangulations of ADE singularities.
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Fig. 12: SingSurf triangulations of ADE singularities is significantly less
quality in term of triangle distribution.

Fig. 13: Uniform triangulations with singular curves and various length
of the triangle edge.

Fig. 14: A more complex uniform triangulations with ADE singularities.
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5 Conclusion and future work
There are much detail on algorithms and examples written in the diploma
thesis of the first author upon which is this paper based (see [3]).

Further progress of this topic is focused on the computation of the
position and type of singularities on a surface. The determination of the
singularities is particularly difficult via numerical methods for isolated
singularities. Other qualitative methods have to be taken into account.

The non-isolated singularities (curves) may themselves contain singu-
lar points. Their determination is another challenge though such case are
even rarer.
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Kĺıčová slova: Šroubovice, šroubová plocha, parametrizace, Maple.

1 Úvod
Tento př́ıspěvek předkládá odvozeńı parametrických rovnic u vybraných
šroubových ploch, pomoćı nichž jsou vytvořeny vizualizace těchto ploch
v programu Maple, př́ıpadně v programu GeoGebra. Protože nejobt́ıžněǰśı
je nalezeńı parametrizaćı pro šroubový torzus a Archimédovu serpentinu,
bude se př́ıspěvek věnovat právě těmto dvěma plochám.

2 Šroubovice
Výchoźım objektem pro nalezeńı parametrizaćı šroubových ploch je jeden
závit pravotočivé šroubovice s parametrickými rovnicemi
S(φ) = (r cosφ, r sinφ, v0 φ) , φ ∈ ⟨0; 2π⟩ ,

které vyjadřuj́ı, že šroubový pohyb bodu je v základńı situaci složeńım rov-
noměrného rotačńıho pohybu bodu po kružnici o poloměru r se středem
[0, 0] v p̊udorysně π = (x, y) a rovnoměrným posunem tohoto bodu ve
směru osy z. Šroubovice je křivka navinutá na rotačńı válcovou plochu,
kterou po rozvinut́ı do roviny vid́ıme jako př́ımku. Jeden závit šroubovice
daný otočeńım o úhel 2π a posunut́ım o výšku závitu v je po rozvinut́ı
přeponou pravoúhlého trojúhelńıka s odvěsnami 2πr a v. Otočeńı bodu
o úhel 1 radián př́ısluš́ı oblouk kružnice o délce r a posunut́ı o redukovanou
výšku závitu v0. Při otočeńı o obecný úhel φ má oblouk kružnice délku rφ
a posunut́ı je dáno hodnotou z. Je tedy
v0
r

=
v

2πr
=

z

rφ
⇒ v0 =

v

2π
∧ z = v0 φ .

Dvě základńı skupiny šroubových ploch jsou dány t́ım, zda se šroubuje
př́ımka nebo kružnice. Jejich poloha pak určuje konkrétńı typ př́ımkové
resp. cyklické šroubové plochy.
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Obr. 1: Vlastnosti šroubovice

3 Kosoúhlá otevřená př́ımková šroubová plocha
Plocha vzniká šroubovým pohybem př́ımky, která je s osou o ≡ z šroubo-
vého pohybu mimoběžná a sv́ırá s ńı obecný úhel ϑ ∈ (0, π)\{π2 }. Bod
př́ımky umı́stěný nejbĺıže k ose vytvář́ı při pohybu hrdelńı šroubovici S.
Budeme parametrizovat plochu P, jež vzniká šroubováńım úsečky dané
délky d s krajńım bodem na hrdelńı šroubovici S určené hodnotami r a v0.

Obr. 2: Vytvořeńı kosoúhlé otevřené př́ımkové šroubové plochy

Tvořićı úsečka u = SU , |SU | = d, je přeponou pravoúhlého trojúhelńı-
ka a se směrem osy z sv́ırá úhel ϑ. Kolmým pr̊umětem do p̊udorysny π
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je úsečka S1U1 o délce d1 lež́ıćı na tečně kružnice S1, která je kolmým
pr̊umětem šroubovice S do π. Z toho plyne, že z = d cosϑ a d1 = d sinϑ.

Poloha obecného bodu X na úsečce u je dána součinem k · d pro para-
metr k ∈ ⟨0; 1⟩. Promı́tnut́ım do p̊udorysny je |S1X1| = k · d1 = k d sinϑ.
Pr̊umětem šroubovice S do p̊udorysny je kružnice S1 = (r cosφ, r sinφ) ,
takže tečný vektor o délce r má vyjádřeńı S ′1 = (−r sinφ, r cosφ).
Pomoćı jednotkového tečného vektoru ı⃗ = (− sinφ, cosφ) lze parametri-
zovat bod X1 ∈ π pro k ∈ ⟨0; 1⟩ vztahem
X1 = S1+k d sinϑ · ı⃗ = (r cosφ−k d sinϑ sinφ, r sinφ+k d sinϑ cosφ).

Rozd́ıl z-ových souřadnic bod̊u X a S je roven k z = k d cosϑ, z čehož
z-ovou souřadnici bodu X urč́ıme jako v0 φ+ k d cosϑ.

T́ım jsme pro k ∈ ⟨0; 1⟩ a φ ∈ ⟨0; 2π⟩ našli parametrizaci kosoúhlé
otevřené př́ımkové šroubové plochy ve tvaru
P = (r cosφ− k d sinϑ sinφ, r sinφ+ k d sinϑ cosφ, v0 φ+ k d cosϑ) .

3.1 Rozvinutelná př́ımková šroubová plocha

Pokud hodnota úhlu ϑ, který sv́ırá tvořićı úsečka s osou o ≡ z šroubovice
neńı libovolná, ale tato úsečka je v̊uči hrdelńı šroubovici tečná, źıskáme
rozvinutelnou př́ımkovou šroubovou plochu neboli šroubový torzus.

Tečný vektor ke šroubovici má tvar S ′ = (−r sinφ, r cosφ, v0), jed-
notkový vektor osy z je ȷ⃗ = (0, 0, 1), pokud tyto vektory sv́ıraj́ı úhel menš́ı
než π

2 , jedná se o hledaný úhel ϑ. Pro odchylku vektor̊u plat́ı

cosϑ = S′ ·⃗ȷ
∥S′∥·∥ȷ⃗∥ = v0√

r2+v2
0

, sinϑ = +
√
1− cos2 ϑ = r√

r2+v2
0

.

Tytéž vztahy vid́ıme na obr. 1 po rozvinut́ı šroubovice do roviny. Je-
jich dosazeńım do parametrizace plochy P źıskáme vyjádřeńı rozvinutelné
šroubové plochy

R =

(
r cosφ− k d r√

r2+v2
0

sinφ, r sinφ+ k d r√
r2+v2

0

cosφ, v0 φ+ k d v0√
r2+v2

0

)
.

Standardně se zobrazuje část rozvinutelné šroubové plochy, která je ome-
zena hrdelńı šroubovićı S a křivkou E v p̊udorysně π. Tedy z = 0 neboli
φ + k d√

r2+v2
0

= 0. Požadujeme, aby tvořićı úsečka plochy, jež je omezena

krajńım bodem S šroubovice S lež́ıćım v obecné výšce v0 φ, měla druhý
krajńı bod v bodě P ∈ π. To znamená, že délka této úsečky je rovna hod-
notě d =

√
r2 + v20 · φ, což opět vid́ıme v obr. 1. Poloha bodu P tedy od-

pov́ıdá hodnotě parametru k = −1. Dosazeńım do parametrizace plochyR
obdrž́ıme vyjádřeńı křivky E = (r cosφ+ r φ sinφ, r sinφ− r φ cosφ, 0) .

Tato křivka je evolventou kružnice S1 ∈ π, do ńıž se kolmo promı́tá
hrdelńı šroubovice S. Názorně si lze evolventu kružnice představit jako
dráhu koncového bodu natažené nitě, kterou odv́ıj́ıme z ćıvky. Obecný
bod E evolventy E lež́ı na tečně ke kružnici ve vzdálenosti r φ od doty-

kového bodu S1 s kružnićı. Vektor
−−→
S1E má opačný směr vzhledem k jed-

notkovému vektoru ı⃗ = (− sinφ, cosφ), takže pro evolventu kružnice plat́ı
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E = S1 − r φ · ı⃗ ⇒ E = (r cosφ+ r φ sinφ, r sinφ− r φ cosφ) ,
což se shoduje s předchoźım výsledkem.

Pro zobrazeńı části rozvinutelné šroubové plochy mezi hrdelńı šroubo-
vićı S a evolventou E je třeba do parametizace R plochy dosadit odvoze-
nou délku d = φ

√
r2 + v20 tvořićı úsečky plochy, přičemž rozsah parametru

k je dán intervalem ⟨−1; 0⟩.
R̂ = (r cosφ− k r φ sinφ, r sinφ+ k r φ cosφ, (k + 1) v0 φ)

Obr. 3: Evolventa kružnice

3.2 Vizualizace šroubového torzu

Rozvinutelnou šroubovou plochu zobraźıme v programu Maple pomoćı
následuj́ıćı animace, kterou bychom mohli přizp̊usobit i programu Geo-
Gebra.

> restart;with(plots):

> b1:=color=blue:b2:=color=red:b3:=color=violet:tl:=thickness=3:

st:=style=patchnogrid:

> r:=5:v0:=6:

> ST:={[r*cos(p)-k*r*p*sin(p),r*sin(p)+k*r*p*cos(p),(k+1)*v0*p]},k=-1..0,

p=0..pos,st:

> S:={[r*cos(p),r*sin(p),v0*p]},p=0..pos,b1,tl:

> E:={[r*cos(p)+r*p*sin(p),r*sin(p)-r*p*cos(p),0]},p=0..pos,b2,tl:

> u:={[r*cos(pos)-k*r*pos*sin(pos),r*sin(pos)+k*r*pos*cos(pos),

(k+1)*v0*pos]},k=-1..0,b3,tl:

> A1:=animate(plot3d,[ST],pos=0..4*Pi,frames=240):

> A2:=animate(spacecurve,[S],pos=0..4*Pi,frames=240):

> A3:=animate(spacecurve,[E],pos=0..4*Pi,frames=240):

> A4:=animate(spacecurve,[u],pos=0..4*Pi,frames=240,trace=24):

> display({A1,A2,A3,A4},scaling=constrained);

4 Archimédova serpentina
Jedná se o cyklickou šroubovou plochu, která je určena podmı́nkou, že
šroubovaná kružnice k o poloměru R lež́ı v každé poloze v rovině ρ kolmé
k tečně šroubovice. Střed O kružnice k je přitom bodem šroubovice. Ar-
chimédova serpentina je zároveň obalovou plochou šroubuj́ıćı se kulové
plochy K o témže poloměru R.
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Tečný vektor šroubovice je normálovým vektorem roviny ρ, takže ro-
vina ρ má rovnici −x r sinφ+ y r cosφ+ z v0 + d = 0, přičemž hodnotu d
dopoč́ıtáme dosazeńım souřadnic bodu šroubovice. Je tedy
−r2 cosφ sinφ+ r2 sinφ cosφ+ v20 φ+ d = 0 ⇒ d = −v20 φ

Rovnice roviny ρ : x r sinφ− y r cosφ− z v0 + v20 φ = 0.

Kulovou plochu K budeme parametrizovat pomoćı úhl̊u α a β, kde α
je odchylka pr̊umětu OK1 ∈ π pr̊uvodiče OK, |OK| = R, od kladného
směru osy x a β je odchylka pr̊uvodiče OK od kladného směru osy z. Pro-
zat́ım uvažujme, že O[0, 0, 0]. Pro souřadnice bodu K ∈ K plat́ı vztahy
x = |OK1| cosα ∧ y = |OK1| sinα ∧ |OK1| = R sinβ ∧ z = R cosβ

T́ım źıskáme vyjářeńı kulové plochy
K = (R cosα sinβ, R sinα sinβ, R cosβ) , α ∈ ⟨0; 2π⟩, β ∈ ⟨0;π⟩ .

Protože střed O kulové plochy lež́ı na šroubovici S, parametrizace se změ-
ńı na K = (r cosφ+R cosα sinβ, r sinφ+R sinα sinβ, v0 φ+R cosβ) .
Dosazeńım vztah̊u pro kulovou plochu K do rovnice roviny ρ a následnou
úpravou źıskáme vyjádřeńı kružnice k.
r sinφ(r cosφ+R cosα sin β)−r cosφ(r sinφ+R sinα sin β)−v0(v0 φ+R cos β)+v2

0 φ = 0

r R cosα sin β sinφ−r R sinα sin β cosφ−v0 R cos β = 0

r sin β(sinφ cosα−cosφ sinα)−v0 cos β = 0

r sin β sin(φ−α)−v0 cos β = 0

Dále rovnici umocńıme na druhou a vyjádř́ıme funkce sin2 β a cos2 β.
r2 sin2 β sin2(φ−α) = v2

0 cos2 β ⇒ r2(1−cos2 β) sin2(φ−α) = v2
0 cos2 β

cos2 β(v2
0+r2 sin2(φ−α)) = r2 sin2(φ−α)

cos2 β =
r2 sin2(φ−α)

v2
0+r2 sin2(φ−α)

⇒ sin2 β = 1−cos2 β =
v2
0

v2
0+r2 sin2(φ−α)

Protože β ∈ ⟨0;π⟩, je sinβ ≥ 0, a tedy sinβ = v0√
v2
0+r2 sin2(φ−α)

.

Funkce cosβ nabývá kladných i záporných hodnot a jej́ı znaménko je dá-

no znaménkem funkce sin(φ− α). Vyjádř́ıme cosβ = r sin(φ−α)√
v2
0+r2 sin2(φ−α)

.

Dosazeńım těchto výraz̊u źıskáme vyjádřeńı kružnice k na šroubové ploše,
a t́ım i parametrizaci Archimédovy serpentiny.

A=

(
r cosφ+

Rv0 cosα√
v2
0+r2 sin2(φ−α)

, r sinφ+
Rv0 sinα√

v2
0+r2 sin2(φ−α)

, v0 φ+
r R sin(φ−α)√

v2
0+r2 sin2(φ−α)

)

4.1 Vizualizace Archimédovy serpentiny

> restart;with(plots):

> b1:=color=red:b2:=color=blue:b3:=color=violet:tl:=thickness=3:

st:=style=patchnogrid:

> r:=8:R:=3:v0:=2.5:

> AS:={[r*cos(p)+R*v0*cos(a)/sqrt(v0^2+r^2*(sin(p-a))^2),

r*sin(p)+R*v0*sin(a)/sqrt(v0^2+r^2*(sin(p-a))^2),

v0*p+r*R*sin(p-a)/sqrt(v0^2+r^2*(sin(p-a))^2)]},

p=0..pos,a=0..2*Pi,st,grid=[100,100]:

> S:={[r*cos(p),r*sin(p),v0*p]},p=0..4*Pi-pos,b2,tl:

> K:={[r*cos(4*Pi-pos)+R*cos(a)*sin(b),r*sin(4*Pi-pos)+R*sin(a)*sin(b),

v0*(4*Pi-pos)+R*cos(b)]},a=0..2*Pi,b=0..Pi,st,b3:

Parametrizace vybraných ²roubových ploch a jejich zobrazení v programu Maple 131



> k_1:={[r*cos(pos)+R*v0*cos(a)/sqrt(v0^2+r^2*(sin(pos-a))^2),

r*sin(pos)+R*v0*sin(a)/sqrt(v0^2+r^2*(sin(pos-a))^2),

v0*pos+r*R*sin(pos-a)/sqrt(v0^2+r^2*(sin(pos-a))^2)]},a=0..2*Pi,tl,b1:

> k_2:={[r*cos(4*Pi-pos)+R*v0*cos(a)/sqrt(v0^2+r^2*(sin(4*Pi-pos-a))^2),

r*sin(4*Pi-pos)+R*v0*sin(a)/sqrt(v0^2+r^2*(sin(4*Pi-pos-a))^2),

v0*(4*Pi-pos)+r*R*sin(4*Pi-pos-a)/sqrt(v0^2+r^2*(sin(4*Pi-pos-a))^2)]},

a=0..2*Pi,tl,b1:

> l:=spacecurve([r+R*v0*cos(a)/sqrt(v0^2+r^2*(sin(a))^2),

R*v0*sin(a)/sqrt(v0^2+r^2*(sin(a))^2),

-r*R*sin(a)/sqrt(v0^2+r^2*(sin(a))^2)],a=0..2*Pi,tl,b1):

> A1:=animate(plot3d,[AS],pos=0..4*Pi,frames=80):

> A2:=animate(spacecurve,[S],pos=0..4*Pi,frames=80):

> A3:=animate(plot3d,[K],pos=0..4*Pi,frames=80):

> A4:=animate(spacecurve,[k_1],pos=0..4*Pi,frames=80):

> A5:=animate(spacecurve,[k_2],pos=0..4*Pi,frames=80):

> display({A1,A2,A3,A4,A5,l},scaling=constrained);

 

Obr. 4: Animace šroubového torzu a Archimédovy serpentiny v Maplu

5 Závěr
Ačkoliv je práce v GeoGebře výrazně jednodušš́ı než v Maplu, podstatným
omezeńım je, že při parametrizaci ploch v GeoGebře je nutné obě proměn-
né ohraničit č́ıselnými hodnotami a nelze vykreslit plochu, v ńıž je jeden
parametr funkcionálně závislý na druhém parametru. Přestože se při vi-
zualizaci výše uvedených ploch tento problém nevyskytl, je třeba mı́t toto
omezeńı na paměti a v př́ıpadě nutnosti použ́ıt Maple.

Závěrem lze ř́ıci, že vhodné zobrazeńı určité plochy technické praxe
může být náhradou fyzického modelu této plochy.
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Abstract. The paper presents the development of a fully parametric
CAD model of axial blood pumps components in Grasshopper, a
graphical algorithm editor integrated in Rhinoceros. Since scientific
papers report very little (if any) geometric information about the
pumps, a special reverse engineering process was used to develop the
parametric CAD model.

Keywords: parametric CAD model, axial blood pump, helicoidal blade,
Rhinoceros, Grasshopper.

1 Introduction
Parametric CAD (Computer Aided Design) modelling represents a high-
performance tool for designing virtual 3D geometries of engineering com-
ponents and assemblies. An appropriately chosen system of input pa-
rameters allows defining mutual relationships and dimensional properties
of the modelled geometric shapes. This paper presents the development
of underlying geometry for CFD (Computation Fluid Dynamics) analysis
of hemolytic properties of blood pumps in a form of a fully parametric
CAD model. The CAD model is created in Rhinoceros, which is intended
for direct modelling. Parameterisation of the CAD model is provided by
Grasshopper, a graphical algorithm editor integrated in Rhinoceros.

Blood pumps are implantable mechanical rotary support systems pro-
viding artificial assistance for patients with heart failure. The optimi-
sation of the rotary blood pumps design with respect to the hemolytic
properties of the device such as avoidance of thrombogenicity and red
blood cell damage represents a highly challenging problem [1]. To in-
vestigate the hemolytic properties of blood pumps, CFD mathematical
models of blood flow are developed and various blood pump geometries
are analysed, [2, 3, 4, 5]. In [5], the hemolitic properties of axial blood
pump shown in fig. 1 (left) are analysed while the impeller and diffuser
designs are varied. In this paper, the development of parametric CAD
model of the diffuser inspired by geometry given in [5], see fig. 1 (right),
is described.

2 Set of parameters for diffuser modelling
The diffuser drawn in fig. 1 (right) consists of cylindrical hub with flat and
hemisphere caps and helicoidal blades. Unlike [5], where the geometry of
the diffuser blades is varied by only two values of inlet angle (25◦ and 45◦)
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and two values of chord length (9 mm and 14 mm), the set of parameters
proposed here allows full control over the geometry, see table 1.

Fig. 1: Axial blood pump design (left), CAD model of diffuser (right) [5]

CAD model Parameter Description

r1 Hub radius

r2 Tip radius

t Blade thickness

b Tip shape

n Blades number

w Wrap angle

h Height

p Helix shape

Table 1: Set of parameters

Set of parameters
• r1 – hub radius in mm.

• r2 – tip radius in mm.

• t – thickness of the blade in mm.

• b – tip shape parameter allowing to design convex (b > 0), straight
(b = 0) or concave (b < 0) shaping of the blade tip, see fig. 2. The
profile of blade tip is modelled as a Bézier cubic curve given by
four control points V0, V1, V2 and V3. Parameter b determines the

orientation of
−−→
V0V1 and

−−→
V2V3 vectors.
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Convex Straight Concave
b > 0, b = 0.8 b = 0 b < 0, b = −0.8

Fig. 2: The influence of tip shape parameter b

p < 1, p = 0.25 p = 1 p > 1, p = 2

Fig. 3: The influence of helix shape parameter p

• n – number of blades.

• w – wrap angle of the helicoidal blade in degrees.

• h – height of the diffuser hub in mm.

• p – helix shape parameter allowing to control disproportionality be-
tween the translation along the axis of screw motion (z-axis) and
angle of rotation about the axis of screw motion, see fig. 3.
Parametric equations of the directing helix are given by

x(v) =r2 cos(v)

y(v) =r2 sin(v) (1)

z(v) =h
( v

w

)p
, v ∈ [0, w], p > 0.
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Consequently, the cross-section of the gap between the blades
changes, see fig. 3, where the helix (1) is drawn in red. The decreas-
ing (b < 1) or increasing (b > 1) cross-section of the gap between
the blades is used for the flow regulation. For b = 1, the translation
is directly proportional to the rotation and the cross-section of the
gap between the blades is constant.

Note that the blade tip is straight, i.e. b = 0 for all the three
examples in fig. 3.

The variability of the diffuser CAD model created by suitable param-
eter settings is almost infinite. Four different CAD models similar to the
ones analysed in [5] are shown in table 2 together with the parameter
values.

Diffuser I Diffuser II Diffuser III Diffuser IV

r1 = 1.25 mm r1 = 1.25 mm r1 = 1.25 mm r1 = 1.25 mm

r2 = 6.00 mm r2 = 6.00 mm r2 = 7.00 mm r2 = 7.00 mm

t = 0.6 mm t = 0.6 mm t = 0.6 mm t = 0.6 mm

b = 0 b = 0 b = 0.8 b = 0.8

n = 3 n = 3 n = 3 n = 3

w = 100◦ w = 67◦ w = 150◦ w = 120◦

h = 9 mm h = 9 mm h = 15 mm h = 15 mm

p = 0.31 mm p = 0.25 p = 0.33 mm p = 0.40 mm

Table 2: Examples of diffuser geometries

3 Diffuser modelling in Grasshopper

Grasshopper as a graphical programming environment is implemented in
Rhinoceros. Individual components are placed onto a canvas and con-
nected with subsequent components. The preview of the Grasshopper
project of the diffuser parametric CAD model is shown in fig. 4. To keep
the clarity of the picture, the connecting wires are hidden.
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Fig. 4: Grasshopper project (wires are hidden)
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4 Conclusion
The paper presents the development of a parametric CAD model of a dif-
fuser for axial blood pumps. Fully parametric geometry is modelled in
Grasshopper integrated in Rhinoceros. The Grasshopper project has the
following sections: definition of a set of parameters through which it is
possible to control the geometry of the diffuser, modelling the hub as
a cylinder of revolution with flat and hemispheric caps, modelling the
blade profile as a normal section of the blade helicoidal surface, and mod-
elling the blade helicoidal surface by helical motion of the blade profile.
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Abstract. We discuss the refinement of a planar polyline using
conchoids. For each segment of the polyline, we construct a conchoid,
which interpolates its endpoints. This is achieved by choosing a feasible
coordinate system, scaled by the input global parameter. Then, we
choose new points from the interpolating conchoid, symmetrically to
the horizontal axis. Afterwards, we transform the new pair of points
to the original coordinate system. The refined polyline is obtained in
the ”corner-cutting” fashion, i. e. by joining the subsequent pairs of
new points. The process of refinement may be applied repeatedly to
achieve the desired level of detail. The proposed refinement scheme
is approximating and non-linear. We provide several examples that
demonstrate the behaviour of the refinement. Also, we inspect on the
influence of the value of the global parameter. For the specific value,
we obtain the well-known Chaikin’s algorithm.

Keywords: Subivision, conchoids, curve fitting.

1 Introduction

Subdivision curve is generated by iterative refinement of the input poly-
line. If the points of the refined polyline are obtained as linear combina-
tions of the original ones, we refer to such schemes as linear and non-linear
otherwise. Convergence and continuity of linear subdivision schemes is
well studied [2]. For the case of non-linear schemes (see e. g. [4, 5, 7]), the
idea of proximity to a certain linear scheme is used, see [3] and [6]. In our
contribution, we describe a subdivision scheme in a plane which utilizes a
local interpolation by conchoids.

2 Preliminaries

2.1 Conchoids

In our work, we utilize a conchoid of de Sluze C, which is a cubic curve
given implicitly by

C : (x− 1)(x2 + y2)− ax2 = 0. (1)

Depending on the value of the parameter a ∈ R, various families of curves
may be generated (classified by the type of the singularity at the point
(0, 0)⊤). For a ̸= 0, the conchoid C has an asymptote x = 1, see Fig. 1.
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00 01 01 + a x

y

Fig. 1: Conchoid of de Sluze (red) given by the parameter a and its
asymptote x = 1 (blue).

2.2 Subdivision step

Consider an input polyline, given by a sequence of points V0, V1, ..., Vn ∈
R2. For each segment ViVi+1 of the input polyline we assign a pair of
new points Pi and Qi in corner cutting fashion, similarly as in Chaikin’s
algorithm [1]. After one step of subdivision we obtain a new sequence of
points P0, Q0, P1, Q1, ..., Pn−1, Qn−1 ∈ R2. Hence the refined polyline has
2n points after one iteration.

3 Computation of newly inserted points

In this section, we describe the computation of the coordinates of the new
points Pi, Qi assigned to the segment ViVi+1. These are precomputed in
the coordinate system ⟨Oi,mi,ni⟩, given by

ni = Vi − Vi+1 =: (xni
, yni

)⊤,

mi = (−yni
, xni

)⊤,

Oi = Ei − wmi,

(2)

where

Ei =
1

2
Vi +

1

2
Vi+1 (3)

and w ∈ R, w ̸= 0 is a global parameter.

For clarity, coordinates of a point in the system ⟨Oi,mi,ni⟩ are distin-
guished by a bar, e. g. for the point Vi we use the notation V̄i = (xV̄i

, yV̄i
).
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V̄i

Ei

¯Vi+1Oi

ni mi

P̄i

Q̄i

Fig. 2: Fitting of the conchoid in the coordinate system ⟨Oi,mi,ni⟩ .

Now, we fit the conchoid C : (x − 1)(x2 + y2) − ax2 = 0, so it passes
through the points V̄i, ¯Vi+1, see Fig. 2. By plugging the x-coordinate of
V̄i we easily obtain the parameter a as

a =
(xV̄i

− 1)(x2
V̄i

+ y2
V̄i
)

x2
V̄i

. (4)

Then, we set the y-coordinates of the new points P̄i = (xP̄i
, yP̄i

)⊤ and
Q̄i = (xQ̄i

, yQ̄i
)⊤ as

yP̄i
:=

yV̄i

2
yQ̄i

:=
y ¯Vi+1

2
. (5)

Subsequently, the coordinate xP̄i
is obtained as follows:

1. Plug the value yP̄i
into the equation of the conchoid C.

2. Compute the roots of the resulting cubic polynomial (in variable x)
using Bézier clipping on the interval

[min(1 + a, 1),max(1 + a, 1)]. (6)

3. Set xP̄i
as the root, whose value is the closest to xV̄i

.
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input polyline 1 iteration 2 iterations 4 iterations

input polyline 1 iteration 2 iterations 4 iterations

Fig. 3: Refinement with respect to increasing number of iterations. Top
row depicts subdivision of the simple polyline with w = 1.5. Bottom row
depicts subdivision of the polyline with self intersections with w = 0.75.

The value xQ̄i
is computed analogously.

After these computations, the points P̄i and Q̄i are transformed back
to the original system, and these are the new points Pi and Qi. After
repeating the process for all segments ViVi+1, i = 0, ..., n − 1 we obtain
the refined polyline. The process of refinement may be repeated iteratively
to reach the desired level of detail.

4 Results

We demonstrate performance of the proposed method on various examples
and provide several observations.

In the top row of Fig. 3, we see the refinement of the simple non-
intersecting polyline with the value of the global parameter w = 1.5.
In general, the points of the polyline after one subdivision step do not
lie on the original polyline. After several steps of subdivision we obtain
visually smooth curve, which respects the shape of the input polyline. In
the bottom row, we refine the polyline with several self intersections and
w = 0.75. Since the proposed scheme does not interpolate the endpoints
of the input polyline, some of the self-intersections disappear and new
may be introduced with increasing number of subdvision steps.

In the case of the input polygon in Fig. 4 we focus on the impact of the
global parameter w. The polyline after 10 subdivision step is enclosed,
which is ensured by adding two more control points Vn+1 = V0, Vn+2 = V1.
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w = 1

w = 1.2 w = 2

w = 5

w = 0.9

w = 0.75w = 0.57

Fig. 4: Refinement of the control polygon (green) after 10 iterations with
respect to different values of the global parameter w. Note, that for w = 1
we obtain the same result as produced by Chaikin’s algorithm.
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For the value w = 1 our method is identical to Chaikin’s algorithm, since
each fitted conchoid is a line. If w < 1, we see, that decreasing of this
value causes expansion of the refined curve. For the sufficiently small
value (w = 0.57 in Fig. 4) the resulting curve even encapsulates the input
control polygon. In the case w > 1, the increasing values cause shrinking
of the curve. Note, that for w > 1 the resulting curve lies in the convex
hull of the control polygon.

5 Conclusion

In this paper, we introduced a subdivision scheme utilizing local conchoid
interpolation. The proposed scheme is non-linear and approximating. Our
method provides the adjustable the global parameter which affects the
shape of the output curve. Moreover, our approach contains Chaikin’s
algorithm as a special case. In future, we plan to provide the proof of
convergence and inspect on the order of continuity w. r. t. the global
parameter. Also, we need to describe and prove properties of the curve,
mainly the convex hull property. The rescaling of the global parameter
would provide more intuitive handling of the resulting curve and find its
applications in e. g. graphic design for shrinking and expanding polygons.

References

[1] G. M. Chaikin: An algorithm for high-speed curve generation, Com-
puter graphics and image processing. Elsevier, 1974

[2] N. Dyn, J. A. Gregory, D. Levin: Analysis of uniform binary sub-
division schemes for curve design, Constructive Approximation.
Springer, 1991

[3] J. Wallner, N. Dyn: Convergence and C1 analysis of subdivision
schemes on manifolds by proximity, Computer Aided Geometric De-
sign. Elsevier, 2005

[4] N. Dyn: Three families of nonlinear subdivision schemes, Studies in
Computational Mathematics. Elsevier, 2006

[5] S. Schaefer, E. Vouga, R. Goldman: Nonlinear subdivision through
nonlinear averaging, Computer Aided Geometric Design. Elsevier,
2008

[6] P. Grohs: A general proximity analysis of nonlinear subdivision
schemes, SIAM Journal on Mathematical Analysis. SIAM, 2010

[7] X. Yang: Point-normal subdivision curves and surfaces, Computer
Aided Geometric Design. Elsevier, 2023

144 Makovník Marcel



  

The Kárteszi points of a triangle,  

via three reflections theorem and geometric algebra 

To memory of my professor and doctor father,  

Ferenc Kárteszi (1907-1989) 

Emil Molnár 

Department of Algebra and Geometry, Institute of Mathematics,  

Budapest University of Technology and Economics, Hungary 

email: emolnar@math.bme.hu 

Abstract. Professor Ferenc Kárteszi was a charismatic personality of the 

Hungarian mathematics education and science (descriptive, projective and finite 

geometries). He made presentation trips also in Slovakia. A brief information is 

presented, how to start with a school task dealing with triangle configurations, 

which could be extended from the elementary Euclidean case to more general 

ones, as hyperbolic plane, "absolute plane" by János Bolyai (just 200 years ago), 

then Minkowski and Galilei (isotropic) plane. Comments on prof. Ferenc Kárteszi 

are included in connection to his presented didactical credo. 

Keywords: configuration of triangles, Kárteszi point, three reflections theorem, 

geometric algebra  

 
Let us recall a well-known school task: In the (Euclidean E2) plane of a triangle 

ABC we draw regular triangles outward on sides of ABC, say ABC‾, BCA‾, 

CAB‾, respectively. Prove that the segments AA‾, BB‾, CC‾ intersect each other 

in a point K, that is the isogonal point of ABC and the distance sum AK + BK + 

CK is minimal for K among all points of the plane. 

Professor Kárteszi noticed that instead of regular triangles we can draw 

isosceles ones with all equal base angles, and the above K (called Kárteszi point) 

exists also in the Bolyai–Lobachevsky hyperbolic plane H2 (in the sphere S2 as 

well, (see also Kálmán, 1989 and Sect. 2), the orthocentre, barycentre are specific 

cases. There is a more general extremum problem of a similar kind (Yaglom, 

1968, problem 83, with modified notation): 

In the plane (E2) of a given triangle ABC find a point K such that the quantity 

αKA + βKB + γKC, where α, β, γ are given positive numbers, has the smallest 

possible value. 

This problem leads to a more general triangle configuration and to an 

analogous extremal point K. Moreover, as a new result of this paper, an 

extension onto "absolute plane" (S2, E2, H2, M2 Minkowski plane, G2 Galilei (or 

isotropic) plane) can be formulated and solved by three reflections theorem (see 

e.g. Molnár, 1978 and Sect. 4, Weiss, 2018), and geometric (Grassmann–Clifford 

type) algebra (Perwass et al., 2004 and Sect. 3). Open problems arise as well.  

By this we want to follow F. Kárteszi's didactical credo (see also his 

wonderful book (Kárteszi, 1976) of great international success): 
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Start with a natural, elementary, visually well understandable task! Then 

follow the manipulations, tools, new mathematical concepts, the technical 

machinery; then the solution, occasional theory, further applications, extensions, 

.... 

The full publication with title On the Kárteszi point of a triangle via three 

reflections theorem and geometric algebra is to appear in the monograph volume 

of The 9th International Scientific Colloquium Mathematics and Children, 

founded by Margita Pavleković, Osijek, Croatia, 19-20 May 2023. 
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Abstract. In an engineering environment, continuity is one of the im-
portant concepts. Not only does it have a significant impact on the
aesthetic aspect of products, which is an essential parameter for com-
mercial success, but it is equally a very crucial parameter from a techno-
logical point of view. The continuity of the geometry of 3D CAD models
determines how smooth the transition between two adjacent surfaces of
the model is.
C2 continuity, i.e. continuity up to the second derivative, has become
the standard for the vast majority of CAD software today. This work
focuses on increasing the degree of contiguous surfaces to C3 continuity
using CAD software Rhinoceros 7 to improve the quality of the model
for CNC processing.

Keywords: Bézier curve, CAD model, surface continuity, C3 continuity,
CNC processing.

1 Introduction

CNC (computer numerical control) machining became one of the most
reliable ways for developing highly sophisticated models and products
while staying consistent in quality and quantity beside other means of
production.

The process begins with the preparation of a quality model that be-
comes core for a CAM (computer-aided manufacturing) code for CNC
processing. While CAM code is prepared, processed and a prototype is
made for acquisition of data for further analysis, the prototype may ap-
pear insufficient in spaces, where different surfaces meet, as these places
provide a challenge for a correct toolpath and an optimisation is needed.
Usual way to fix such issues is via changing the parameters of process to
reach optimal conditions for best outcome.

For complicated geometries this optimalization might be insufficient
and other solution is needed. One of the possibilities is to focus on the
3D model that lies on the very beginning of the process.

9 th Slovak�Czech Conference on Geometry and Graphics 2023 147



2 Impact of surface continuity on 3D model
As proved by experimental measurements [1], [2], the C3 continuity of
surfaces is most suitable option for a smooth CNC toolpath on highly
sophisticated surfaces of 3D models. With C2 continuity being standard
for the CAD software nowadays, easily obtained from software itself, C3

continuity has to be obtained through other means. Following theory
of Bézier curves [3], [4], decomposition of curve is used in reversed pace
to build up control polygons between examined surfaces. Polygons are
then used to define Bézier surface interconnecting aforementioned surfaces
achieving C3 continuity not only on cylindrical surfaces joined along a
plane curve, as is investigated in [1], [2], but also on freeform surfaces
joined along a spatial curve.

2.1 Continuity of Bézier curve

Suppose quartic Bézier curve C(u), u ∈ [0, 1] is given by control points
V0,V1,V2,V3,V4 with known positions and derive the rules for con-
struction of unknown control points W0,W1,W2,W3,W4 of quartic
Bézier curve K(v), v ∈ [0, 1] connected with CK , K = 0, 1, 2, 3 conti-
nuity at the common point C(1). Vector equation of Bézier curve C(u)
and its first three derivatives is given by

C(K)(u) =

4∑

i=0

N
(K)
i,4 (u)Vi, K = 0, 1, 2, 3. (1)

Thus, it is useful to calculate function values of Bernstein polynomials
of 4-th degree and their first three derivatives at u = 0 and u = 1, see
tab. 2.1 where the simplified notation N(u) is used instead of Ni,4(u).

With respect to the values in tab. 2.1, the continuity conditions

C(i)(1) = K(i)(0), i = 1, ..,K. (2)

expressed as positions of unknown control points Wi, see fig. 1.

i N(u) N(0) N(1) N ′(0) N ′(1) N ′′(0) N ′′(1) N ′′′(0) N ′′′(1)

0 (1− u)4 1 0 −4 0 12 0 −24 0

1 4u(1− u)3 0 0 4 0 −24 0 72 −24

2 6u2(1− u)2 0 0 0 0 12 12 −72 72

3 4u3(1− u) 0 0 0 −4 0 −24 24 −72

4 u4 0 1 0 4 0 12 0 24

Table 1: Bernstein polynomials of 4-th degree and their derivatives for
u = 0, 1
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Fig. 1: Constructive conditions of C0, C1, C2 and C3 continuity of two
quartic Bézier curves

• C0: Unknown position of W0 is given by

W0 = V4, (3)

i.e. the curves have a common endpoint. The positions of all other
control points have no influence on C0 continuity.

• C1: Considering condition (3), unknown position of W1 is given by

W1 = 2V4 −V3, (4)

i.e. the common point of the curves lies at the centre of straight line
segment with endpoints V3 and W1. In other words, the vectors
given by the adjacent legs of control polygons are identical, desig-
nated by a in fig. 1. Positions of all other control points have no
influence on C1 continuity.
Note that vector a represents 1/p of tangent vector at end points of
Bézier curve of p-th degree.

• C2: Considering conditions (3) and (4), unknown point W2 is given
by

W2 = V2 + 4(V4 −V3). (5)
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Thus, point W2 can be determined by W2 = V2 + 4a. Or, desig-
nating b the vector given by sum of vectors

b = V3V2 +V3V4, (6)

point A lying at the centre of straight line segment with endpoints
V2 and W2 is given by

A = V4 + b. (7)

Note that vector b represents 1/(p(1−p)) of second derivative vector
at end point of Bézier curve of p-th degree.

• C3: Considering conditions (3), (4) and (5), unknown point W2 is
given by

W3 = −V1 + 6V2 + 8V4 − 12V3. (8)

To construct point W3, modify condition (8) into the form

W3 +V1

2
= V4 + 3b. (9)

The left side of (9) represents the centre B of straight line segment
with end points at W3 and V1.

2.2 Study artefact

For the purpose of testing the effect of continuity on CNC processing,
four indentical sets of two cubic-quartic Bézier surfaces were prepared.
The quartic Bézier curve were oriented into the space, where connection
of surfaces was intended to be constructed.

Following the conditions for C0 and C1 continuities, interconnecting
surfaces were prepared. For the C2 and C3 continuity, reversed decom-
position was used. Fig. 2 shows the reversed decomposition in case of C3

continuity. Result is smooth C3 connection between initial Bézier curves
done via four quartic Bézier curves as shown on fig. 3.

The process was then repeated for each of the quartic curves, until a
grid of control points was achieved for connecting with Bézier surfaces.
Fig. 4 shows final form of the artefact with increasing degree of continuity
between surfaces from left to right. Place of connection between initial
surfaces and interconnecting surfaces is shown with black curves.
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Fig. 2: Construction of C3 continuity between Bézier curves

Fig. 3: Graph of curvature on the constructed chain of curves

Fig. 4: Final model of the artefact
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3 Conclusion

Using the knowledge of Bézier curves, an artefact was designed and con-
structed for further studies of impact of surface continuity on CNC ma-
chining. Ranging from C0 to C3 continuities, the artefact will be used
to examine machined surfaces mainly aiming on quality and efectivity of
CNC machining process.
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Variations on Frégier’s Theorem
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Abstract. We show that Frégier’s theorem allows for some gener-
alizations within the framework of projective geometry. This also 
contains the notion of non-Euclidean versions of Frégier’s theorem and 
Frégier conics. Two different generalizations of Frégier’s theorem shall 
be considered: (1) The involution of right angles is replaced with an 
arbitrary involution induced by some polarity. (2) The envelopes of 
chords of a conic whose endpoints are assigned in a projective mapping 
(not involutive) are conics.
Keywords: Frégier’s theorem, Frégier conic, involution, polarity, 
projective mapping, pencil of conics.

1 Introduction
Let c be a conic and assume that P is a point on c. Then, let (g, g′) be a
pair of lines through P such that g and g′ are orthogonal (in the Euclidean
sense). Further, let Q = c∩ g \ {P} and Q′ = c∩ g′ \ {P}. Now, Frégier’s
theorem states (cf. [1, 2]):
The chords [Q,Q′] pass through a single point F (the Frégier point of P
with respect to1 c) independent of the choice of g.

Generalizations to non-Euclidean Frégier conics have been studied in
[4]. Quadratic transformations based on Frégier’s constructions are de-
fined and investigated in [5, 6] along with higher dimensional analogues.
The fact that the ordinary Euclidean Frégier conics are the only conic
shaped generalized offsets to conics is shown in [3]. Especially in the lat-
ter article, the right angle which is a substantial ingredient for Frégier’s
theorem was replaced with an arbitrary fixed angle φ. It turned out that
the thus defined chords [Q,Q′] envelop conics (the generalized Frégier
conics) cφ assigned to the point P and w.r.t. c. If the angle φ traces the
open interval ]0, π2 [, then the generalized Frégier conics cφ trace a pencil of
conics of the third kind (to which c also belongs, see [3]) and the ordinary
Frégier point is the only real point of a singular conic in the Frégier pencil.

In the following, we generalize Frégier’s theorem by replacing fixed
angles at first by an involutive mapping induced by some polarity in Sec.
2. There are six different types of such Frégier constructions depending on
whether the polarity is elliptic or hyperbolic, and then, since a hyperbolic
polarity is always that of a conic d, we have to distinguish between the five
different types of pencils spanned by c and d. For special assumptions on
the polarity, this yields the non-Euclidean notion (cf. [4]) of Frégier conics

1We shall write w.r.t. short hand for with respect to.
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as by-catch. This immediately raises the question: What happens if we
look at the chords of a conic c whose endpoints are assigned in an arbitrary
projective mapping acting on c? This will be described in Sec. 3.

2 Polarities instead of the right angle
The right angles appearing in Frégier’s construction as well as the constant
angles in the Frégier variant described in [3] induce special projective
mappings on the underlying regular conic c with the polarity γ. Now, we
may assume that in the pencil around the pivot point P ∈ c an arbitrary
involution is acting. The involution shall be induced by an arbitrary
polarity δ which assigns to each line g ∋ P a unique line g′ ∋ P by

g′ = [δ⋆(g), P ],

where δ⋆ is the adjoint mapping of the polarity δ. The lines g and g′

intersect c in P and each in a further point Q ∈ g and Q′ ∈ g′. Now, we
can state and prove:

Theorem 2.1. Let c be a regular conic, let P be a point on c, and let
further δ be a regular polarity (different from that w.r.t. c). Now, consider
the projective and involutive mapping α in the pencil of lines around P
that sends each line g to the line g′ = [P, δ⋆(g)]. If now Q and Q′ are
defined as above, then the chords [Q,Q′] pass through a single point F (the
generalized Frégier point of P w.r.t. c).

Proof. The generalized Frégier point F is simply the center of the involu-
tion α lifted to the conic c (see [2]).

c
P

Q
Q′

Fd

δ⋆(g)g

g′

ccccccccccccccccc

eeeeeeeeeeeeeeeee

H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2

ccccccccccccccccc

eeeeeeeeeeeeeeeee

E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2

Fig. 1: Left: A Frégier point F defined by means of a generic involution
induced by a polarity w.r.t. a conic d. Center and right: Frégier conics e
of a conic c in a hyperbolic and an elliptic plane.

The polarity δ may either be that of a conic d with real points (hyper-
bolic polarity) or that of an empty conic (elliptic polarity). The case of the
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elliptic polarity causes no special cases since there no real self-conjugate
points w.r.t. δ. In the case of the polarity w.r.t. a real conic d, we have
to distinguish between five cases, according to the type of pencil spanned
by c and d. We are able to show:

Theorem 2.2. The construction of the generalized Frégier conic from
Thm. 2.1 does not depend on the type of pencil spanned by c and d.

Proof. We just lay down what is necessary in order to give a synthetic
proof. First, it means no restriction to assume that c is given by x0x2 −
x2
1 = 0. The polarity δ shall be that of a conic d that spans a pencil of 1.,

. . . , 5. kind with c. Therefore, we can assume that the equations of the
conics d in the pencil of type are given by d = c + λsi (we identify the
conic with its equation), where si is the equation of a singular conic in the
pencil of the i-th kind and can be chosen as: s1 : x1(px0−(1+p)x1+x2),
s2 : x2(x2 − x0), s3 : x2

1 = 0, s4 : x2(x1 − x2) = 0, and s5 : x2
2 = 0. In

any case, the pivot point P can be given by 1 : t : t2 (with t 6= 0, 1,∞).
In s1, p 6= 0, 1,∞ guarantees that c and s1 really span a pencil of the 1.
kind. Further, Q = 1 : u : u2 (with u 6= p, t, 0, 1,∞). For a special but
proper choice of µ, we obtain a regular conic d in the pencil, and thus, a
polarity δ. Then, g = [P,Q] and we are able to compute the pole δ⋆(g) of g
w.r.t. all conics in the pencil (variable λ 6= 0). Finally, g′ = [P, δ⋆(g)] and
Q′ = g′ ∩ c \ {P}. Then, we can show that [Q,Q′] passes through a point
F (independent of Q, i.e., the parameter u). For variable pivot point P
(i.e., variable t), the points F trace a conic, the generalized Frégier conic
e of c w.r.t. δ. It can be shown that e passes through the base points of
the pencil only if they are at least of multiplicity two by intersecting e
and c.

Fig. 2 shows a generalized Frégier conic e (red) of a conic c (blue) w.r.t.
to the polarity δ of a regular conic d (magenta) which, together with c,
spans a pencil of the first, second, third, fourth, or fifth kind.

c

d

e

s1
s1

c

d

e

s2 s2

c
d

e

s3 c

d

e s4

s4

c

d

e

s5

Fig. 2: The generalized Frégier conics e according to Thm. 2.1 pass
through base points of the pencil λc+µd only if these are at least two-fold.
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2.1 Non-Euclidean versions

We assume that the polarity w.r.t. to c and the polarity δ have a common
polar triangle, i.e., the corresponding bilinear forms can be diagonalized
simultaneously. Thus, we can assume that c is given by x2

1/a
2+x2

2/b
2 = x2

0

(with a, b 6= 0 and a 6= b). The case b2 < 0 needs a separate discussion.
In the hyperbolic case, δ’s self-conjugate points can be given by ω : x2

1 +
x2
2 = x2

0. The conic ω can be viewed as the absolute conic of hyperbolic
geometry. Therefore, for any point P = 1 + t2 : a(1 − t2) : 2bt (with
t ∈ R ∪ {∞}), the Frégier point

Fh=(a2b2−a2−b2)(1+t2) : a(a2b2+a2−b2)(t2−1) : −2bt(a2b2−a2+b2)

in the sense of hyperbolic geometry traces the hyperbolic Frégier conic

x2
0 =

(a2b2−a2−b2)2

a2(a2b2+a2−b2)2
x2
1 +

(a2b2−a2−b2)2

b2(a2b2−a2+b2)2
x2
2.

The hyperbolic Frégier conic is regular if, and only if, (a2b2−a2+b2)(a2b2+
a2 − b2)(a2b2 − a2 − b2) 6= 0. This leads to a three-branched variety of
singular hyperbolic Frégier conics which are studied in detail in [4].

The conic ω : x2
0 + x2

1 + x2
2 = 0 is empty (over the real numbers)

and can serve as the absolute conic of elliptic geometry. Then, the point
P = 1 + t2 : a(1 − t2) : 2bt on the conic c : x2

1/a
2 + x2

2/b
2 = x2

0 defines
the elliptic Frégier point

Fe = (a2b2+a2+b2)(1+t2) : a(a2b2−a2+b2)(t2−1) : −2bt(a2b2+a2−b2)

which traces the elliptic Frégier conic

x2
0 =

(a2b2+a2+b2)2

a2(a2b2−a2+b2)2
x2
1 +

(a2b2+a2+b2)2

b2(a2b2+a2−b2)2
x2
2.

The elliptic Frégier conic is regular if, and only if, (a2b2−a2+b2)(a2b2+
a2−b2) 6= 0. (The factor a2b2+a2+b2 cannot vanish under the above made
assumptions.) However, in elliptic geometry, the singular Frégier conics
of a given conic can only be arranged in two groups (for details see [4]).
Fig. 1 shows the generalized Frégier conic (in the sense of Thm. 2.1) for a
hyperbolic (center) and an elliptic polarity (right). The curves e can be
viewed as the Frégier conics of the conic c in the hyperbolic and elliptic
plane.

2.2 Euclidean and pseudo-Euclidean Frégier conics

A singular polarity, i.e., an involutive mapping on a straight line l can
also be the basis of the Frégier construction. If l is chosen as the line at
infinity, then the involutive mapping α : l → l can either be hyperbolic
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or elliptic. In the first case, we can consider this Frégier construction as
the pseudo-Euclidean version, while in the second case, α acting on l can
serve as the absolute polarity of Euclidean geometry which leads to the
well-known Euclidean version.

3 Arbitrary (non-involutive) projective mappings
In what follows, we shall replace the involutive projective mapping α
acting on c with an arbitrary projective mapping β : c → c. Such a
mapping is uniquely defined by prescribing three pairs of assigned points,
i.e., three by two points A,A′, B,B′, C, C′ ∈ c with A′ = α(A)′, B′ =
α(B), and C′ = α(C). We can show the following result:

Theorem 3.1. The chords [X,α(X)] of c joining each point with its
projective image envelop a conic f which spans with c a pencil of conics
of the third kind if α is elliptic or hyperbolic. In the case of a parabolic
projectivity α, the conics c and f span a pencil of the fifth kind, i.e., they
hyperosculate each other.

Proof. It means no loss of generality to assume that c is given by the
homogeneous equation x0x2 − x2

2 = 0. Further, we can assume that
A = 1 : 0 : 0, B = 1 : 1 : 1, C = 0 : 0 : 1 and A′ = 1 : u : u2,
B′ = 1 : v : v2, C′ = 1 : w : w2 (with u, v, w 6= 0, 1,∞, u 6= v 6= w 6=
u). Then, the axis a of the projectivity α (which contains the points
[A,B′] ∩ [A′, B], [A,C′] ∩ [A′, C], [B,C′] ∩ [B′, C]) has the homogeneous
coordinates a = uu : ww−u : −w, where u = v−w, v = w−u, w = u−v.
Hence, a point X = 1 : t : t2 (with t 6= u, v, w, 0, 1,∞) is mapped to

X ′ = (tw + u)2 : (tw + u)(tww + uu) : (tww + uu)2.

The chords s = [X,X ′] with homogeneous coordinates

s = t(tww + uu) : −t2w − t(ww + u)− uu : tw + u

envelop the conic

e : xT




u2u2 uu(ww−u) −uw(v + w)
uu(ww−u) w2((u+w)2+4u−4w+4) −w(ww−u)
−uw(v + w) −w(ww−u) w2


x=0,

The conics c and e span a pencil of the third kind with the repeated line
a as a singular conic in the pencil. The common points of a and c are
the fixed points of α. The projectivity α is parabolic if, and only if, a is
tangent to c, and then, c and e hyperosculate each other, i.e., they span
a pencil of the fifth kind.

Figure 3 shows the three possible cases: an elliptic projectivity (left), a
hyperbolic projectivity (in the middle), and a parabolic projectivity where
pα touches c and e (which are hyperosculating at the common point).
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Fig. 3: The chords of c envelop a conic e provided that the endpoints
are assigned in a projective mapping α. If α is elliptic or hyperbolic, the
pencil spanned by c and e is of the third kind. A pencil of the fifth kind
is obtained if α is parabolic.

4 Conclusion
We have shown two variations of Frégier’s theorem. Both can be for-
mulated in terms of projective geometry. The mathematical approach
towards these generalizations are formulated in terms of polynomial equa-
tions and rational parametrizations. At no instant, extensions or assump-
tions on characteristic of underlying fields are necessary which makes the
computations possible within the framework of finite fields. Hence, these
results are universal in the sense of [7].
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Abstract. Nowadays, many of us know what 3D printing, its design and other 

technical details are all about. However, it is worth considering how 3D printing 

can help teach geometry, especially spatial geometry, and even make it easier for 

students to discover algebraic patterns of abbreviated multiplication. 

In my presentation, I will show some of models, the purpose of which is to better 

assimilate concepts such as the duality of polyhedrons, stellations, quick 

determination of the volume of selected solids, the search for geometric relationships 

between them and the development of students' spatial imagination by preparing 

numerous puzzles and 3D puzzles. 

Key words: Printing 3D, software SketchUp, GeoGebra, teaching math, 

3D models allow you to: 

1. Discover the formula for the volume of a 3D solid – for example the volume 

of a regular tetrahedron. - just put the tetrahedron in the cube. 

  
 

𝑉𝑡𝑒𝑡𝑟𝑎ℎ𝑒𝑑𝑟𝑜𝑛 =  𝑎3 − 4 ∙
1

3
∙
1

2
∙ 𝑎2 ∙ 𝑎 =  𝑎3 -  

2

2
∙ 𝑎3 =  

1

3
∙ 𝑎3 

2. Visualize dynamically that the rhombic dodecahedron has a volume twice as 

large as the cube from which it was created 
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3. Discover a new problem - the volume of the Stella Octangula is equal to ½ 

the volume of the cube in which we placed it, so we should construct a second 

stele from the remaining elements. Can we do this? This is known as Hilbert's 

Third Problem. Perhaps after such an experience, Hilbert posed his Third 

Problem at the 1900 Conference. 

  

𝑉𝑠𝑡𝑒𝑙𝑙𝑎 = 𝑉𝑏𝑙𝑢𝑒 𝑡𝑒𝑡𝑟𝑎 + 4 ∙ 𝑉𝑟𝑒𝑑 𝑡𝑒𝑡𝑟𝑎 =
1

3
∙ 𝑎3 + 4 ∙

1

8
∙
1

3
𝑎3 =  

1

3
𝑎3 +

1

6
𝑎3 =  

1

2
𝑎3 

4. Dynamic visualization of what is difficult to show on a sheet of paper - Hill's 

tetrahedron - this is one of the few pyramids that can be cut so as to obtain a 

prism with the same volume. 

  

Not every pyramid can be cut into elements that can be used to assemble  

a prism. Hill discovered six such pyramids. Here is a printout of one of them 

and a prism created from it 
 

5. Discovering elements of algebra - abbreviated multiplication formula: sum 

cube. Transforming one polyhedron into another - a truncated octahedron can 

be cut so as to create a cube of the same volume in two ways. 
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(𝑎 + 𝑏 )
3 
=  𝑎3 + 𝑏3 + 3𝑎2𝑏 + 3𝑏2𝑎 

6. Show that rhombic dodecahedrons can fill 3D space 

 
 

7. Show three Dormann stellations of a rhombic dodecahedron and see that they 

are all made of the same pentahedrons. 

 

Rhombic dodecahedron and its first, second and third stellation, 

 

From these pentahedrons you can build a rhombic dodecahedron  

and any of its stellations. 
 

8. Illustrate spatial fractals, for example built on a regular octahedron. 
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9. Visualize how the Klein bottle is composed of two Mobius strips. 

 
 

10. Developing spatial imagination by solving appropriate puzzles – for 

example dividing a cube into 4 congruent polyhedra 

   
 

11. Dividing a cube into 6 congruent polyhedra (two ways). 

First way: 

 

 

Second way: 

          
 

12. Dividing a cube into 4 congruent polyhedral 
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13. Dividing a cube into 12 congruent polyhedral 

 
  

 

14. Dividing a cube into 16 congruent polyhedral (idea of autor – 1995) 

 

The rhombic dodecahedron also consists of these pentahedrons 
 

15. Dividing a cube into 24 congruent polyhedra (idea of Tadeusz Doroziński - 

polish architect in Deutschland). 

   
 

 

16. Decomposition of the stella octangula into four congruent parts 
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17. Transformation of a cube into a cubeoctahedron and an octahedron in 4 

steps (idea of Bronek Pabich) 

 

        
 

 
 

 

                              
 

18. Find a solid so that it can be moved through the holes: circle, triangle and 

square. 
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Abstract. Few mathematicians in geometry deal with uniform polyhedra. 
Many of my friends, serious mathematicians find these polyhedrons difficult 
to create and do not see their use in other fields of knowledge. Hence, little 
interest in this issue. However, these polyhedrons are so captivating and 
beautiful, they require so much hard thought on how to create cardboard 
models or 3D prints of them. 
They were mostly created in the 20th century. They are somewhat analogous 
to what Archimedean polyhedra are to Platonic polyhedra, with the 
difference that we now allow faces to be non-convex polygons. There are 54 
of them in total, but the last ones were discovered in the 1970s and are very 
difficult.  
In my presentation, on the example of one of the uniform polyhedra, I will 
show the principle of their construction and I will show the ones whose 
models I made with my students.  

Keywords: Printing 3D, software SketchUp, GeoGebra, uniform polyhedra. 

1 Introduction 

Uniform Polyhedra is a family of semi-regular polyhedra whose corners are 
congruent and whose faces are regular convex or concave polygons. 

The UP include 5 Platonic solids, 13 Archimedean solids, two families of 
regular prisms and regular antiprisms and 54 non-convex polyhedra 

2 Main part of paper 

Historically, the first uniform polyhedron was created 
by Johannes Kepler in the 17th century. Kepler called 
it the eared or spiky polyhedron (Fig. 1).  

In the 19th century, Badoureau discovered 37 non-
convex homogeneous polyhedra. In the 20th century, 
polyhedrons of this kind were studied by H.S.M. 
Coxeter, J.C.P. Miller, H.C. Higgins, J. Lesavre, R. 
Mercier, and J. Skiling. 
Each of them discovered dozens of them.  Fig. 1 
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Coxeter in 1954 found that there are 75 polyhedra in which only 2 faces can 
share one edge, which was proved by the Russian mathematician S. P. Sopov in 
1970.  

John Skilling in 1975 confirmed this proof using computer algorithms. 
My students have been making Uniform Polyhedra models from cardboard in the 
math circle (Fig. 2). This was a difficult task, because it was necessary to find 
meshes of segments of such a polyhedron. In the era of computers and printers, 
it is worth designing UNIFORM POLYHEDRA on such printers. There are even 
more problems with this.  
 

 
Fig. 2 

 
In the last two years, my students have started printing uniform polyhedra. The 
hardest part was designing them in SketchUp. They had to demonstrate good 
spatial imagination and knowledge of spatial geometry. They managed to print a 
set of polyhedra with tetrahedral and cubic octahedral symmetry (Fig. 3).  
 

 
Fig. 3: 

Tetrahemihexahedron 

 
Fig. 4 :

Octahemioctahedron 
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Fig. 5: 

Cubohemioctahedron 

 
Fig. 6: 

Cubocuboctahedron 
 

 
Fig. 7: 

Small rhombihexahedron 

 
Fig. 8: 

Stellated truncated hexahedron 
 

 
Fig. 9: 

Great rhombi hexahedron 

 
Fig. 10: 

Great cubicub octahedron 
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Fig. 11: 

Rhombi cubocthedron 

 
Fig. 12: 

Cubocta truncated cuboctahedron 
 

 
Fig. 13:  

Great truncted cuboctahedron 
 
They also printed several polyhedra of dodecahedral symmetry (Fig. 14). 
 

 
Fig. 14 
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3 How to create uniform polyhedral 

The drawings below illustrate the steps to create Rhombi cubocthedron, an example 
of Uniform Polyhedra 

 
 
 
 
 
We rotate the upper square face by 45⁰ 

and from the intersection of sides with 
sides of this upper face we will get the 
vertices regular octagon. 

 
Fig. 15 

 
 
 
 
We connect the obtained points with 
segments to create lattice on the top face 
of the cube.  
We mark it intersection points of these 
segments. 

 
Fig. 16 

 
 
 
 
 
We draw gride points on the remaining 
ones walls. 

 
Fig. 17 
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Let's create an equilateral triangle and 
two squares with sides of length a. 

Fig. 18 

We create copies of the triangular wall 
for all possible ways. 

Fig. 19 

Similarly to the triangle, we now create 
6 copies of a vertical square (blue). 
Rhombi cubocthedron is ready.

Fig. 20 

4 Conclusion 

The introduction of 3D printers to Polish schools has resulted in significant 
progress in the use of computer technologies. However, printers are not always 
used for teaching purposes. This lecture shows how to properly direct the use of 
3D printers for teaching purposes in mathematics, especially geometry. 
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Abstract. Ruled surfaces are often used in construction and architecture for their 

mathematical simplicity and adaptability. They are efficient in terms of usable 

material and construction. They provide the opportunity to create unique 

architectural elements that are aesthetic and modern. Students of architecture are 

familiar not only with this group of surfaces within the course Descriptive 

geometry II. We suitably supplemented the teaching process with groups of 

printed 3D models. We represented the modeling of lines lying on these surfaces 

using the "pipe" tool in the Rhinoceros environment in combination with the 

graphical editor Grasshopper. 

Keywords: ruled surface, Rhinoceros, Grasshopper, 3D printed model 

Kľúčové slová: priamková plocha, Rhinoceros, Grasshopper, 3D tlačený model 

1 Využitie priamkových plôch v architektúre 

Priamkové plochy sú v stavebníctve a architektúre často využívané pre ich širokú 

variabilitu. Sú efektívne z hľadiska materiálu a pevnosti, či stability konštrukcie. 

Je možné ich jednoducho priemyselne vyrábať postupmi ako liatie alebo presné 

frézovanie. Ľahko sa s nimi pracuje pri návrhoch a modelovaní. Poskytujú 

možnosť vytvárať jedinečné architektonické prvky, ktoré sú čisté, estetické 

a moderné. Jedným zo svetových architektov, ktorý sa nimi inšpiroval pri 

viacerých svojich návrhoch je napr. Santiago Calatrava (Obr.1, [5]). 

Obr. 1:   vľavo - Žel. stanica Reggio Emilia AV, Mediopadana, Taliansko, 

vpravo - Vinárstvo Bodegas Ysios, Laguardia, Španielsko 
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2 Priamkové plochy – výučbové a študijné materiály 

V rámci predmetu Deskriptívna geometria sa študenti na FAD a na SvF STU učia 

o rôznych typoch geometrických plôch. Z nich najčastejšie aplikované v praxi sú 

práve priamkové plochy. Študenti sú oboznámení s ich klasifikáciou a princípom 

generovania. Naučia sa ich tiež zobrazovať v Mongeovej projekcii prepojenej s 

axonometriou (kolmou aj šikmou).   

 

Obr. 2:  Ukážka snímok zo študijných materiálov [2] 

 

Veľmi efektívnym nástrojom pre výučbu sú študijné materiály prístupné 

online vo forme PowerPoint prezentácií  [1], [2], (Obr.2). Sú doplnené 

počítačovými modelmi (*.dwfx) a umožňujú pohľad na objekty pri spojitom 

otáčaní.  
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V nich sú študentom prezentované okrem teoretických znalostí aj konkrétne 

príklady realizovaných diel v oblasti architektúry a dizajnu, kde boli aplikované 

rôzne typy plôch, medzi inými aj priamkové. Tieto príklady slúžia ako inšpirácia 

a učebný nástroj, ktorý ukazuje, ako môžu byť geometrické princípy aplikované 

v reálnom svete. Vyučovací proces sme vhodne doplnili skupinou tlačených 3D 

modelov. 
 

Obr. 3:  Modelovanie konusoidu: Montpeliersky oblúk 

 

3 Modelovanie v Rhinocerose s nadstavbou Grasshopper  

V nadväznosti na predchádzajúce skúsenosti pri tvorbe takýchto modelov [3], 

naďalej testujeme možnosti ich vytvárania pomocou rôznych vhodných 

softvérov. Pre tvorbu digitálnych modelov priamkových plôch sme využili 

softvér Rhinoceros, ktorý poskytuje široké spektrum nástrojov pre 3D 

modelovanie a ktoré môžu byť prispôsobené rôznym potrebám a odvetviam. 

So zámerom zvýrazniť priamky na príslušných plochách sme efektívne 

využili nadstavbu Grasshopper, ktorá je integrovaná do softvéru Rhinoceros ako 

vizuálny programovací nástroj [6]. Namiesto tradičného písania kódu umožňuje 

vytvárať parametrické modely a generatívne dizajny pomocou grafického 

rozhrania. Deje sa tak pomocou spájania a usporiadania rozličných 

komponentov, ktoré reprezentujú rôzne akcie a operácie.  
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Obr. 4:  Modelovanie 1- dielneho hyperboloidu 

 

Grasshopper umožňuje vytvárať parametrické modely, kde môžeme 

interaktívne meniť hodnoty parametrov a vidieť, ako sa správa výsledný model. 

Tento prístup sa ukázal veľmi užitočný pre rýchle experimentovanie s rôznymi 

variantami modelu. 

 

 
Obr. 5:  Modelovanie kružnicového konoidu 

 

Pri tvorbe našich modelov sme na reprezentáciu priamok využili komponent 

pipe (potrubie), kde sme mohli meniť priemery rúrok a ich výplň (Obr. 3, 4, 5). 

Pomocou komponentu divide (delenie) generujúcich elementov sme mohli 

upravovať počet „priamok“ (rúrok).  Taktiež sme mohli meniť napríklad veľkosť 

generujúcich elementov, či ich pohyb v danom smere v priestore (komponenty: 

scale, move, vector). 
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Obr. 6:  Ukážky tlačených 3D modelov priamkových plôch 

 

4 Záver 

Vytlačené 3D modely, ktoré si študenti môžu prakticky ohmatať, veľmi vhodne 

dopĺňajú výučbu tematického celku Priamkové nerozvinuteľné plochy. Takýto 

spôsob 3D tlače priamkových modelov pomocou tlače „množiny priamok“, ktoré 

sú rozlíšiteľné aj na dotyk, je tiež veľmi vhodný napríklad pre zrakovo 

postihnutých študentov. Fotky týchto modelov, a tiež modelov rôznych iných 

typov geometrických plôch sa dajú pozrieť v galérii na stránke [4].  Na Obr. 6 je 

ukážka niekoľkých modelov spolu s názvom zodpovedajúcej plochy, ktorú 

reprezentujú. 
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Abstract. There is a trend in many countries to replace geometric
synthetic proofs with other proofs. We present some geometric proofs
and constructions that can replace other types of proofs. The paper will
be focused on one of the many geometrical proofs of Pappus-Pascal’s
theorem and the construction of an osculating circle of an ellipse.
Keywords: Pappus-Pascal’s theorem, Osculating circle, Geometric 
construction.

1 Introduction
The methods of synthetic geometry are powerful, and using them can
make some proofs simpler than using analytical methods. Historically,
but also nowadays, a lot of proofs of geometric constructions are based on
analytical calculations. But for many analytical proofs it is possible to find
a synthetic geometric proof, which in addition develops logical thinking
[9], [14]. There are even a few authors who sometimes primarily use
geometric proofs that are based only on figures. For example Bogomolny
[3] in his book uses some proofs based on figures, and Akopyar [1] in his
book proofed a geometric statement only with one figure.

In many countries geometry in secondary schools has almost disap-
peared from the curriculum and has been replaced by calculus, and the
same efforts have been made in the Czech Republic [10].

This article describes the most common proof of Pappus-Pascal’s the-
orem which uses homogenous coordinates. In addition, we present two
another geometrical proofs of the Pappus-Passcal’s theorem. One uses a
perspective point of view, and the other uses projectivities.

We will focus not only on proofs of this famous theorem but also on
some geometric constructions, especially the construction of the osculating
circle of an ellipse. This article is inspired by the book The Universe of
Conics: From the ancient Greeks to 21st-century developments [5].

2 Pappus-Pascal’s theorem
Pappus-Pascal’s theorem is one of the fundamental theorems of projective
geometry. The theorem was originally stated by Pappus of Alexandria in
the 4th century in Pappus’s Collection, book VII. [7] as Pappus’s hexagon
theorem. In the 17th century, the French philosopher and mathematician
Blaise Pascal generalized this theorem to the case where points A to F lie
on a conic. Pascal formulated his Pascal’s theorem in 1639 when he was
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16 years old and published it as a broadside titled Essay pour les coniques
[2]. Later, the theorem was generalized into Pappus-Pascal’s theorem.

Theorem 1 (Pappus’s hexagon theorem). Let A,B,C be three points on
one line and D,E, F be three points on another line. If AE intersect BD
at X, AF intersect CD at Y , and BF intersect CE at Z, then the three
points X,Y, Z are collinear.

Theorem 2 (Pascal’s theorem). Let the points A,B,C,D,E, F be given.
Morover suppose that the three intersections X = (AE × BD), Y =
(AF × CD), Z = (BF × CE) exist.
The three points X,Y, Z are collinear if and only if the point A,B,C,D,E, F
lie on the same conic.

Theorem 3 (Pappus-Pascal’s theorem). Let A,B,C and D,E, F be two
non-simultaneous systems. Moreover, suppose that the points X = (AE×
BD), Y = (AF × CD), Z = (BF × CE) exist. Then X,Y, Z are
collinear.

Pappus’s hexagon theorem is stated for lines, Pascal’s theorem is
stated on a conic and Pappus-Pascal’s theorem generalizes the statement
for two non-simultaneous systems. Let us start with the most common
proof of Pappus’s hexagon theorem which is based on homogeneous coor-
dinates [8].

Proof of the Theorem 1. Without loss of generality, let us choose homo-
geneous coordinates such that:

A = (0, 1, 0), D = (0, 0, 1), X = (1, 1, 1), O = (1, 0, 0),

where O is intersection of lines ABC and DEF . We have

OA ∪DX = B = (1, 1, 0), AX ∪OD = E = (1, 0, 1).

Assuming that A ̸= C and D ̸= F we get

C = (1, s, 0), F = (1, 0, t),

where s, t ∈ R. Then the remaining points are

AF ∪ CD = Y = (1, s, t), BF ∪ CE = Z = (1− st, s− st, t− st).

Points X,Y, Z are collinear because Y = Z + (s t) X. The situation is
illustrated in Fig. 1.

Let us introduce the first geometric proof in this paper which is based
on a perspective view.
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D = (0, 0, 1)
E

F

A = (0, 1, 0)

C

B

X = (1, 1, 1)

Y ZO = (1, 0, 0)

Fig. 1: Proof of the Pappus’s hexagon theorem based on homogeneous
coordinates.

Proof of the Theorem 1. Let the lines between the collinear points ABC
and DEF be parallel. In Euclidean space or a perspective, parallel lines
intersect at a line at infinity. Parallel lines in a ground plane π(x, y)
intersect at a point on the horizon line h. In this case, the parallel lines
AE and BF intersect at point X, the parallel lines AD and CF intersect
at point Y , and the parallel lines BD and EC intersect at point Z. All
three intersection points X,Y, Z lie on the horizon h (Fig. 2b) or at the
line at infinity l∞ (Fig. 2a).

(a) Parallelism with the line at
infinity

(b) Perspective point of view

Fig. 2: Proof of the Pappus’s hexagon theorem based on paral-
lelism/perspective

There are several proofs of the Theorem 2. We will present one which
uses collinearity, projectivity and Steiner’s definition. For clarity, we recall
here this definition.
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Definition 1 (Steiner’s definition). Let two pencils of lines at two points
H,H ′ and a projective but not perspective mapping π from H to H ′ be
given. For any line a in pencil H we have π(a) = a′ in pencil H ′. The
intersection points of corresponding lines (a ∩ a′) form a non-degenerate
projective conic section.

Theorem 4. In the projective plane, any projectivity between two differ-
ent ranges h and h′ of points can be created as the product of at most two
perspectivities between ranges.
A projetivity is a perspectivity if, and only if, the point h ∩ h′ is mapped
onto itself.

Using Definition 1 and Theorem 4, we can prove the Pappus-Pascal’s
theorem on the conic.

Proof of the Theorem 2. We prove the two implication separately.
1. There are 6 points on the conic c = {A,B,C,D,E, F}. According to

Steiner’s definition 1, we put H = A and H ′ = C č. The projectivity
α from the pencil H to the pencil H ′ generates conic c. The straight
line h = DE is a perspective from the pencil H, and the straight
line h′ = EF is a perspective from the pencil H ′. According to
the Theorem 4, h and h′ are linked with a projectivity β, which
is perspective, because α(E) = E. The projectivity β sends X =
HB ∩ h to Z = BH ′ ∩ h′ because α(HB) = BH ′ [α(AB) = BC].
Since β is pesrpective on X and Z = β(X) is collinear with Y ,
which is the center of perspectivity β. Let D′ = H ′D ∩ h′ and
F ′ = HF ∩ h. Using α(HD) = H ′D, we obtain D = β(D′) and
β(D′) = D. Similarly, it follows from α(HF ) = H ′F that F = β(F ′)
and β(F ′) = F . Therefore, the center of perspective is the point Y ,
found as Y = DD′ ∩ FF ′ (Fig. 3).

2. Every conic is uniquely given by 5 points A,B,C,D,E. We need
to prove that the point F lies on the same conic c. The chain β of
perspectivities from pencil H to the line h and further to the line h′

with the center in Y and then through the line h′ to the pencil H ′

is a projectivity because it is a finite chain of perspectivities. Then
β is well-defined and HB → BH ′, HD → DH ′ and EB → EH ′

for X,Y, Z are collinear. Therefore, the chain β is a factorization
of the projectivity α and therefore HF → FH ′. Therefore, points
A,B,C,D,E, F lie on the same conic c.

It is also worth mentioning that according to Steiner’s definition 1, it does
not matter which point is labelled as H and H ′.

There exist another geometric proofs of Pappus-Pascal’s theorem. For
example [12] shows a proof based on double-rations and a proof via ori-
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Fig. 3: Geometric proof of collinearity of points X,Y, Z based on projec-
tivities

ented triangle area, [4] uses Tarski’s geometry in proofs and [13] nicely
reinterprets the proof of Pappus-Pascal’s Theorem using determinants.

Geometry is suitable not only for proofs but also for constructions. It
is known from differential geometry that an osculating circle exists at any
point of an ellipse. The center of that osculating circle can be computed
by curvature. In descriptive geometry, osculating circles are drawn only at
the vertices of an ellipse. Usually no general construction of an osculating
circle is given. The following section describes the geometric construction
of the center of the osculating circle.

3 Osculating circle of an ellipse

Description of osculating circles is often based on differential geometry:

”The osculating circle of a curve c at a given point P is the circle k
that has the same tangent as c at point P as well as the same curvature.
Just as the tangent line is the line best approximating a curve at a point
P , the osculating circle is the best circle that approximates the curve at
P .” ([6], pp. 111).

The set of all centers of the osculating circles forms an evolute (Fig. 4),
where the cusps1 are the centers of the osculating circles at the vertices of
the ellipse. There are many constructions of osculating circles at vertices
of the ellipse. In descriptive geometry, an ellipse is often drawn according
to the plotted osculating circles. Let us begin with the construction of an
osculating circle at any point of the ellipse.

1Cusp is a point of a curve, where the moving point must reverse direction. It is a
type of singular point of a curve.
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Fig. 4: Evolute of an ellipse Fig. 5:Construction of an osculating circle

Fig. 6: The Osculating circle o as 
collinear image of c

Fig. 7: Hyperosculating circle

Let c be a given ellipse, C a center and a, b the axes of this ellipse.
Moreover, let P be an arbitrary point of the ellipse c which is not equal
to some of it’s vertices. We construct tangent t to the conic c at the point
P (see Fig. 5). We continues as follows:

1. We find a point P ′ and a tangent t′ axisymmetric along one of the
axis of the ellipse (WLOG a).

2. We draw a straight line r parallel to the tangent line t′ through the
point P

3. The straight line r intersects conic c at points P and R. (Point R
also lies on the osculating circle)

4. We find a line nP normal to the tangent t at the point P (line nP

is perpendicular to the line t at the point P ).

5. We draw a line s perpendicular to the line r at a point of intersection
of lines CP ′ and r.

6. Then the lines s and nP intersect at the center O of osculating circle
o of the ellipse c at the point P .

The correctness of this construction could be verified using differential
calculus. In this paper we prefer a verification using projective geometry.
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Firstly, we need to show that the center O of the osculating circle
o lies on the normal line np. This follows from the basic knowledge of
differential geometry.

Secondly, the osculating circle o and the ellipse c osculate each other
at the common point P , because there exists perspective collineation with
the center at P and the axis t. This follows from the fact that the straight
line r of an elation passes through the point P . Finally, we need to prove
that the tangents of the ellipse c parallel to the straight line r are mapped
to parallel tangents of the circle o. Elation is a special case of axial
affinity, where the direction of the affinity is parallel to the axis of the
elation. Therefore, we can conclude from Fig. 6 that tangents of the
ellipse c parallel to straight line r are mapped to parallel tangents of the
circle o. Therefore, we can say that o is the osculating circle of the ellipse
c at point the P .

Now, we will address a previously omitted case of the osculating circle
in the vertices. In the Fig. 7, there is the given ellipse c and the searched
circle o. The tangential line t through the vertex P is identical to the line
r from the previous construction. Therefore, an invariant point on the
tangential line t has to exist. For this reason, a collinearity centered at
the invariant point mapps the ellipse c to the circle o.

4 Conclusion

In this article, we have demonstrated the power of geometry. We showed
two proofs of the Pappus-Pascal’s theorem different from the proof using
homogeneous coordinates. Our proofs are based on a perspectivity and a
projectivity. In the second part of this article, we showed the construction
of an osculating circle of an ellipse including geometric clarification instead
of using the standart method of computation via curvature. Another ex-
ample of how to replace arithmetic calculation by geometric constructions
is given in article [11], where the author finds roots of a quadratic equation
graphically.
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Abstract. Graph theory is a valuable mathematical modelling tool with a wide 

variety of geometric connections. It deserves more attention in all types of 

education. Starting with Euler paths, graph colouring, and Hamilton icosian game 

pupils can learn the terms and methods important for future programming. This 

concept can be very useful in real-life applications, such as how to solve 

transportation problems. In the contribution, the Hamiltonian paths and Eulerian 

cycles are presented together with their connection to the vehicle routing 

problems 

Keywords: Euler path, Chinese postman problem  

1 Introduction 

Graphs can be used to model a wide variety of real-world problems, including 

social networks, transportation, and communication networks.  

Graphs are highly visual, making it easy to communicate complex data and 

relationships clearly and concisely. This makes them useful for presentations, 

reports, and data analysis. It gives the perfect comprehensible tool that helps in 

all phases of mathematical modeling: 

• Understanding of the problem. 

• Simplification and structuring of the problem. 

• Mathematization of the real problem. 

• Math work using the right tools and skills. 

• Analysis of the results. 

• Validation of the results in the environment. 

2 Graph theory in education 

Authors such as [1, 2] consider the use of graph theory as a conceptual tool in 

the construction of models; problem-solving enables the acquisition and 

development of skills such as intuition, exploration, discovery, and the design of 

hypotheses, which contribute to the development of logical thinking, spatial 

vision, and abstract reasoning in students. 

Many problems related to the graph theory could be applied in everyday 

situations and non-academic contexts, providing a practical application of the 

mathematical concepts worked on in the classroom. The classic application is in 

maps and plans, where vertices represent places and edges present roads. This is 

a very helpful metaphor used to think about graphs (Fig. 1). 
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Fig. 1: The Shortest path in GeoGebra 

Educational games and puzzles (Fig. 2) could offer introduction to the 

formulation and solution of the Traveling Salesmen Problem (TSP) and other 

routing problems because only a relatively small number of routes are feasible, 

thereby reducing the real situation to a manageable size for beginning students 

[2]. 

Further processing includes translating notations (natural language 

description, drawing, list, matrix) and systematic traversing. The point is to make 

pupils understand a few key points which will make their approach systematic 

and which will enable them reinvent the algorithm if needed [3]. 

 

     

Fig. 2: Left – Graph izomorphism, learning website umimeto.org,  

Right – Friedman, E: Hamiltonian game 
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Excellence of the graph theory topic in education on all types of schools is 

given by following features: 

• The transition from pure mathematics to the applied mathematics that has 

meaning to students. 

• The use and the role of digital tools in the teaching of mathematical 

modelling. 

• Geometric representation and application in purely geometric problems, 

such as tessellation colouring and classification of polyhedral. 

3 Eulerian Path 

The most famous problem of Graph theory is the Eulerian path traversing each 

edge of the graph exactly once. Eulerian paths and cycles are sometimes used as 

puzzles for small children but historically they played a remarkable role. The 

year 1736, when Euler solved the problem of seven bridges of Königsberg, is 

taken to mark the birth of graph theory.  

Leonard Euler (1707–1783) proved that a necessary condition for the 

existence of Eulerian circuits is that all vertices in the graph have an even degree 

and stated without proof that connected graphs with all vertices of even degree 

have an Eulerian circuit [6]. 

 

 

Fig. 3: The problem of the 7 bridges of Königsberg (L. Euler to L.G. Ehler, 

March 9th, 1736) and modern representation of graphs. 

Euler felt this problem was trivial, stating in a 1736 letter to Carl Leonhard 

Gottlieb Ehler, mayor of Danzig (now Gdansk in Poland, 120 km west of 

Königsberg), who asked him for a solution to the problem [9, 11]. 

Thus, you see, most noble Sir, how this type of solution bears little relationship 

to mathematics…. 
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 …In the meantime, most noble Sir, you have assigned this question to the 

geometry of position, but I am ignorant as to what this new discipline involves, 

and as to which types of problem Leibniz expected to see expressed in this way 

… 

Nevertheless, after ten days L. Euler wrote a letter to G. Marinoni, an 

astronomer in the court of Emperor Leopold I: [9] 

This question is so banal, but seemed to me worthy of attention in that geometry, 

nor algebra, nor even the art of counting was sufficient to solve it. In view of this, 

it occurred to me to wonder whether it belonged to the geometry of position 

[Geometrian Situs], which Leibniz had once so much longed for… 

In the same year, Euler wrote up his solution in his celebrated paper in the 

Commentarii Academiae Scientiarum Imperialis Petropolitanae under the title 

“Solutio problematis ad geometriam situs pertinentis”[6] together with a diagram 

of the Königsberg bridges (background in Fig. 4). Let us note that Euler didn’t 

draw the standard schematic graph with red vertices and straight edges in Fig. 4; 

graphs of this kind didn’t make their first appearance until the second half of the 

nineteenth century. 

It is not hard to invent some strategy for finding an Euler circuit (a closed 

walk that covers every edge once) on the small graph. Some naive algorithms are 

useful for real applications, for example, Fleury’s algorithm is implemented in 

the Python graph library Network X [15]. Fleury’s method is simple: at each step, 

it chooses the next edge in the path to be one whose deletion would not 

disconnect the graph, unless there is no such edge, in which case it picks the 

remaining edge left at the current vertex. Due to the bridge-finding algorithm, 

Fleury’s path has quadratic complexity in the number of edges, i.e. O(|E|2). 

Construction of the Eulerian path is an important part of heuristic algorithms 

of NP-hard problems, such as variations on the Traveling Salesman Problem 

(TSP) or Chinese Postmen Problem (CPP) [3, 10].  

4 The Chinese postman problem 

The Traveling Salesman and Routing Problems are integral parts of bachelor and 

master programs related to Operations Research/Management Science. This is 

due to their relevance in both practical applications and research. The Routing 

Problems lead to many other related areas of Operation Research, including 

integer programming, approximation algorithms, Lagrangean relaxation, and 

various heuristic approaches (such as greedy and k-opt). 

 For students, it is essential to gain a deep understanding of the problems’ 

inherent complexity [13]. The combinatorial complexity of these problems 

demands a practical and comprehensible visualization for teaching purposes. 

Without any digital tools, only very small instances can be analysed in the 

classroom. These are typically too small to give students the right impression of 

their computational complexity [3].  
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The Chinese postman problem or Routing Problem is to find the shortest 

closed path that visits every edge of a graph at least once. When the graph has an 

Eulerian circuit, that circuit is an optimal solution. Otherwise, the optimization 

problem is to find the smallest number of graph edges to duplicate so that the 

resulting multigraph (graph with multiple parallel edges) does have an Eulerian 

circuit. The exact algorithm for an undirected graph consists of three parts: 

 Find all nodes with odd degree 

 Add edges to the graph such that all nodes of odd degree are made even. 

Added edges must be duplicates from the original graph. 

 Given a starting point, find the Eulerian tour over the augmented dataset.  

As we can conclude from the above-mentioned method, the CPP can be solved 

in polynomial time [3], but in real applications, we hardly get the basic CPP. In 

contrast to the solutions for basic Chinese Postman Problem, some variants are 

NP-complete or NP-hard. 

5 Conclusion 

The objective of proposing a problem based on a game was to bring mathematics 

closer to students’ hobbies, which helped to attract their attention, as observed 

during the development of the problem’s resolution in class.  

Educational targets combine both the practical usability of graphs and 

theoretical knowledge. These two shall strengthen each other synergistically. 

This enhances students’ lives, providing them with tools to solve problems and 

making them understand the usefulness of mathematical modeling at the same 

time. On a higher level, students should be aware of some metaknowledge and 

heuristics. Influenced by all the examples in graph theory, students learned to 

work systematically with presentable structure, virtually whenever it is possible.  

The Chinese postman problem and the Traveling Salesman Problem are 

perhaps the most studied discrete optimization problems. Their popularity is 

because they are easy to formulate, difficult to solve, and have a large number of 

applications with several variations and generalizations. The strategy for solving 

the real application is sometimes analogous to the one used in the classroom. 

Once the students are familiar with the basics of mathematical modeling and 

graph approach, they can implement their own algorithm on real data.  
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Department of Mathematics & NTIS, Faculty of Applied Sciences
University of West Bohemia, Univerzitńı 8, 301 00 Plzeň, Czech Republic
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several recent papers where this idea has been used effectively.

Keywords: Algebraic curves and surfaces, symmetries, groups.

1 Introduction
Symmetry detection is a classical challenge that finds applications in var-
ious domains, including geometry, computer graphics, computer vision,
geometric modelling, and pattern recognition. This research field has wit-
nessed a significant surge in interest, exemplified by a growing body of
literature on the subject.

Mathematicians primarily focus on uncovering the global, exact sym-
metries of objects that are described implicitly or through rational
parametrizations. Conversely, the task of identifying symmetries in ob-
jects represented discretely as point sets is a vital concern within the realm
of computer science. Remarkably, the numerous algorithms designed to
compute symmetries often share a unifying pattern that greatly simpli-
fies the symmetry identification process by treating it as an alternative
problem. In the following text, we discuss this technique in more detail.

2 Symmetries of algebraic objects
Roughly speaking, algebraic object is an object which can be given by
a collection of polynomial equations. Among typical representatives oc-
curring in applied geometry we can include, for instance, the following
particular examples:

1. algebraic curves and surfaces – these are the solutions of polynomial
equations (e.g. the unit circle x2 + y2 − 1 = 0),

2. rationally parametrized curves and surfaces – curves and surfaces
in parametric form given by rational functions (e.g. the unit circle[
2t/(1 + t2), (1− t2)/(1 + t2)

]
),

3. finite sets of points,

4. algebraic vector fields – vector fields whose coordinate representa-
tions are given by rational functions.
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In order to define a notion of a symmetry of an object we need to spec-
ify a group of its admissible transformations first. We always consider a
object contained in some ambient space together with its group of auto-
morphisms, i.e., we have the pairs (X,G), where X is a space and G the
group of automorphisms X → X. The typical examples are the projec-
tive space with the group of projective transformations (Pn,PGLn+1), the
Euclidean space with its isometries (En, En), the sphere with the Möbius
transformations (S2,Mob), etc.

For φ ∈ G and Y ⊂ X we write φ(Y ) = {φ(y) | y ∈ Y }. The group
GY = {φ ∈ G | φ(Y ) = Y } will be called the group of symmetries of Y .

Recall that a group G is algebraic if it is at the same time an algebraic
variety and two maps given by (φ1, φ2) 7→ φ1φ2 and φ 7→ φ−1 are regular
maps, see [8] for more details.

Proposition 1. If both Y ⊂ X and G are algebraic then so is GY .
The above observation has two immediate consequences. First, a pos-

sible group of symmetries of an algebraic objective must be restricted.
For example, an algebraic object Y ⊂ E2 cannot have a frieze group or
a wallpaper group as its group of symmetries. This is obvious as these
groups have infinitely many connected components, which is impossible
for an algebraic group. And second, GY can be given by a collection of
polynomial equations and thus it may be directly found.

Example 2. Consider the ellipse Y = Z(x2 + 2y2 − 1) ⊂ E2 in the
Euclidean plane, i.e., (X,G) = (E2, E2). Any isometry φ ∈ E2 can be
given as

φ ∈ E2 : φ(x, y) =

(
a1 a2
∓a2 ±a1

)(
x
y

)
+

(
b1
b2

)
, (1)

where ai, bi ∈ R and a21 + a22 = 1. φ−1 and thus φ as well is a symmetry
of Y if and only if f ◦ φ = λf for some nonzero λ. Using (1) this can be
rewritten as

b21 + 2b22 + λ− 1 = 0,

2a2b1 ± 4a1b2 = 0,

2a21 + a22 − 2λ = 0,

2a1b1 ∓ 4a2b2 = 0,

−2a1a2 = 0,

a21 + 2a22 − λ = 0,

a21 + a22 − 1 = 0,

which is a system of polynomial equations with unknowns a1, a2, b1, b2.
This system has exactly four solutions which yield the four obvious sym-
metries of the original ellipse:

φ(x, y) =

(
±1 0
0 ±1

)(
x
y

)
and φ(x, y) =

(
±1 0
0 ∓1

)(
x
y

)
. (2)

192 Vr²ek Jan, Lávi£ka Miroslav



Finally, any geometric construction in (X,G) is said to be G-invariant
if it commutes with any element of G. For example, the construction of
a convex hull is En-invariant because it does not matter whether we first
apply an isometry to a set and then compute the convex hull or vice versa.

Lemma 3. Let Σ be a G-invariant construction. Then for all admissible
X it holds

GX ⊂ Gσ(X), (3)

i.e., G-invariant constructions preserve the symmetries of the set w.r.t.
the group G.

Proof. Let Y = Σ(X) and let φ ∈ GX then

φ(Y ) = φ(Σ(X)) = Σ(φ(X)) = Σ(X) = Y.

3 Application examples

Symmetries of planar curves. By a planar curve we understand a
set defined by a single polynomial equation f(x, y) = 0, where f is a real

polynomial in x and y. Consider the Laplace operator ∆f = ∂2f
∂x2 + ∂2f

∂y2 .
Replacing the curve f = 0 by ∆f = 0 is E2-invariant construction, which
means that all the symmetries of f = 0 are the symmetries of ∆f = 0
as well. The resulting chain of Laplace operators terminates in so called
harmonic curve whose symmetries are easy to compute. For more details
see [1]. This approach was also used for implicit surfaces in [2].

Projective equivalences of rational curves. Projective equivalences
of rational curves were studied in [4], where the computation of projective
equivalences was replaced by the computation of Möbius transformations
of a finite subset in one-dimensional projective space. This may be seen
as a generalization of the G-invariant constructions, where the domain
and the target space of the construction are not the same. This approach
also allowed to compute affine equivalences between implicit curves or
projective equivalences between rational ruled surfaces.

Symmetries of point clouds. The approach used in [5, 7] decom-
poses the point cloud into simpler shapes whose symmetries can be found
more easily. The decomposition is based on the discrete Laplace opera-
tor, which analogously to continuous case is En-invariant. In 2D situation
the problem is closely related to the so called trigonometric curves and
their symmetries – see [6]. Note that this approach can be used for the
computation of approximate symmetries as well.
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Symmetries of vector fields. An algebraic planar vector field is a field
V (x, y) = (v1(x, y), v2(x, y), where vi are real polynomials. Its symmetries
can be found among the symmetries of a suitable finite subset of E2, which
in addition is a collection of the roots of the univariate complex polynomial

σV (z) = resw

(
v1

(
z + w

2
,
z − w

2i

)
, v2

(
z + w

2
,
z − w

2i

))
.

This is true as the map V 7→ σV is E2-invariant construction. Since the
symmetries of roots of the univariate polynomial can be found without
knowledge of the roots, this significantly simplifies the problem, see [3].

4 Conclusion
In this short note we discussed a unifying pattern identified in several
algorithms devoted to computation of symmetries of algebraic objects.
The method was presented on particular examples with a number of ref-
erences to recent papers where the idea has been thoroughly studied and
then efficiently applied.
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Abstract. The elementary geometric Miquel theorem concerns a triangle ABC 

and points R,S,T on its sides, and it states that the circles Օ𝐴𝑅𝑇, Օ𝐵𝑅𝑆, Օ𝐶𝑆𝑇 

have a common point M, the Miquel point to these givens. To a given point M 

there exists a one-parameter set of point triplets R,S.T. Choosing R,S,T in special 

ways one receives the so-called “Beermat theorem”, the Brocard theorems, and 

the Simson-Wallace theorem as special cases of Miquel’s theorem. Remaining 

within Euclidean geometry we deal with 3D modifications of these theorems. It 

turns out that, while the Miquel theorem can be generalized to n-simplices, 3D 

versions of the Brocard theorems need some modifications. The 3D Steiner-

Simson-Wallace theorem based on Miquel’s theorem is different from the 

standard generalization (see e.g. [4]), but it connects properties of the 2D case 

with Brocard’s modifications.  

Keywords: Brocard points, Miquel's theorem, three-circle-theorem  

 

1 Introduction 

In 1838 Auguste Miquel (* ~1816, † 1851) published a theorem (c.f. [3] and 

[6]), which later on is called after him and got the meaning of an important 

axiom in circle geometries, (see e.g. [1]). The elementary geometric version of 

Miquel’s theorem concerns a triangle Δ𝐴𝐵𝐶 and points 𝑅, 𝑆, 𝑇 on its sides, and 

it states that the circles Օ𝐴𝑅𝑇, Օ𝐵𝑅𝑆, Օ𝐶𝑆𝑇 have a common point 𝑀, the 

“Miquel point” to these givens, see Fig.1. 

 

 

Fig. 1:  Elementary geometric version of Miquel’s theorem. 
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For 𝑀 there exists a two-parametric set of possibilities, such that there is a 

one-parameter set of triplets 𝑅, 𝑆, 𝑇 to a given point 𝑀. The consequences of 

this fact will be treated in Chapter 2. 

Obviously, when choosing 𝑅, 𝑆, 𝑇 dependent (e.g. collinear) resp. at a special 

position (e.g. infinitesimally close to the vertices 𝐴, 𝐵, 𝐶), the corresponding 

Miquel point 𝑀 will get special meanings and connect Miquel’s theorem to e.g. 

that of Steiner and Simson-Wallace resp. to Brocard’s theorems. It shows that 

even the well-known “beer mat theorem” resp. it's dual, namely the “three 

circle theorem”, is a relative of Miquel’s theorem. We dedicate Chapter 3 to 

these 2-dimensional cases, even though the topic is rather well-known. Finally, 

in Chapter 4, we generalize these theorems to the Euclidean 3-space. 

 

2 “Miquel stars” 

To an arbitrarily chosen point M we construct the feet 𝑅, 𝑆, 𝑇  on the sides of 

Δ𝐴𝐵𝐶 . Therewith, as the lines  𝑅𝑀, 𝑆𝑀, 𝑇𝑀  are parallel to the altitudes of 

Δ𝐴𝐵𝐶, they include angles ∠𝑅𝑀𝑇 = 𝜋 − 𝛼, ∠𝑅𝑀𝑆 = 𝜋 − 𝛽, ∠𝑆𝑀𝑇 = 𝜋 − 𝛾 , 
see Fig.2. Choosing another point 𝑅’ ∈ 𝐴𝐵 leads to Miquel circles Օ𝐴𝑅′𝑇𝑀, 

Օ𝐵𝑅′𝑀, which intersect 𝐵𝐶 in 𝑆’ and 𝐶𝐴 in 𝑇’, see Fig.2.  

 

 

Fig. 2:  The triplets (𝑅, 𝑆, 𝑇), (𝑅′, 𝑆′, 𝑇′) belonging to a 

fixed Miquel point 𝑀 define congruent „Miquel stars“. 

 

For quadrangles inscribed in these circles opposite angles must sum up to 𝜋, 

and therefore ∠𝑅𝑀𝑅′ = ∠𝑆𝑀𝑆′ = ∠𝑇𝑀𝑇′ . In the following we call the triplet 

of half-lines (𝑀𝑅’, 𝑀𝑆’, 𝑀𝑇’) a “Miquel star” to point 𝑀. Therewith we can 

state 
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Theorem 1: If 𝑅’ runs through 𝐴𝐵, then the Miquel star rotates about 𝑀. The 

Miquel stars to different Miquel points are congruent. 

 

Furthermore, we can state:  

If 𝑅′ runs through 𝐴𝐵, the sides of Δ𝑅′𝑆′𝑇′ envelop three parabolas with 

common focus 𝑀. Their common cords form a complete quadrangle consisting 

of the incenter 𝐼 and the excenters of Δ𝑅"𝑆"𝑇", see Fig. 3. (𝑅", 𝑆", 𝑇" are the 

images of reflections of 𝑀 at sides of ΔABC, and Δ𝑅"𝑆"𝑇" consists of the 

directrix lines of the above mentioned parabolas.) 

 

 
 

Fig. 3:  The sides of Δ𝑅′𝑆′𝑇′ envelop three parabolas with common focus 𝑀. Their 

common cords form a complete quadrangle. 

 

3 Miquel’s theorem and its relatives 

When we choose 𝑅, 𝑆, 𝑇 infinitely close to 𝐴, 𝐵, 𝐶,  - there are two possibilities 

for that, due to the two orientations of Δ𝐴𝐵𝐶 -, the Miquel circles will touch the 

sides of Δ𝐴𝐵𝐶 at its vertices and become “Brocard circles”, see Fig. 4. The 

Miquel points are then called  “first” and “second Brocard point” 𝐵1, 𝐵2, see 

e.g. [2]. For these points the Miquel stars pass through all three vertices of 

Δ𝐴𝐵𝐶, Fig. 5. 

 

          
   

Fig. 4:  Brocard circles and Brocard points of a triangle. 
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Fig. 5:  Miquel-stars through the three vertices of a triangle. 

 

As a second special case we mention collinearly chosen points 𝑅, 𝑆, 𝑇. In 

other words, 𝑅, 𝑆, 𝑇 fulfil the “Menelaos condition”. Now the triangle Δ𝑅𝑆𝑇 is 

degenerated and the, in general, three parabolas (/Fig. 3) coincide in a single 

one with the Miguel point 𝑀 as focus, see Fig. 6.  J. Steiner interprets line 𝑅𝑆 

as the fourth line of a quadrilateral and states that the four circumcircles of its 

four partial triangles intersect in one point, namely the focus of the single 

parabola 𝑝 touching all four lines. In the sense of Miquel all Miquel triangles 

Δ𝑅′𝑆′𝑇 must be degenerated and 𝑀 is a point of the circumcircle of Δ𝐴𝐵𝐶. The 

pedal points of 𝑀 at the sides of Δ𝐴𝐵𝐶 are therefore collinear with the vertex 

tangent of parabola 𝑝, which means that the theorem of Simson-Wallace 

becomes an obvious consequence. 

 

Fig. 6:  Collinearly chosen points 𝑅, 𝑆, 𝑇 lead to the theorems  

of Steiner and Simson-Wallace. 

 

If 𝑅, 𝑆, 𝑇 fulfill the “Ceva condition”, (i.e. 𝑅𝐶, 𝑆𝐴, and 𝑇𝐵 meet at a point 

𝑃), what is somehow dual to the former case, we get another remarkable case. 

Hereby a mapping of 𝑃 to the Miquel point 𝑀 is induced, which is algebraic of 

5th degree.   
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4 3D-generalisations of Miquel’s theorem. 

We start with generalizing the classical theorem of Miquel: Six points 

𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉 on the edges of a tetrahedron Σ = 𝐴𝐵𝐶𝐷 define Miquel points 

𝑀𝑖
2 within the four face planes of  Σ, as well as four “Miquel spheres”, which 

intersect in a Miquel point 𝑀3, see Fig. 7. A proof for that can be found e.g. in 

[5, p.360]. There is a 6-parametric set of octahedra 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉 , while there 

is only a 3-parametric set of possibilities for 𝑀3, each chosen point 𝑀3 is 

reached by a 3-parameter set of 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉. For example, if 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉 

are chosen as pedal points of 𝑀3on the edges of 𝐴𝐵𝐶𝐷, then 𝑀𝑖
2 are the pedal 

points of 𝑀3 in the faces of Σ and give rise to a “Miquel-star” with half-lines 

parallel to the (in general skew) altitudes of Σ. Ther Miquel spheres are then the 

Thales spheres over the diameters [𝑀3𝐴], … , [𝑀3𝐷]. 
 

 

Fig. 7:  Miquel point 𝑀3 and Miquel-star of a tetrahedron. 

Therewith, based on Thales-hyperspheres, one can conjecture: 

Given an n-simplex 𝛴 and on each of its edges a point 𝑀𝑖
1, then the n+1 

hyperspheres through vertices and neighboring points 𝑀𝑖
1 have a common 

point 𝑀𝑛, the “Miquel point” to these givens. 

 

Obviously holds 

Theorem 2: If 𝑀𝑖
1are chosen as the midpoints of the edges of an 𝑛-simplex 𝛴, 

then the Miquel point 𝑀𝑛 becomes the circumcenter of 𝛴. 

 

We add a Möbius-geometric interpretation: The 𝑛D-version of the theorem 

of Miquel is a proposition concerning configurations and incidences in Möbius 

hypersphere spaces. For example, for dimΠ = 1, 2, and 3  these configurations 

are (34, 43), (64, 83), and (88, 164). 
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To look for a 3D-version of the theorems of Brocard we can choose the  

6-tuplet 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉 in limit positions such that the Miquel spheres become 

“Brocard spheres” passing through a vertex and touching the opposite face in 

another vertex. This is only possible for the three vertices of a face of  Σ, see 

Fig. 8.  The possible limit positions of 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉 for a 3D-version of the 

theorems of Brocard, when related to Miquel’s theorem. The 4th Miquel sphere 

then becomes the circumsphere of Σ, and, indeed, the four spheres have 

a common point 𝑀3 =: 𝐵𝑗, see Fig. 9. 

 

Fig. 8:  Sketch of the possible limit positions of 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉 for a  

3D-version of the theorems of Brocard, if related to Miquel’s theorem. 

 

Theorem 3: The circumsphere of the tetrahedron Σ contains 8 outer Brocard 

points, which stem from triplets of Brocard spheres. To each face Δ𝑗 of Σ there 

are two triplets of Brocard spheres. The 2nd intersections of these triplets are the 

Brocard points 𝐵𝑖
2 = 𝑀𝑗

2, (𝑖 = 1,2; 𝑗 = 1, … ,4) to this face triangle Δ𝑗 . 

 

Adding the faces of Σ as Möbius spheres through the absolute point of the 

Möbius space, we get the (88, 164)-configuration of Möbius spheres. Finally, 

the “Brocard-Miquel limit case” can also be seen as “Steiner-Wallace-Simson 

case”, as the sextuplet (𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉) coincide with the three vertices of 

a face Δ𝑗 , and therefore is coplanar. 

Independent of a Miquel-related interpretation we can consider the 12 

Brocard spheres to a tetrahedron Σ, and especially their midpoints, see Fig. 9. 

While in the 2D-case the 6 midpoints of Brocard circles form two congruent 

triangles, which are similar to the start triangle Δ𝐴𝐵𝐶, there seems to be 

nothing known about the 3D-case. One might expect that the 12 points can be 

ordered as vertices of a pair of octahedra, but also three tetrahedra could be 

possible. For a regular tetrahedron Σ there are only 6 Brocard spheres. Their 

radii are equal to that of the circumsphere Σ, namely 𝑟 = √6/4; (the edge length 

of Σ is 1). Their centers form a regular octahedron with edge length 1. Pairs of 

Brocard spheres have planes of intersections through the circumcentre 𝑍 of Σ. 

All Brocard spheres touch spheres concentric with 𝑍 and radii  𝑟1,2 = √2(2 ±

√3)/4. 
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Fig. 9:  A symbolic depiction of some centres of Brocard spheres  

to a tetrahedron. 

 

We get another special case of 3D-Miquel’s theorem case, when choosing a 

coplanar sextuplet (𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉) ∈ 𝜀. Therewith we get a “3D-Desargues 

figure” Σ ∪ 𝜀, see Fig. 10. In generalising the theorems of Steiner and Wallace-

Simson for quadrilaterals and triangles we get 

 

Theorem 4: The Miquel point 𝑀3 to coplanar chosen points 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉 ∈ 𝜀 

belongs to the circumsphere of the tetrahedron Σ. In the sense of Steiner, 𝑀3 is 

the intersection point of the 5 circumspheres of the partial tetrahedra of Σ ∈ 𝜀. 

 
Fig. 10:  Coplanar points 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉 result in a Miquel point 𝑀3  

belonging to 5 circumspheres of partial tetrahedra.  

 

Note that this generalization is different from the one due to P. Pech (see [4]). 

The pedal points of 𝑀3 are not coplanar! There is still an open question, 

whether the three-parametric set of sextuplets (𝑃′, … , 𝑉′) consists of spheres 

and planes only. 

5 Conclusion 

The attempts to generalize important elementary geometric statements at least 

to the three-dimensional Euclidean space can perhaps open up research on 
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generalizations to higher dimensions and to some Cayley-Klein geometries, 

too. But, as mentioned in Chapter 4, there are still many open questions already 

in the classical Euclidean 3-space. For example, in this paper, we refrain from 

dealing with the “three congruent circles theorem” and its reverse, the 

“beermat-theorem”, which also are relatives of Miquel’s theorem.  A first 

attempt for a 3D-version of these theorems could be based on equifaced 

tetrahedra Σ. Such a tetrahedron has no Euler line and thus generalizes the 
equilateral triangle.  

We know that the topic treated in this paper is not  mainstream science, 
but it might make curious about “Advanced Elementary Geometry” and 
this could perhaps justify its treatment.  
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Abstract. K. G. Ch. von Staudt described simple geometric construc-
tions of arithmetic operations in his Beiträge zur Geometrie der Lage.
We discuss a special case of a parabola in particular. Elementary and
derived constructions of addition and multiplication are presented syn-
thetically and analytically, and straightforward algebraic observations
are interconnected with the deeper geometric properties of a parabola.
We focus on constructions of arithmetic, geometric, and harmonic
mean. Von Staudt’s constructions are also discussed in relation to the
Matiyasevich-Stechkin parabola and Möbius’ parabolic nomogram.

Keywords: geometric algebra, von Staudt’s constructions, nomogram,
parabola

1 Introduction
Transferring arithmetic problems into geometry can lead to unexpectedly
strong mathematical connections. In this paper, we discuss a representa-
tion of (extended) real numbers and operations with them on a parabola.
The use of graphical tables or diagrams for solving equations is well de-
scribed in nomography (for further reading, see [1],[7]). For an example,
see a simple multiplication abacue in Fig. 1 from d’Ocagne’s comprehen-
sive work [4].

An interesting result on a graph of a parabola was described by Matiya-
sevich and Stechkin (see [2]). Lines connecting integer values on both sides
of a parabola (for x ≤ −2 and x ≥ 2) intersect the y-axis in the com-
posed numbers, and consequently, it creates a sieve of prime numbers.
A parabolic abacue was also studied much earlier by Möbius (Figure 2,
[3]). We will join the idea of a geometric calculator on a parabola with
von Staudt’s constructions on conics in projective geometry ([6, pp. 166–
176],[9, pp. 20–23]).

2 Operations on a parabola
The following lines demonstrate a special case of von Staudt’s construc-
tions of addition and multiplication. Let us have a parabola

y = x2 (1)

in the Cartesian coordinate system. We will denote the points on the
parabola by their x-coordinates (e.g., 2[2, 4], A[a, a2]. . . ). In other words,
we map the real x-axis to a parabola in the stereographic projection from
the improper point of the parabola.
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Fig. 1: A multiplication table by d’Ocagne. Assume, for example, the
lines x = 5, y = 2. Their intersection lies on the hyperbola xy = 10.

Source: gallica.bnf.fr / Bibliothèque nationale de France

2.1 Addition and an arithmetic mean

Let us have two points A and B on the parabola (Figure 3, left). From
von Staudt’s construction, the sum A+B will be created by joining AB.
Then, join the intersection of AB with the tangent in the improper point
∞ and the point 0 (the parallel with AB through 0). The intersection
of the parabola with the parallel is the point A + B. We may find the
coordinates of (A + B) to verify if such construction is correct. The
equation of the line AB is

y = (a+ b)x− ab. (2)

Then, the parallel through 0 is

y = (a+ b)x. (3)
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Fig. 2: Möbius’ graphical multiplication on a parabola
Source: gallica.bnf.fr / Bibliothèque nationale de France

The intersection with the parabola (Equation 1) after the substitution
into (Equation 3) has the coordinates x = a+ b, y = (a+ b)2.

A straightforward consequence of the previous construction is that
each secant of the parabola parallel to AB intersects the parabola in the
points with the same sum A + B (Figure 3, right). In other words, the
direction of the line through A,B is the value of their sum.

Next, let us find the arithmetic mean of two values. The arithmetic
mean of A and B is A+B

2 . Since A+B = A+B
2 + A+B

2 , the line intersecting

the parabola in a double point A+B
2 is its tangent in the direction A+B.
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Fig. 3: (left) A construction of the sum of −2 and 4. (right) The
intersections of a parabola with each of the parallel lines have the same

sum. The point of tangency is the arithmetic mean.

Considering the x-coordinates of points and their arithmetic mean, we
can further observe a well-known property of a parabola that midpoints
of chords of a parabola with the same sum lie on a line parallel with its
axis. This line intersects the parabola in the tangent point of the tangent
in the direction of the chords.

2.2 Multiplication and a geometric mean

We will follow with a construction of a product. Again, let us have A,B
on the parabola (Figure 4, left), and we will construct the product A ·
B according to von Staudt’s constructions. First, find the intersection
of A,B with the parabola’s axis. Next, construct a line through the
intersection and 1. The second point in which it intersects the parabola is
A ·B. To verify the construction, recall the equation of AB (Equation 2.
The axis of the parabola is the y-axis of the coordinate system. Hence
the intersection of AB and y has coordinates x = 0, y = −a · b. Now,

206 Zamboj Michal



Fig. 4: (left) A construction of the product of −2 and 3. (right) The
intersections of a parabola with each of the lines in the bundle have the

same product.

observe that this holds for any choice of A,B (even zero and infinity).
Therefore, each secant of a parabola through the point [0,−a ·b] intersects
the parabola in the points with the product a · b of their x-coordinates
(Figure 4, right). And so, it also holds for the points 1[1, 1] and A ·B[a ·
b, (a · b)2].

Observe that points on the y-axis are for integers without −1, 0, 1
composed numbers, and so they create a sieve of prime numbers (the
Matiyasevich-Stechkin property) (see also in [5, pp. 181–183], [8]).

Further on, let us find the geometric mean of two points (Figure 5,
left). First, assume A and B such that A · B ≥ 0. In such cases, the
intersection of AB with the y-axis lies in the negative direction. We are
looking for the value

√
A ·B. See that ±

√
A ·B · ±

√
A ·B = A · B,

and so (similarly to the arithmetic mean), one tangent through [0,−a · b]
touches the parabola in the double point

√
A ·B and the second tangent

in −
√
A ·B. Observe that for A · B < 0, the intersection with the y-axis

is an inner point of the parabola, so it has no real tangents.1

1However, the extension for imaginary elements is possible.
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2.3 Harmonic mean

Fig. 5: (left) A construction of the geometric mean of −2 and −3.
(right) A construction of the harmonic mean of 1 and 3.

At last, we will explore the harmonic mean of two points on the
parabola (Figure 5, right). Let us find the intersection of the line AB
with the x-axis (the tangent of the parabola through 0). Substituting
y = 0 into (Equation 2), we have

[
a+b
a·b , 0

]
. One tangent to the parabola

through this point is x-axis, and the second tangent has the equation

a+ b

a · b x− 1

2
y = 0. (4)

The tangent point of the second tangent on the parabola has the coordi-
nates

[
2a·b
a+b , (

2a·b
a+b )

2
]
, and so it represents the harmonic mean of A and B.

To finalize the extent of our observations, notice that points 0, A, 2A·B
A+B , B

create a harmonic quadruple. This could be verified on the x-coordinates
of these points. Counting the cross-ratio, we have

(
A,B;

2A ·B
A+B

, 0

)
=

A− 2A·B
A+B

B − 2A·B
A+B

· B − 0

A− 0
= −1.
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3 Conclusion

Representing real numbers on a parabola, we have shown geometric con-
structions leading to elementary arithmetic operations. Moreover, the
arithmetic operations via these constructions works well on the extended
real numbers, supplementing the improper point of the parabola as ∞.
Similar constructions can be carried out in projective geometry in more
general settings. We can choose arbitrary regular conic and also the coor-
dinate system (0, 1,∞). In the end, let us revisit Möbius’ multiplication
on the table with parabolas from this point of view (Figure 6). See that
his choice of the point 0 is always in the top left corner of the table. The
point ∞ is in the horizontal direction of the axis of the parabola. The
choice of 1 in the first row is the choice of the parabola. In this setting,
the line through 2 and 3 intersects the line 0∞ in the point 6. Compared
to our choice y = x2 where 0∞ is the y-axis, Möbius chose 0∞ as the
top row of the table. Otherwise, all the constructions work in the same
manner.

0 ∞6

2
3

6

1

Fig. 6: Reconstruction of Figure 2. The system (0, 1,∞) and
multiplication construction of 2 · 3 and 1 · 6 is highlighted.
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First Edition

Plzeň 2023
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