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Forewords

The 9" SLovak-CzEcH CONFERENCE ON GEOMETRY AND GRAPHICS
was held on September 11-14, 2023 in Slovakia, in the old mining Slovak
town Kremnica. This joint session of the 32"d Symposium oN CoOMPU-
TER GEOMETRY SCG 2023 and the 43" CONFERENCE ON GEOMETRY
AND GRAPHICS was the next successful common event of two traditional
conferences organized by national societies, the Slovak Society for Geo-
metry and Graphics and the Czech Society for Geometry and Graphics.

About 47 conference participants from 7 countries — Slovakia, Czech Re-
public, Austria, Slovenia, Poland, Hungary and India, West Bengal — en-
joyed rich programme with presentations related to a variety of geometry
areas with three interesting invited plenary lectures. ZBYNEK SiR from the
Faculty of Mathematics and Physics, Charles University in Prague, Czech
Republic, presented lecture Seven versions of de Casteljau algorithm. He
summarized the most important properties of de Casteljau algorithm, and
demonstrated its utility on various interpretations and interesting exam-
ples. Invited lecture Geometric modeling: Variational principle presented
by DEMETER KRUPKA from Lepage Reasearch Institute in Presov, Slo-
vakia, introduced the current research in differential geometry, including
applications of geometric methods in control of the motion of mechani-
cal systems. Elementary ideas on the geometric control theory (geometric
robotics) and introduction of mathematical modeling of processes and
stability problems in physics and engineering using variational principles
were also discussed. DOMEN KUSAR from the Faculty of Architecture,
Ljubljana University in Slovenia presented lecture entitled Descriptive
geometry in Slovenia, decline or oportunity, an overview of the develop-
ment of subject Descriptive geometry as part of curricula at educational
institutions in Slovenia in the current digital age. Activities were men-
tioned leading to finding balance between the use of modern techniques
and “classical” pedagogical approaches aiming to achieve the best possible
knowledge and the greatest possible spatial abilities that future architects
will need in their work.

Submitted 28 contributed talks from applied and pure geometry, graphics
and education of geometry are published in this proceedings. These in-
teresting contributions represent the variety of research carried currently
in the field of geometry and prove the inspirational power of this scien-
tific domain. High quality presentations delivered by experienced experts
and initial scientific works of young scientists, who could benefit from the
talks of their matured colleagues, proved to be a highly resilient mixture
bringing new valuable ideas on both sides.
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Conference was organized by the Slovak Society for Geometry and Gra-
phics, residing at the Institute of Mathematics and Physics, Mechanical
Engineering Faculty of the Slovak University of Technology in Bratislava,
Slovakia, and it was held in hotel Golfer located over Kremnica town.
Social programme included the visit to the old Mint factory in Kremnica,
where coins have been struck uninterruptedly for almost seven hundred
years. Participants could also visit City castle or Mining museum in the
old gold mine Andrej’s tunnel, and walk in the city historic centre. Con-
ference dinner was a nice social event with musical piano accompaniment.

We would like to thank cordially to all conference participants for the
great atmosphere of this event and its high scientific richness, which was
achieved primarily thanks to your applied presentations that were all at
a high level of professional and scientific quality.

It is our pleasure to invite you all to attend the next joint event, the
33" Symposium oN COMPUTER GEOMETRY SCG 2024 and the 44™
CONFERENCE ON GEOMETRY AND GRAPHICS, which is going to be held
in cooperation of representatives of both societies for geometry and gra-
phics in September 2024 in Czech Republic, as the 10*® CzEcH-SLOvVAK
CONFERENCE ON GEOMETRY AND GRAPHICS.

We are proud to be keeping on the good tradition of our common meetings
deeply rooted in the history.

Bratislava & Praha/Plzen, November 25, 2023

Daniela Velichova Miroslav Léavicka, Zbynék Sir
chair of SSGG former, and new chair of CSGG
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Variational forces: Remarks

Demeter Krupka

Lepage Research Institute
17 November St., 081 16 PreSov, Slovak Republic
email: demeter.krupka@Ilepageri.eu

Abstract. This research-expository paper is devoted to variational modelling of
mechanical forces, depending on velocities.

Keywords: Variational equation, Helmholtz conditions, Variational force

1 Introduction

This paper is based on several sources: lectures delivered by the author at the
conferences Geometric Mechanics and Control, Beijing, BIT, 5th International
Conference on Dynamics, Vibration and Control, Shijiazhuang, China, July
2018, and the 23rd International Summer School on Global Analysis, LRI,
Brasov, Romania, August 2018; main source, however, is the paper D. Krupka,
Variational forces, Journal of Mathematical Sciences, accepted by
Yu. Sachkov, in print 2019 (delayed), where complete proofs can be found.

Recall that in classical mechanics a Lagrange function £:IxUxR" - R
of a mechanical system is usually defined to be the difference of kinetic energy

9 and potential energy WU, £ =9 - . While J is in a sense a universal
function of the form

J= 5 gijfci)'cj s
where gij are the components of a metric tensor on the configuration space U,
potential energy 9 provides specific characteristic; A does not depend on ',
and the first-order form ¢ =g, where

U
¢f __axi >

is the force, associated with (. The Euler-Lagrange form of £ is a family
E(Z)=E/(Z), whose components are the Euler-Lagrange expressions
0L do¥f 9T daT U
= ———+—,
dax'  dr ox' ax'  drox'  ox'
The Euler-Lagrange equations are differential equations for curves t — xi(t),

Ei(&e): -

_97 , 4T _ U
ox drox ox'
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In this paper we study variationally compatible extensions of the concept of
the force. The aim is to characterize a class of Lagrange functions & admitting
a decomposition ¥ =9 —a, in which A may depend on velocities %'.

The problem of variational compatibility of forces is not new; its
elementary version was considered, probably for the first time, by Novotny [5].
Recent applications of the inverse variational problem to ordinary differential
equations and geometric mechanics can be found in Voicu, Krupka [6] and
Krupka, Urban and Volna [4]. Extensive, relatively complete literature on the
inverse problem can be found in Krupka, Saunders [3] and Zenkov [7].

2 The Euler-Lagrange mapping

In this section we study the dependence of the to Euler-Lagrange expressions
E.(£), on the Lagrange functions &. The family E(£)=E (%) is called the
Euler-Lagrange form. We wish to characterize the kernel and the image of the
Euler-Lagrange mapping & — E(&). The domain of definition of the Euler-

Lagrange mapping is the vector space of C2-functions on | x U x R™ and its
image space is the vector space of m-tuples of C2-functions on | x U x R"x R™;
this mapping is obviously linear.

A Lagrange function < is said to be (variationally) trivial, if E,(£)=0 for
all i.

Theorem 1. A Lagrange function &= %(¢,x',x") is trivial if and only if there
exists a function f = f (t, x') such that
g &
dt
Theorem 1 characterizes the kernel of the Euler-Lagrange mapping
L —ES).
We shall now consider arbitrary systems &=g of sufficiently

differentiable functions &: 1 x U x R"x R™" - R, where i =1, 2, ..., m; in
agreement with the calculus of variations, differential geometry and mechanics
the systems ¢ are called source forms.

A source form & =g¢; is said to be variational, if there exists a function
$:IxUxR" — R such that

(21) E=—"T"—F+——.

If & exists, it is called a Lagrange function for & . Clearly, variationality of
asource form ¢ means that & belongs to the image of the Euler-Lagrange
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mapping ¥ — E(Z) in the set of source forms or, in a different terminology,
integrability of equation (2.1) with respect to the unknown function &£.
The following is a well-known integrability condition for the system (2.1).

Theorem 2 (Helmholtz conditions). If a source form &=g¢; is variational,
then

. 0€,
2.2) 9g, 9% ),
ax’  ox'
. 0€, . 0€.
23 g S0,
ox’  ox' dr\Jdx’ ¥
and
. Jeg, . 0€.
2.4) 3&--4-15(9ﬂ— %):
ox’  dx' 2dr\dx’ ox'

Theorem 3. Suppose that a source form ¢ = ¢, satisfies conditions (2.2), (2.3)
and (2.4). Then there exist some functions f = £(¢,x*,%*),m = n(t, x) and
h=h(t, x) such that ¢ are the Euler-Lagrange expressions of a Lagrange
function given by

(2.5) $=f-nx' —h.

In particular, ¢ is a variational source form.

Remark 1. Formula & = f—n,x' —h (2.5) defines a Lagrange function for the
source form g, = P +Q,i'; writing g, = P+ Q, &' (2.2), then the functions f and

7 can be determined in explicitly as functions of Pi and Qjj , and h remains
arbitrary.

3 First order variational source forms
Consider a first order source form ¢ = &;, where
(3.1) g =¢g,(t,x',%).

In this case Theorem 2 and Theorem 3 of Section 2 imply that the variationality
of ¢ is equivalent to the conditions

de. O€,
(3.2) AR

ax’  ax'

and
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o 0€;
(3.3) SN LT Y
o\ 9x  9F
. 0E, . J€, . €,
(3.4) S_(C,‘,.__j._]i(a_g___{)_li[(a_g__j‘jx,:()'
ax ox 20i\aF or) 20x\9 o

Note, however, that condition (3.3) follows from (3.2) and may be omitted.
The following two theorems provide a complete classification of variational
first-order source forms.

Theorem 4. Let £=¢ be a first-order source form. The following two
conditions are equivalent:

(a8) ¢ isvariational.

(b) There exist a system of functions 7=, 7i = 7t x), and a function
h = h(t, X)) such that
(- Sh_on, (o0, o),

ax' ot ax'  dx

Theorem 5. If a first-order source form & =¢; is variational and is expressed

(3.5)

by (3.5), then & has a Lagrange function f =-n,i' - h.

4 Lagrange functions: Canonical decomposition

Now we discuss possible extensions of the basic classical mechanics formula
P=9 -9, where T=J(&') is the kinetic energy and U=U(x') is the
potential energy, to the functions 9, which may depend both on positions x'
and velocities x'.
Let £:UxR" — R be any Lagrange function. Setting
g1 ‘?233 Y
2 9x' ax’

we get another Lagrange function 9 :U XxR™ — R, called the kinetic energy,
associated with £, and a decomposition &£ =9 -, where 9 is the potential

energy, associated with £. The Euler-Lagrange form of £ is

¢ d o¥
ED== it o

b}

Lemma 1. (a) The Euler-Lagrange form of I is expressed by
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g g oh, 0ok, .
0J dw_l(—axli‘l'ahlk‘l'/k))'c'fc/

Taxt T xS j i
ox" drox" 2 0x 0x

1 azhl.j aaa (1 azh,., . Ohy »
to o XX | S g X A+ hy |
2 0x 0x 2 9x" 0x 0x

(b) The Euler-Lagrange form of 9y is expressed as
_ﬂ d amzl(_%+%+ahﬂjx1xl
ax* ax’  ax'

+_—
axt dtaxt 2
?h, ?h, . Oh, .
P O L A YR F
20x 0x 29x" 0x 0x
ﬁ_ 2 i
axt oax'oxt
(c) The Euler-Lagrange form of 9y is expressed as
U dou _ 1( ohy , oy +ahf")x"x-"

oxt drait 2\ axt ax’ ox'

Ph, *h. . . oh .
: x'xfx’+(1 Iyl + =L |5

+-—— =
2 9x' 9" 2 9x* o' 9x*
o0& PP

- x.
axt  ax'ax*

5 Variational forces

Now we study Lagrange functions &:UxR" — R satisfying the metric
homogeneity condition

’>L
Sinai Ak
ax' ax’ ox
Using the metric hjj associated with &£, condition (5.1) can equivalently be
expressed as

(5.1)

Oy i o0,
ax*

Its meaning is explained by the following theorem.
Theorem 6. Let & be a Lagrange function. The following two conditions are
equivalent:

(@) £ satisfies the metric homogeneity condition.

(b) The Euler-Lagrange form E(9U) of potential energy A is of order 1.

Theorem 7. Let £ satisfy the metric homogeneity condition. Then



18 Krupka Demeter

WU=-h-nx -I—df
dt
where
’>L ., 9% of
=Xt x+t-=
(5.2) 0x' ox ax*  ax
2
. a.‘gg.xfx"—ﬁx +&
2 9x’ ox' ox'

for some function f =f(x). The functions 7x and h do not depend on x'.

Our aim now will be to find explicit form of the Lagrange functions
satisfying the metric homogeneity condition. Our partial results can be
summarized as follows.

Given an arbitrary Lagrange function £, we have the canonical
decomposition & =9 —Aal, where

K
- . - X
2 9x' ox’
Then the following conditions are equivalent:

(@) £ satisfies the metric homogeneity condition.

(b) E.(U) do not depend on ", that is, for all i and j,

v/

9J =

IE(WU) _
ax’
If these conditions are satisfied, then 9y is of the form
Ouz—h—n,.x#ﬁ,
dt
for some function f =f(x"), and
P*L ., 9L af
N = 9% ot X+t
(5.3) X' 0x Jax"  Jdx
2
L0 g,
2 9x' ox’ ax'

The functions h and 7, do not depend on x*and Euler-Lagrange expressions of
a are

an, o ) Y
5.4 E (U — L
G4 ()x(axkaxlx
Remark 2. Equation (5.4) shows that for m = | (the case of mechanical systems
with 1 degree of freedom) the Euler-Lagrange form E(9)cannot depend on x .
It has already been noted in Section 4 that the kinetic energy part in the
canonical decomposition of £ has some properties of the fundamental Finsler
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functions in Finsler geometry. We shall now discuss these properties in more
detail. We define a (possibly singular) Finsler metric as a system of real-valued
functions g;= g,j(xk,)'ck) on U x R™, satisfying the following conditions:

(a) The matrix gj; is symmetric,

(5.5) gij = Gji -
(b) The derivatives satisfy
(5.6) 08y _ 98, 98 i _¢

oxt  ax!’ 9xt

Theorem 8. A Lagrange function £:UxR" — R satisfies the metric
homogeneity condition if and only if

(5.7) $= % g, +h
Where gj; is a Finsler metric and h and 7, are some functions depending on x'
only.

Theorem 9. For every Finsler metric g formula (5.7) defines a solution &£ of
equations (5.3).
Remark 3. Note that 77, can also be expressed as
oZ . oF 9 o0&
== ( ) 2—= (258——)( )
ax* \ax/ axt ot ax’

Integrating

258—6455)&’ -ni’ =¥

ax’ !

where P = (X)) is an integration constant. Since

2
:(l a_i_xf agjx +&
2 9x' 0x’ ax'

1( N aij.i 1(
= ———X-——|i-=
ax' ox’ ox' 2

Ly

=DM = ) =

9 '—255)

) \

we have
o
28— x =2h+1, X
x
Our main goal is in this section is to study variational properties of first-
order source forms ¢ : U x R™ — R™; we call these forms forces. A force ¢ is

said to be variational, if there exists a Lagrange function & :U xR" — R such
that
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(5.8) ¢, :Ei(é‘f—g),

where J is kinetic energy associated with £, or, equivalently, if ¢, =E.(U),
where 9 is potential energy associated with . Thus a variational force is
exactly the Euler-Lagrange form of the potential energy . Allowing U to
depend on positions and velocities, then we also admit variational forces
depending on x' and x'.

The inverse variational problem for a force ¢ consists of finding
integrability conditions and solutions & = %(x',x') of the system (5.8). We
already known that the integrability condition is given by equations (3.2) and
(3.4),

%, , 99, _

=,

9%’ 9x'
%_%_12(%_%)_11[%_%)xf_0
ax’  ax' 29r\ax’ 9%’ ) 209x'\ 9%’ 9x' '

The following two theorems give a more detailed information.

Theorem 10. The following two conditions are equivalent:
() ¢ is a variational force. ‘ _
(b) There exist functions P = P(x") and Qx = Qk (x') such that

aP (00, an) Y
=—+|———]|x.
i ax* (axk ax' *
Remark 4. The class of variational forces admits a physical interpretation; it
includes some dissipative forces, depending on velocities.
Theorem 10 should be completed by description of all Lagrange functions

defining a fixed variational force ¢ . The following is a solution of the inverse
variational problem for forces, depending on positions and velocities.
Theorem 11. Let ¢ be a variational force, let U, =-P—Q.x' be a Lagrange
function for ¢ . Then the following two conditions are equivalent:
(@) < satisfies ¢, =E(L-7).
(b) & isof the form £=T -, where
g = %gqx'x’

for some Finsler metric gj; .

6 Newton’s equations

As an example consider a source form ¢ = ¢&;, where
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ol
81 = gil‘x - f; >
and gi and f; are functions of t, x|, ¥'. & is called a Newtons source form.

Lemma 2. The Newton'’s source form is variational if and only if

gij- gi =0,
98w _98x _g
ox’  ox'
0 dg. 0g.
(f fj g(/+i(l/x[:0’
ox’  ax' ot 0dx

ax’  ox'  29i'\ax’ 9x
9 9 0
Bf. fJr (8f f)+ (af f)x _o.
2 0t 2 9x*

og, 98y 10 (af,- af.szo,

dx’  dax' ax’  ax' ax’  ax'
Now we easily find solutions & of the inverse problem equations
B 635 d ¥
¥ = o

Theorem 12. The Newton source form is variational if and only if

af, 9f; 1a(af 8fjx 0

ax’ ax' 29x

ax’  ox'

Acknowledgments

The author thanks to Prof. Daniela Velichova for invitation to the 9th Slovak-
Czech Conference on Geometry and Graphics, Kremnica, Slovakia (September
2023), to deliver a talk Geometric modelling: Variational principle. He
appreciates the support of the National Science Foundation of China (grant
11872107) and kind hospitality of Prof. Dohghua Shi during his stay in BIT,
where essential part of the research on these topics was done. He is also
thankful to Prof. Yong-Xin Guo for invitation to the 5th International
Conference on Dynamics, Vibration and Control, 2018, Shijiazhuang.

References

[1] D. Krupka, On the local structure of the Euler-Lagrange mapping of the
calculus of variations, in: Differential Geometry and its Applications,
0. Kowalski, Ed., Proc. Conf., Nove Mesto na Morave, Czechoslovakia,
Sept. 1980; Charles University, Prague, 1982, 181-188; arXiv:math-
ph/0203034



22

Krupka Demeter

(2]
(3]
[4]
(5]

(6]
(7]

D. Krupka, Variational forces, Journal of Mathematical Sciences,
accepted by Yu. Sachkov, in print 2019 (delayed)

D. Krupka, D. Saunders, Eds., Handbook of Global Analysis, Elsevier,
2008

D. Krupka, Z. Urban, J. Volna, Variational submanifolds of Euclidean
spaces, Journal of Mathematical Physics 59, 032903 (2018)

J. Novotny, On the inverse variational problem in the classical
mechanics, in: Differential Geometry and its Applications, O. Kowalski,
Ed., Proc. Conf., N. Mesto na Morave, Czechoslovakia, Sept. 1980;
Charles University, Prague, 1982, 189-195; arXiv:math-ph/0203034

N. Voicu, D. Krupka, Canonical variational completion of differential
equations, J. Math. Phys. 56 (4), 043507 (2015); doi:10.1063/1.4918789
D.V. Zenkov, Ed., The Inverse Problem of the Calculus of Variations,
Atlantis Studies in Variational Geometry, Atlantis, 2015;

ISBN 978-94-6239-108-6



9" Slovak—Czech Conference on Geometry and Graphics 2023 23

Descriptive Geometry in Slovenia,
decline or oportunity

Domen Kus$ar

Fac. of Architecture, Univ. of Ljubljana
Zoisova 12, 1000 Ljubljana, Slovenia
email: domen.kusar@fa.uni-lj.si

Abstract. Descriptive geometry is a science that has been indispensable in all
areas of technical education for many years. In addition to the way of representing
spatial elements and their relationships on a two-dimensional medium, it also
developed a spatial representation. We have been following the downward trend
of spatial ability among students of the Faculty of Architecture of the University
of Ljubljana since 1999.

With the advent of computers, especially computer graphics, the attitude towards
descriptive geometry also changed. Since computers took over the presentation
of space, it was no longer necessary. Therefore, the number of hours was reduced,
and in many faculties, it was simply abolished or combined with other similar
subjects. In Slovenia, this happened at many technical faculties. Part of the blame
is also on the side of educators who did not understand the situation and the role
that descriptive geometry can play and adapted the material to current needs or
even upgraded it.

At the Faculty of Architecture of the University of Ljubljana, beside classical
knowledge we included into the course computer programs and new teaching
methods. Flexibility helped us to carry out the subject remotely without major
problems during Covid. With the project of pilot updating the course using
information and communication technology, we wanted to bring the course even
closer to students and make it accessible at any time. However, it turned out that
digitization also has its limitations, as pedagogical work also requires a personal
approach and communication between the pedagogue/assistant and students. This
means finding a balance between the use of modern techniques and "“classical”
pedagogical approaches with the aim of achieving the best possible knowledge
and the greatest possible spatial representation that future architects will need in
their work.

Keywords: Descriptive geometry, teaching methods, Slovenia

1 Descriptive Geometry at the faculties in Slovenia

About 2 million people live in Slovenia. For them and others, there are six
universities and 25 other higher education institutions offering education at
various levels. The three largest universities are state-owned.

The largest and oldest is the University of Ljubljana. Its beginnings date back
to the 17th century when a Jesuit college was founded. The first university was
established in 1810 during the French occupation. After the end of the Illyrian
provinces in 1813, it was abolished. Instead, the Imperial Lyceum was
established as a higher education institution. The current University was created
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after the collapse of Austria-Hungary in 1919. It included five faculties: law,
philosophy, technical theology, and medicine. It is interesting that between 1919
and today, the university changed its name 7 times. Today, the University of
Ljubljana consists of 23 faculties and 3 academies. Around 40,000 students study
there annually.

Second in size and age is the University of Maribor. It was founded in 1975
although its beginnings date back to 1859 when the Higher Theological School
was founded on the initiative of Bishop Anton Marin Slomsek. Today, 17
faculties are included in the University of Maribor most of which are based in
Maribor but some are also in Kranj, Celje, Ljubljana, Velenje, Krsko, and
BreZzice. The number of students at the University of Maribor is approximately
15,000.

University |Faculty

Course

Study

Civil ingeneering

Faculty of Civil Engineering, Geometric modeling & Descriptive geometry 4

of
Ljubljana

Construction management (BA)

Engineering comm unication

University Transportation Engineering | Transportation Engineering Geometric modeling & Descriptive geometry 4
niversi X
of Maribor and Architecture Architecture Drawing, visual expression 4
Faculty of Mechanical
. . Mechanical engineering Technical Documentation 4
Engineering
Wood Science and Technology Technical drawing and descriptive geometry 4
Biotechnical Faculty
Landscape Architecture Descriptive Geometry 5
Factjlty n.f Mechanical Mechanical enginesring Technical drawing and computer aided modelling of 5
Engineering geometry
Faculty of Civil Engineering Civil ingeneering Engineering communication 3
University |and geodesy 3

Faculty of natural science
and Engineering

Geotechnology and mining

Geometry in engineering |

Geotechnology and mining

Geometry in engineering |1

Single-Cycle Master Study

Descriptive geometry

Programme Architecture
Faculty of architecture

First-Cycle University Study
Programme Urbanism

Descriptive geometry 3

Table 1: Descriptive Geometry and subjects directly related to it at higher
education institutions in Slovenia.

In addition to these two largest universities, there are four smaller ones and
25 other smaller higher education institutions in Slovenia. Descriptive geometry
or the contents of this subject are present in various programs of various technical
faculties of the two largest universities (table 1). The objects comprising these
contents have different names:

- Descriptive Geometry (Faculty of Architecture, Biotechnical Faculty)

- Technical Drawing and Descriptive Geometry (Biotechnical Faculty)

- Technical Drawing and Computer Aided Modelling of Geometry (Faculty
of Mechanical Engineering)

- Engineering Communication (Faculty of Civil Engineering and Geodesy)

- Geometry and Engineering (Faculty of Natural Science and Engineering)

- Technical Documentation (Faculty of Mechanical Engineering)

- Geometric Modelling and Descriptive Geometry (Faculty of Civil
Engineering, Transportation Engineering and Architecture)
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- Drawing, Visual Expression (Faculty of Civil Engineering, Transportation
Engineering and Architecture)

In addition to the contents that are part of descriptive geometry, most subjects
also offer knowledge in the field of drawing, production of technical
documentation, and the use of computer programs (CAD) for modeling and
presentation.

Interestingly, the Faculty of Mathematics does not directly offer the course
described geometry nor can it be found at the Faculty of Education. The
consequence of this is the fact that in previous primary education, fractals of
descriptive geometry were present in only individual subjects of primary school,
such as mathematics and technology. In high schools, descriptive geometry is
taught as a subject only in certain courses of the high school of construction.

Perhaps the reason for such a situation lies in the fact that, according to one
of the lecturers of descriptive geometry, mathematicians should show disinterest
in descriptive geometry saying that it is no longer relevant and stop dealing with
it. Since there were still demands for this knowledge at the technical faculties, it
was passed down from professor to assistant and then on in the last decades. This
is probably the reason why architects, builders, and mechanical engineers teach
these subjects at universities. In addition to descriptive geometry, they are active
in other scientific fields specific to individual faculties. This method also has a
positive side because teachers know the field of education well and know more
precisely which knowledge in the field of descriptive geometry will be useful to
students after the end of their studies.

2 Descriptive Geometry at the Faculty of Architecture in
Ljubljana

Descriptive geometry has been part of the curriculum of the Faculty of
Architecture since the faculty was established as the Department of Architecture
within the Technical Faculty of the University of Ljubljana. It represented the
only language for the presentation of three-dimensional objects (buildings) on a
two-dimensional medium (paper). With this, it was also the basis of the language
of communication between experts from different disciplines who participated
in the construction. Therefore, it is understandable that the subject had a large
number of hours. As construction became an increasingly complex task, which,
with the development of technology, required the cooperation of several different
experts, the architect's knowledge also had to increase. The development of
computer graphics, on the other hand, brought innovations in the understanding
and representation of space and the relationships within it, as well as
communication between experts. With this, the importance of descriptive
geometry as a means of presentation became smaller. As a result, fewer hours
were devoted to the subject. If the total number of hours of lectures and exercises
was 120 hours in the academic year 1991/92, it was 90 hours in 2019/20 and is
60 hours today.
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Every year, between 200 and 300 students want to enroll at the Faculty of
Architecture. Since we can only enroll 115, students have an entrance exam. It
tests the ability of candidates to study architecture in the form of a drawing exam
and an interview. Even though part of the entrance exam also included a spatial
representation test, study candidates come to the Faculty of Architecture with
virtually no prior knowledge. Therefore, we want to give the key content of the
course for one semester. These are the following types of space presentation
methods:

- Monge's method,

- axonometry,

- quoted projection, and

- central projection.

As part of this, we discuss the basics from the position of a point, a line, and
a plane through the determination of lines and planes, some metric tasks
(determining the correct size of angles and lengths), and cross-section and
piercing. Shadows are a special chapter.

In addition, we begin to familiarize students with the AutoCAD program right
from the start. Within the scope of the course, students must complete exercises
that are divided into basic exercises which are drawn with a pencil or computer
and submitted weekly and three complex exercises that are drawn with a
computer. The exercises were submitted to the online classroom.

Students are motivated by three colloquiums. Together, these comprise all
the material of the course, and, as long as they are evaluated positively, they can
replace the exam.

An online classroom, which has over 200 units of different learning materials,

serves to help students. It contains information and instructions for creating
exercises, solved examples of tasks, summaries of lectures and exercises, study
sheets, material for monitoring exercises, and more.
The presentation of material in lectures and exercises is classical with the use of
a blackboard, chalk, ruler, and ruler. The good thing about this method is the
development of the construction in slow steps. The downside is the limitation in
terms of size, precision, obscuring the drawing with a body, padding, errors, and
the like. For this reason, in lectures and exercises, we increasingly use
PowerPoint presentations. The advantage of this method is especially accuracy
and the possibility of repetition or later viewing.

3 Teaching method during the Pandemia

If before 2020 working and learning at a distance was more a matter of
individuals and rare events, the COVID-19 crisis plunged us into a new way of
education. At the FA, this happened within a week because the management
received information that such a situation would last for a long time and not just
the initially promised 14 days. For this purpose, the decision was made to close
the FA and to conduct all activities remotely. As professors, we found ourselves
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in different ways. First of all, it was a question of which method of remote
working to choose or which program to use. At first, we used different programs
(CISCO WEBEX, MS TEAMS, and ZOOM). The programs are mostly similar
but each has its specifics. The FA management decided to use the Zoom program
and provided all employees with the appropriate licenses. The selected uniform
program for all also enabled the mutual education of employees which facilitated
the transition to a new way of working.

The leap to remote work was unproblematic for Descriptive Geometry. The
reason lies in the fact that the vast majority of the content we discussed has
already been digitized as presentations in PowerPoint, worksheets, solved tasks,
etc.

The lectures were thus held online with presentations in PowerPoint. It was
similar to the exercises with the assistant preparing worksheets in advance that
the students could print or draw and use in the exercises. Pictures of home
exercises were uploaded to the online classroom where they were evaluated and
corrected.

The rich material of the online classroom was also already there However, it
was necessary to supplement it with an explanation of each task. During the year,
more than 200 units of teaching material were available in the online classroom.
Certain contents were also added to the library. At the same time, it should be
emphasized that the FA immediately started scanning key textbooks, books, and
other literature from the faculty library. Thus, students could access study
material and literature online.

A special challenge was conducting remote colloquiums. Different questions
have arisen: how to distribute tasks, ensure equal opportunities for everyone,
supervise independent work and return solved tasks. Here, we proceeded by
publishing in advance the data (coordinates of points) that were included in the
colloquium. At the beginning of the colloquium, the students were given the task
text. They were monitored utilizing the included cameras. For someone to
quickly draw a solution, scan/picture it, and send it to someone else to redraw it
turned out to be impossible in the given time. It showed that no copying was
taking place. The main difference was that we let them use literature and notes
at home. Therefore, the tasks were more complex.

Considering the different ways of presenting the material and making
exercises for conducting colloquiums and exams, we were interested in the
advantages and disadvantages of individual systems or what would be
worthwhile to use in the future as well.

The mass media, at least in Slovenia, constantly told us about the severe
consequences that the pandemic would cause in the educational process,
especially about the great drop in knowledge. My personal experience with my
four children was the opposite because | did not feel that the level of knowledge
would drop significantly. In addition, they had more time because there were no
more trips to school and back, and the lessons also turned out to be normal a lot
of time for nothing. With all that in mind, we were wondering how about
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descriptive geometry. Will the level of knowledge drop or not? What will be the
grades for exercises and colloquiums?

We conducted the research for the period 2014/15 to 2021/22. All students
taking the descriptive geometry course were included in the research.

The evaluation of the exercises of both the first and second semesters showed
results that were slightly better than in previous years. There are probably several
reasons for this:

- Due to remote learning, students had more time because they did not have
to travel to Ljubljana. A large part of the students did not live in Ljubljana and
had to commute to Ljubljana every day. According to students who depend on
public transport, they can spend up to 3 hours a day driving.

- Remote consultations require monitoring what is happening because even a
short absence can mean that you have to wait again for your turn. In addition,
individual consultations in the lecture hall reach a significantly smaller number
of students than remotely.

The results of the colloquia show an interesting picture. The grades of the
first colloquium were a little worse but then a little better. The results of the last
— the 6th colloquium were worse. Since the tasks in individual colloquiums are
similar, it is difficult to say why this happened. Possible reasons are the lack of
time in certain terms (work on other subjects).

More interesting is the comparison of the year 2018/19 as the last "normal"
and the summer semester 2021/22 where the first semester was remote and the
second was live. Here, we indulged in a risky experiment. We gave the 2021/22
generation the same tasks as the 2018/19 year. We assumed that the
intergenerational connection of the current generations was bad and that was why
the students did not not have the tasks of the previous colloquiums. Based on the
results, we can confirm this. The results of the 4th and the 5th colloquia this year
were far worse than those of two years ago. This is partly due to the "new"
method of live performance which is the same as in 2018/19 since the use of
literature is not allowed when solving tasks on the FA. It took the students
practically the whole semester to reach the average (6 colloquiums). The bad
results of the 4th and the 5th colloquium could be attributed to a different method
of solving than they were used to in the first semester.

Working remotely has both positive and negative aspects. For remote work,
the subject must be more organized and structured. The online classroom must
also be better organized. On the other hand, this method requires fewer resources
from the students since they do not have to go to college and stay in Ljubljana
and it allows more time for other things. Therefore, it is not surprising that at the
end of the year, more than half of the students preferred distance learning. Of
course, they mostly missed social contacts.

Based on this, we decided to keep some of the good practices of remote work
and upgrade them. We included the subject as a pilot project of updating subjects
using Information and Communication Technology for teaching purposes, which
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was led by the Centre for the Use of ICT in the Pedagogical Process of the
University of Ljubljana.

4 Pilot project of using information communication
technology at subject Descriptive Geometry

In the academic year 2022/23, the FA started with a renewed study program. This
also changed the content of the course Descriptive Geometry.

TORITONORNE IHIRL0V BUTEN SHilE FS0EN

KOLINEACIJA IN AFINITETA

Fig. 1: Some improvements of the subject made within the Pilot Project (quiz,
video, use of the GeoGebra program, and 3D printing)

To maintain an appropriate level for the subject, we connected with the
colleagues of the Digital University, and based on our experience and the
experience of our colleagues from abroad, we designed the renovation and
upgrade of the subject. We prepared a different set of study materials available
in the online classroom. This included: examples of solved exercises, digitization
of the textbook, quizzes, short videos, and presentations of various procedures in
PowerPoint. As part of the course, we empowered students to use the AutoCAD
program and tried to inspire them to use the GEOGEBRA program. The latter
enables good visualization of the relationships between the elements in the room.
For this purpose, simulations of some exercises were made. The exercises that
the students created individually in the AutoCAD program were submitted to the
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online classroom where they also received feedback. We also introduced them to
3D printing and printed the best exercises on a 3D printer (Fig. 1).

Students who regularly attended lectures and exercises praised the material
available to them. Even better results would be achieved if students took more
time to use all these options. Unfortunately, around the New Year, we noticed
general fatigue among students. This may be the result of the large volume of
assignments at the end of the semester in other courses because the FA has the
largest workload for students at the end of the semester. In the future, we plan to
add new shorter videos and integrate 3D printing more into the study process.

5 Spatial ability and Descriptive Geometry

An integral part of human ability is spatial intelligence, which includes spatial
perception (Gilford, 1996, Mohrer 2008, McGee, 1979). Human abilities consist
of linguistic, mathematical, kinesthetic, natural science, musical, and spatial
intelligence. We know many components of spatial perception. Spatial
perception covers a wide range of skills. It can be improved with experience and
practice. It is well known that all engineers need good spatial perception, and so
do architects. There are also studies examining the correlation between spatial
perception and academic success. It is known that spatial skills and knowledge
of mathematics are significantly related at all levels of students' education.
Teaching descriptive geometry can improve students’ spatial perception to some
extent (Ili¢, M., Kosi¢ — Jeremié, S., Stavri¢, M. (2020). According to experts,
the right half of the brain participates in the perception of space (Soros, 2010)
because it has been known for many years that the right hemisphere is larger in
men and develops earlier than in women (de Lacoste, Hovarth, Woodwart, 1991).
This is probably also the reason that confirms the differences between the sexes
in the results of spatial representation tests. The difference is most evident in
mental rotation tasks, less in orientation, and none in visualization (Linn,
Peterson, 1986). Most experts agree that differences do not become apparent
until late puberty and that growing up has a major influence on the development
of this ability (Nyborg, 1983). The development of the study of spatial
representation also required the development of measurement instruments. The
first well-known test was developed in 1931 as the Mental Cutting Test (hereafter
MCT), and in 1971 Shepard and Metzler developed the rotation test (MRT)
(Fig. 2) (Gorska 2005). Both tests are generally applicable even though they are
quite specialized in certain areas. MRT is more specialized for spatial perceptions
of rotation and mirroring while MCT is for plane-object relationships. DAT
(Differential Aptitude Test, developed in 1990) and TPS (Spatial Imagination
Test, developed in 2003) aim to cover the comprehensive evaluation of spatial
perception. All tests are subject to development and improvement. Suzuki and
Shiina [1999] transformed and refined the MRT and standardized the difficulty
of each case.
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Fig. 2: Sample Mental Rotating Test Task.

When it comes to spatial representation research, it is usually a one-time
event that tries to cover a certain population in a certain and geographically
limited area. The results of the tests are mostly similar and show the difference
between the sexes and progress after the year of study (Leopold et al. 2001,
Takeyama et al. 1999). The reasons for such a situation lie in a large number of
factors that influence the development of the spatial perception of generations.
At the same time, for a realistic comparison, it is necessary to have the same
testing conditions, which means that various testing improvements are
questionable in this case, regardless of the advantages they otherwise bring.
Therefore, we set the conditions for the test at the Faculty of Architecture of the
University of Ljubljana (hereafter FA) in 1999 and have always adhered to them
since then. This allowed us to compare generations realistically. The long-term
analysis is also important regarding the opinion that the level of knowledge of
mathematics and technology among new students is declining across Europe. Is
this decline also followed by a decline in the level of spatial representation?
Reasons for supporting the thesis would probably be found in the environment
where we live. New information technology has also brought new patterns of
youth behavior. Traditional games for children and adolescents are becoming
less and less popular because they are being replaced by digital and virtual
games. The result of traditional spatial games was the development of the spatial
representation that these games contained. It is difficult to say what the
consequences of this exchange are because, on the other hand, information
technology makes it easier to perceive space and the relationships within it.
Therefore, results that would show long-term trends in this area are even more
important (Kusar, 2014).

Every year at the beginning of the academic year, at the Faculty of
Architecture of the University of Ljubljana, we conduct a spatial representation
test. Testing is carried out at the beginning of the academic year. First-year
students participate in this. We have been carrying out this testing since 1999.
For this purpose, we use the MRT (mental rotating test). Regardless of the
possibilities that information technology offers us, the method of implementation
remains the same every year. This ensures adequate conditions for the evaluation
and comparison of results. So far, a total of 3,370 students have taken the test.
Solved poles are evaluated according to the criteria given in the instructions for
solving. We do this even though a different way of assessment might have given
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better results — In terms of the normal distribution of results (Bolcskei et all,
2013) that can be expected for this area and the new digital version of MRT
(Kusar, D., Volgemut, M., Pletenac, L. (2018)). A comparison of the results
shows fluctuations in the spatial representation of the entire population (Graph
1). There is a downward trend in spatial perception. This is more pronounced in
the male population while in the female population, there is even a trend of
increasing the level of spatial representation. The gender gap shows up
throughout the years of testing. A comparison with the results of work on FA
showed interesting facts. The correlation between colloquium results and tests of
spatial representation is small. This can be partly attributed to the fact that the
MRT covers the area of mental rotation but the others do not or are significantly
worse. This is also confirmed by comparing the results of exercises where the
skill of spatial rotation is required. There, students who have excelled at the MRT
also do better in school exercises.
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Graph 1: Average of MRT results and trend lines.

6 Conclusion

The classical importance of descriptive geometry as a way of communication
between experts of different disciplines in the form of representing 3D objects
on a 2D medium (plan) is decreasing in Slovenia. The result of this process is
first seen in reducing the number of hours or, in some cases, even canceling the
course. On the one hand, new content has been added to the descriptive geometry
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subject, mostly related to the production of technical documentation and/or
geometric modeling using computer programs and 3D printing. In Slovenia, this
is also related to the fact that the majority of professors who teach descriptive
geometry are no longer mathematicians by education. Instead, they are civil and
mechanical engineers and architects. This is probably because descriptive
geometry is no longer appreciated by mathematicians. On the other hand,
however, technical fields still need it.

In Slovenia, this is also related to the fact that the majority of professors who
teach descriptive geometry are no longer mathematicians by education. Instead,
they are mechanical engineers and architects. This is probably because
descriptive geometry is no longer appreciated by mathematicians. On the other
hand, however, technical fields still need it. Since it is known that work in the
descriptive geometry course improves spatial representation, the abolition of
these contents also manifests itself as a drop in the level of spatial representation.
This is also related to changes in society which is comparable to the results of
some research outside of Slovenia. A good spatial representation is absolutely
necessary in most technical and natural science fields. Since descriptive
geometry is usually a demanding subject for students, we wanted to bring it
closer to them as part of the Pilot Project. To this end, we have updated the
learning material with quizzes, videos, problem-solving examples, 3D printing,
and the like. At the same time, we wanted to equip students with additional
knowledge of using some computer programs. Surveys completed by students at
the end of the year show the correctness of the decision.
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Remarks on de Casteljau algorithm

Zbynék Sir
Faculty of mathematics and physics UK

Sokolovskd 83, Prague 130 00, Czech Republic
email: zbynek.sir@mff.cuni.cz

Abstract. In memory of Paul de Casteljau (1930-2022) we will present
several remarks on his famous algorithm. First, we will outline the original
affine version. Then we will analyze the projective version (Farin 1983) and
will present two interpretations within the classical projective geometry. We
will also study alternative versions of the rational algorithm based on the
factorization of the curve denominator (Sir and Jiittler 2015). Finally, we will
show the generalizations of the de Casteljau algorithm to the case complex
curves.

Keywords: Bézier curve, de Casteljau algorithm, subdivision, knot insertion,
bipolar coordinates

1 Affine de Casteljau algorithm

The affine version of the algorithm was first published in [1]. In this version the
recursion given as

ko, k—1 k-1 k-1 k—1y (1 —1
Pj = (1-HPj +tPiy = (P; Pj+1)< R

see Figure 1, provides Bézier curves

n

n - n n i n—j
0=> BrHPI=>" (j)tﬂ (1—¢)n=) PY.
j=0

Jj=0

Many properties follows directly from the definition such as the affine co-
variance, tangent property, subdivision property, convex hall property or the nu-
merical stability.

2 Rational de Casteljau algorithm

The rational version of the algorithm, see [2], involves real weights w; and their
recursion in the following way:

k—1 k—1
ko (1—t)wj P’?71-|- twj+1 Pk,l )
R R N e g+
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Fig. 1: Affine algorithm (left) and its computational structure (right).

and provides the rational Bézier curve
n 0 0
pr _ 2u=0 B} (DwjP;
0 — )
>0 B} (t)w]

Note that, while the expression (1 — ) P;?_l +t Pf;ll is the only affine pa-
rameterization of the segment P? *1P§:11 over t € [0,1], (1) provides infinitely
many such rational parameterizations, depending on the weights.

The most elegant projectively covariant geometric interpretation of the ratio-
nal algorithm uses so called Farin points defined for each computational level

@)

Epk k k
wiPF +wi Piiy
' .
j+1

£k .—
7 wk + w
J

The position of the new control point is the given by prescribing the the cross-
ratio
1—-t
E pk k pk+1ly _
(Pj7Pj+1afjan )*Tv
see Figure 2.

3 Alternative rational algorithms

In [5] some alternative algorithms for rational curves were presented. They are
based on the factorization of the denominator of (2)

n

i B?(t)w;J = H ((1 —t)uf +t vk)
j=0

k=1



Remarks on de Casteljau algorithm 37

Fig. 2: Rational algorithm with the Farin points (magenta).

and use the recursion

1 —t)uk
Pt = I el P!
J (1—1t)uk +tok i1t

t’Uk Pk;_l
(I—t)yub+tok =7

For a curve of degree n there are up to n! possible orderings of the factors and
thus n! possible algorithms, see Figure 3. While the alternative algorithms do not

fm

P12

0
P o

& &

Fig. 3: Two of the six possible alternative algorithms.

anymore possess the tangent and subdivision properties, they present a compu-
tational advantage due to constant division ration for each level of the algorithm.
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4 Rational algorithm for complex curves

Quite remarkably, the rational de Castelau algorithm (1) can be considered also
over the complex numbers, [4]. In this case the underlying geometry is that of
Mobius geometry and bipolar coordinates, see [3] for details. All linear seg-
ments are replaced by circular segments producing a rather impressive geomet-
rical configuration, see Figure 4.

\g?

Fig. 4: Complex algorithm with the Farin points fij .

5 Conclusion

We have seen several interesting version of the famous de Casteljau algorithm.
Among others variants let us mention several algorithms for surfaces, be Boor
algorithm for B-spline curves or algorithms for trigonometric splines. Even after
more then 60 years de Casteljau algorithm still stimulate new research ideas.
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Abstract. The digital form of study materials gives students a more effective way
to learn geometric terms and constructions. The university textbook Descriptive
geometry construction study programs was published by a collective of authors
in 2022 in electronic form and is suitable for students of study programs focused
on civil engineering, architecture, landscape planning, geodesy and cartography.
In the paper, we will show the use of various forms of dynamic presentations of
geometrical content, which include theory and visualization of concepts and
constructions using 2D images, anaglyph images, animations and videos, taking
into account the type of software environments and tools used. This approach
greatly supports students' understanding and their spatial imagination.

Keywords: university textbook, AutoCAD, GeoGebra, anaglyph image, video
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1 Dynamicka ucebnica deskriptivnej geometrie

Modernizacia ucebnych materidlov a ich elektronickd forma s interaktivnymi
a dynamickymi prvkami je vyznamnym faktorom efektivnej vyucby geometrie
na technickych vysokych Skolach. Vo vyucbe na technickych odboroch sa
ukazalo efektivne vyuzite elektronickych dynamickych uéebnic publikovanych
autormi zo Stavebnej fakulty [2], [3], [4], [5] a Strojnickej fakulty STU [6].

Vysokoskolska uc¢ebnica Deskriptivna geometria pre stavebné odbory [1] bola
publikovana kolektivom autorieck z Katedry matematiky a deskriptivne;j
geometrie na Stavebnej fakulte STU v Bratislave v roku 2022 ako jeden
z vystupov projektu KEGA 008STU-4/2020. Ucebnica je urcena pre Studentov
na bakalarskom stupni Studijnych programov zameranych na stavitelstvo,
architekturu, krajinné planovanie, geodéziu a kartografiu. Ucebnica pokryva
ucivo prednasok a cvi¢eni predmetov Deskriptivna geometria na Stavebnej
fakulte, Deskriptivna geometria a matematické zrucnosti I na Fakulte
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architektiry a dizajnu a Deskriptivna geometria na Ustave manazmentu STU
v Bratislave.

Kapitoly ucebnice su vo forme dynamickych prezentéacii jednotlivych tém
v prostredi softvéru PowerPoint, pricom geometrické pojmy a principy
konstrukcii st vizualizované stereoskopickymi obrazkami a videami, ¢o vo
velkej miere podpori pochopenie a priestorovi predstavivost Studentov.
Obrazky, ktoré slizia ako podklady pre vyhotovenie animacii a videi boli
vytvorené v prostredi AutoCADu a GeoGebry. Animacie textov a obrazkov maju
logickii nadvédznost aumoziuju Studentom plnohodnotné pochopenie
problematiky aj v samostatnom Stidiu.

Takmer 700 stran ucebnice je ¢lenenych do 12 kapitol, ktoré st delené na
podkapitoly tvoriace samostatné prezentacie. Prezentacie obsahujl tedriu, ale aj
Siroké spektrum rieSenych konstrukénych uloh a prikladov. V obsahu
jednotlivych kapitol je dany doéraz na vedomosti potrebné v priprave inZiniera
a aplikécii zobrazeni a zobrazovacich metod v praci s objektami stavebnej praxe.

2 Proces tvorby dynamickych prvkov u¢ebnych materialov
s geometrickym obsahom

V tvorbe vysokoskolskej ucebnice Deskriptivna geometria pre stavebné odbory
boli pouzité viaceré softvéry a programovacie prostredia.

Webova stranka s interaktivnym obsahom bola vytvorena pomocou
Microsoft Visual Studio Code. Kapitoly uc¢ebnice st vo forme PowerPoint
prezentacii, ktoré okrem textovej zlozky obsahuju mnoZstvo obrazkov a videi.
Presnost’ grafického vyjadrenia geometrickych objektov a grafickych podkladov
pre konstrukéné ulohy bola zabezpecena ich tvorbou v softvéri AutoCAD.

Nastrojmi softvéru GeoGebra boli vyhotovené 3D objekty a anaglyfy, a tiez
2D a 3D objekty a ich animacie. Nasnimanie videi z animacii spustenych
v GeoGebre bolo realizované pomocou softvéru oCam a nasledne boli videa
upravené a strihané pomocou Video Editora. Na ilustraciu geometrickych
pojmov a ich aplikacii v stavebnictve a architektire boli pouzité fotografie, a tiez
ilustracie obrazkami vytvorenymi v prostredi Wolfram Mathematica.

2.1 Podklady pre konStrukéné ulohy vytvorené v AutoCADe

Geometrické objekty boli nakreslené a ulohy boli vyrieSené v programe
AutoCAD, ktory sa vyuziva na presné kreslenie, a to bez textového oznacenia,
bez nastaveni farby, hrubky ainych vlastnosti (Obr. 1). Nasledne boli
exportované¢ ako Windows Metafile a vloZzené do PowerPointu, kde boli
doplnené o formaty, animacie a texty, ktoré popisujii obrazok aj cely postup
konstrukcie (Obr. 2). Animacie geometrickych objektov (bodov, priamok,
kruznic, kriviek a pod.) st synchronne ladené so stivisiacou teoriou.
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Zostrojime v bodoch
korunnej hrany cesty. Na korunnej hrane
cesty zvolime mnoZinu bodov. V nich
zostrojime vykopové kuzele. Vrstevnice
vykopovych pléch zostrojime ako
doty¢nice kruznic vykopovych spadovych
kuZelov.

© Beganova Deskriptivna geometria pre stavebné odbory 8

Obr. 2: Ukazka obrazku s doplnenymi formatmi a popismi na snimke
v PowerPoint prezentacii
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2.2 Zobrazenie objektov v 3D priestore vytvorenych
v AutoCADe a v GeoGebre

Pre lepsiu priestorovu predstavivost boli v AutoCADe a v GeoGebre zobrazené
3D modely objektov, ktoré boli pouzité v prezentaciach u¢iva v PowerPointe.

Na Obr. 3 je ukazka 3D modelu ploch konsStantného spadu ako obalky
kuzelovych ploch vytvoreného v AutoCADe a aplikovaného na snimke
v PowerPointe, a to s vykladom uciva o projektovani nasypovych a vykopovych
ploch pozdiz korunnych hran cesty v tvare kriviek leZiacich vo vodorovnych
rovinach.

Plocha konstantného spadu prechadzijlca krivkou, ktora lei v rovine rovnobeZnej s priemetriou je
spolocna obalova plocha spadovych kuZefov zostrojenych v bodoch krivky.

Nasypova plocha

&

Obrazok: Beganové, AutoCAD 2022

Vrstevnice nasypovych alebo vykopovych rovin zostrajime v nakresni ako dotykové krivky kruznic
spadovych kuZelov v bodoch korunnej hrany cesty vo vzdialenosti i, resp. iy. Intervaly st dané graficky.
Vykopova plocha

I\f
P

7 w( > _)
IR iy S NN
[ AR e
%ﬂ,“wp}»&‘:é@

&L T

S

k(3)

Obrézok: Beganovd, AutoCAD 2022

Obr. 3: Stranka v PowerPoint prezentécii s 3D modelmi vytvorenymi v softvéri
AutoCAD

Na Obr. 4 je ukazka 3D modelu rovin daného spadu ako obalky kuzel'ovych
ploch vytvoreny v GeoGebre a na Obr. 5 je tento model aplikovany na snimke
v PowerPointe s vykladom uciva o projektovani nasypovych a vykopovych
rovin pozdiz vodorovnych priamych korunnych hrén cesty, prip. pozdiz hran
vodorovnej plosiny.



Dynamicka ucebnica deskriptivnej geometrie pre stavebné odbory

45

Obr. 4: 3D model nakresleny v softvéri GeoGebra

spadom s, =1 v mierke 1 :100.

Obrézok: Beganové, Geogebra 2022
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Napriklad, nech sa cestné teleso nachadza vo vyske 35 m a vodorovna rovina s ktorou ho potrebujeme
prepojit nasypmi vo vyske 33 m. Korunnou hranou cesty zostrojime rovinu konstantného spadu so

Zvolime fubovolny bod A korunnej
hrany cesty. Bodom A zostrojime
spadovy kuZel. Jeho vy3ka bude 2 m,
stred podstavnej kruZnice bude lezat v
rovine s kétou 33. Polomer kruZnice
buder=2i.

Vypocitame i, = %% =1

Hladana plocha konstantného spadu je
dotykova rovina spadového kuZela v
bode A prechddzajuca korunnou hranou
cesty.

Postup:

1. Ndsypové roviny zobrazime pomocou
hlavnych priamok rovnobeznych s korunnou
hranou cesty vo vzdialenosti

2. Hlavnd priamka s kétou 33 je priesecnica
nasypovej roviny s terénom.

Pozndmbka. Ak je topografickd plocha dand

vrstevnicovym pldnom, zostrojime priesecnicu

ndsypovej roviny s terénom.

Deskriptivna geometria pre stavebné odbory 15

Obr. 5: 3D model pouzity na snimke v PowerPointe

2.3 Vyutzitie softvéru GeoGebra a d’alSich softvérov pri

tvorbe videi

Niektoré témy a postupy konstrukcii v deskriptivnej geometrii su narocné na
priestorovu predstavivost’ a nie vZdy je mozné zabezpecit 3D model. Velkou
pomockou sa ukazali videa, ktoré prezentuju cely objekt zo vSetkych stran alebo
zobrazia cely postup, napr. otacanie roviny v stredovom premietani. Na Obr. 6
je ukazka strany ucebnice, kde je vlozené video zobrazujuce strechu so
zakazanym odkvapom. Strecha je vyrieSena v kotovanom premietani a prilozené
video zobrazuje 3D model tejto strechy otacajuci sa, a teda poskytujuci pohl'ad
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na rieSenie zo vSetkych stran. 3D model bol nakresleny v softvéri GeoGebra
a v GeoGebre bol tiez vytvoreny sposob animéacie tohto objektu. Nasledne bola
animacia v GeoGebre spustena a nasnimand pomocou oCam. Video vytvorené
v prostredi oCam bolo upravené pomocou Video Editora a vlozené na snimku
v PowerPointe. Na kazdej strane uc¢ebnice obsahujticej video je ZIta znacka, pri
ktorej je popisany postup opakovaného spustenia videa.

Riedenie pripadu a) y < x < 2y 5

1. Oznadime volné odkvapy a vyriesime tast strechy bez —
zakazanych odkvapov. -
2. Krajnymi bodmi zakdzaného odkvapu vedieme roviny S 3 .
5a6. 6.7 [
3. Zostrojime priesecnice 35 a 46. 15 "
4. Narofie 34 bude ukonéené v prieniku s UZlabim 35 16 R 3
alebo 46 podla toho, ktoré ho ukoni skér. Je to
Uzlabie 46.
5. Zpriesetnika 34 a 46 vychadza hrebern 36, ktory je 1
ukonéeny v prieniku s tZlabim 35.
6. Z priese¢nika hran 35 a 36 vychadza hrana 56.
7. Vyznatime smer stekania vody v rovinach 5 a 6.

Hlw
~

Pre spustenie videa prejdite mySou
na video-obrdzok a kliknite na
zobrazenu moZnost prehrdvania.

b 000000 )

> | ‘

Beganova, Valikovd

Obr. 6: Ukazka snimky v PowerPoint prezentacii s vlozenym videom

2.4 Vyuzitie softvéru GeoGebra pri tvorbe anaglyfov

Ako dalsi sposob nazorného zobrazenia geometrickych 3D objektov su
v ucebnici zakomponované anaglyfy. Z 3D modelov, ktoré boli nakreslené
v softvéri GeoGebra st vytvorené anaglyfy atie si zobrazené na snimkach
v PowerPointe. Pre ich pouzitie su potrebné 3D okuliare. Na Obr. 7 je anaglyf
modelu rieSenia navrhu strechy pomocou rovin s rovnakym spadom vytvoreny
v softvéri GeoGebra.

Obr. 7: Anaglyf vytvoreny v softvéri GeoGebra
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2.5 Interaktivny obsah na webovej stranke vytvorenej
v Microsoft Visual Studio Code

Ucebnica Deskriptivna geometria pre stavebné odbory [1] je dostupna na stranke
www.math.sk v ¢asti Vyuka v predmete Deskriptivna geometria alebo na stranke
www.svf.stuba.sk v asti Dokumenty/Edi¢néd Cinnost/Skriptad. Obsah ucebnice
bol upraveny a vlozeny na stranku vytvorenti pomocou Microsoft Visual Studio
Code. Architektira webovej stranky obsahuje interaktivny vyber jednotlivych
kapitol a ich podkapitol. Kazdu podkapitolu je mozné otvarat’ a stiahnut’ v dvoch
formatoch, ato ako pdf stibor pre potreby tlace a ppsx stibor s prezentaciou
vytvorenou v PowerPoint vhodnou na S$tidium a vyucbu, nakolko zahina
animacie a vSetky dynamické prvky kapitol ucebnice.

Terspoua

DESKRIPTIVNA GEOMETRIA PRE STAVEBNE ODBORY

Sclie EQENS s ST ST 15BN 578 50 227 £25% 3

Lirsaaring

Obr. 8: Uvodna stranka ugebnice s interaktivnym obsahom vlavo
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Obr. 9: Stranka ucebnice Deskriptivna geometria pre stavebné odbory
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Na Obr. 8 je tvodna stranka ucebnice s interaktivnym obsahom vl'avo a na
Obr. 9 je stranka s otvorenou podkapitolou 11.6, kedy sa zobrazuje aj jej prehl'ad
snimok. Na hornej ¢asti st ikony s vyberom formatov stiborov pdf a ppsx.

3 Zaver

V tomto ¢lanku sme chceli ukdzat vyuzitie kombinacie softvérov, a to
AutoCADu a Geogebry, podporujtcich presné vykreslenie 2D a 3D objektov,
tvorbu anaglyfov a videi (GeoGebra, oCam, Video Editor). Zarovenn sme
ukazali efektivne zakomponovanie tychto vystupov do PowerPoint prezentacii
tvorenych kapitoly ucebnice Deskriptivna geometria pre stavebné odbory.

Pod’akovanie
Tento ¢lanok vznikol za podpory projektu VEGA 1/0468/20.
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Abstract. Intersection multiplicity of two plane curves F' and G at
some point P has a well-known property of Ip(F,G) > mn, where
m and n are the multiplicities of the point P on the curves F' and
G respectively. To each common tangent of F' and G at P can be
assigned a nonnegative integer, a number equal to its contribution to
the intersection multiplicity. This can be done via local investigation
methods. The sum of these contribution numbers of all common
tangents is equal to the remainder R = Ip(F,G) — mn, We investigate
the values of this contribution number for common tangents of the
multiplicity 1.

Keywords: algebraic geometry, intersection multiplicity, tangent, curve

1 Introduction

Intersection multiplicity is an important notion in algebraic geometry. It
is a number which reflects the complexity of an intersection of two plane
curves. Our goal is to contribute to the research of the connection of the
local geometric and algebraic properties of the curves with the multiplic-
ity of their intersection.

Let F € k[z,y] be a polynomial over some algebraically closed field k.
For F = Y ¢;;z'y? (¢;j € k), we define the order of the polynomial F
(ord(F)) and the degree of the polynomial F (deg(F)) as

ord(F) =min{i +j | ¢; ; # 0},

deg(F) = max{i+j | ¢;; # 0}. (1)

Polynomial F' is called homogeneous, if ord(F) = deg(F). For a non-
constant polynomial F', we define an affine algebraic curve (curve) as a
subset of the affine plane A%(k), the set

{P e A%(k) | F(P) =0} (2)

We shall use the same capital letter F' both for the polynomial and the
curve it defines. If deg(F') = 1, the curve corresponding to F' is called a
line.
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We are interested in the local algebraic and geometric properties of an
intersection of two such curves. In this article, by local we shall always
mean in the Euclidean topology. Therefore, we focus on the situation in
a small neighbourhood of the origin, the point O = (0,0). If we need to
investigate a situation in some other point P # (0,0), we simply apply
a change of coordinates, which maps the point P onto O and proceed
analogously.

2 Local properties of plane curves
Let ord(F) = m. Then the polynomial F' can be written as

F:Fm+Fm+1+"'+Fm+M7

where F; € k[z,y] is either a homogeneous polynomial of the degree i or a
zero polynomial and F),, # 0. We define the multiplicity of the origin on
the curve F as the number mo(F) = m. Since the field k is algebraically
closed, the polynomial F,,, can be written as a product of m (not necessary
different) linear polynomials. These define m lines, called the tangents of
F at the origin. If F; = [[T*, where e; € N and T; define pairwise dis-
tinct lines, we call the number e; the multiplicity of the tangent T;.

In a small neighbourhood of the origin, the curve F' can be decomposed
into a finite set of branches by,--- ,b.. Each branch b; is defined by a
parametrization b;(t) = (¢, 5;(t)) for some ¢; € N and a (possibly infinite)
power series (3;(t). Each branch has a uniquely defined tangent and a
multiplicity m;, where mo(F) =m=3Y._, m;.

Proper proofs of the properties above and more about branches can be
found in [2], [3] or [1].

Example 2.1. Let F be a curve defined by the polynomial
F = $4y2 _ x2y4 +m5y4 +y7 _ 56'8. (3)

Then mo(F') = 6, and the tangents of I at this point are T} = x (with
the multiplicity 2), 7o = y (with the mult. 2), T3 = y — z (with the mult.
1) and Ty = y + « (with the mult. 1). The curve F decomposes at the
origin into five branches, b1, - - - , b5. Their parametrizations, multiplicities
and tangents are listed below.

branch mult. tangent
bi(t) =2 =L +-)  myp =2 r=0
ba(t) = (t,—t+ 5t +---) ma=1 y+z=0
bs(t) = (t,t+ 22+ ) m3=1 y—x=0
ba(t) =t 2+ 5t +-+) mu=1 y=0
bs(t) = (t,—t2+ 3t*+--+) ms=1 y=0
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The branches of the curve F' are illustrated on Figure 2.1.

Fig. 1: The curve F and its five branches in a small neighbourhood of the
origin.

Following lemma describes how the branches look like in a case of a
tangent of the multiplicity 1. It is later used in the proof of our main
result, Theorem 4.1.

Lemma 2.2. Let F be a curve defined by the polynomial

F= Z e Iy (4)

Let y = 0 be a tangent of F' at the origin of the multiplicity 1. Then there
is exactly one branch of F' at the origin with the tangent y and it can be
parametrized by

b(t) = (¢, t, (= fo,n — V(H)t" + (terms of higher degree))),  (5)

where h € N is the smallest number such that fj ¢ is nonzero. The
function V(H) is defined as follows. For H > h, there is exactly one pair
of integers e,i € N, such that H = eh + 4, where ¢ < h. Then

e+1

V(H) =V(e,i) =Y (=fn0)™ ™ fintiet1—j (6)

Jj=0
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Proof. We omit the proof of this lemma. It can be proven by a direct
(and a rather lengthy) calculation of the Puiseux expansion. O

3 Intersection multiplicity of two plane curves

Let ' and G be two curves which intersect at the origin. We define their
intersection multiplicity at this point as

Io(F,G) = dim k[z, y/ (F, G) (7)

where by dim we mean the dimension of k[x,y]/(F,G) as a vector space.
More about the intersection multiplicity can be found in numerous books
about algebraic geometry, for example [5], [4] or [3].

Let mo(F) = m and mo(G) = n. Their intersection multiplicity
at the origin has a well known property Io(F,G) > mn. By adding a
remainder R, we can change this inequality to the equality

I6(F,G) = mn + R. 8)

Example 3.1. Let F' and G be two curves (illustrated in Figure 3.1)
defined by the polynomials

F:1'2—y57
G =%y

; =

(9)

Fig. 2: Intersection of the curves F' ans G.

Then m = mo(F) = 2, and n = mo(G) = 3. They intersect at the
origin with the multiplicity Io(F,G) = 8. Therefore the remainder for
this example is equal to

R=Io(F,G)—mn=8-2-3=2. (10)



Contribution of a tangent of multiplicity one to the intersection multiplicity 53

For each common tangent T' of F' and G at O we can describe how
much it contributes to the remainder R in the following way. Let F
decompose into r branches at the origin, the branches b1, - --b,.. Then

IO(FaG):ZIO(qu)7 (11)
i=1

where Ip(b;,G) = ord G(b;(t)). Let m; denote the multiplicity of the
point O on the branch b;. Then m = mo(F) = >.._, m;.

Let by, -- b, be the set of all branches of F' with the tangent 7. Then
the the contribution of a tangent to the intersection multiplicity is the
number Cr, such that

ZIO(btj;G) = (mtl —&-—&-mtb)n—&—C’T (12)
j=1

Therefore, if 7 is a set of all common tangents of F' and G at O, we have
the property

Io(F,G) =Y Io(bi,G)=mn+ Y _ Cr (13)
=1

Ter

Different approaches for the algebraic and geometric description of the
remainder R can be found in [8] and [7].

4 Contribution of a tangent of multiplicity 1

Let F and G be two plane curves, let the point O be of the multiplicity m
and n on the curves F' and G respectively. Then F' and G can be defined
by the polynomials

_ i _ g
F= Y fijamt iy, G= > gia"t 0y (14)
i€{0,...,M} i€{0,..., N}
j€{0,..., M’} jef{o,....,N"}

for some fi,jagi,j € k and M, M’,N, N’ € Ny.
Let the line y = 0 be a common tangent of F' and G. Then fy ¢ = go,0 = 0.
Let the tangent ¥y = 0 be of the multiplicity 1 on the curve F. Then

f071 7é 0. We denote Q = _fﬁlio .

Theorem 4.1. Let F' an G be curves defined as above. Let Cy be the
contribution of the tangent y to their intersection multiplicity at O. Then
e Cy > 2if, and only if,

Jo,1(901Q +91,0) = go1 (f0,1Q + f1.0) (15)
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e Cy > 3 if, and only if,
fo1 (902Q* + 91.1Q + 92.0) = go.1 (fo2@> + f1.1Q + f20), (16)
e Cy >4 if, and only if,

fo1 (90,3Q% + 912Q% + 921Q + g3.0) — f1,1 (92,0 + Go,2) =

17
=901 (f0,3Q° + f12Q° + f21Q + f3.0) — 911 (f2.0 + fo,2) - a7

Proof. This can be proven by direct calculation. Since the multiplicity of
the tangent y on the curve F' at the origin is 1, there is exactly one branch
b of the curve F' with this tangent and it can be parametrized by

b(t) = (t, th+1 (—f07h — V(H)tH + (terms of higher degree))) , o (18)

where h is the smallest number such that fj o is nonzero, as defined in
Lemma 2.2.

The intersection multiplicity of G and b at O is equal to the order of the
polynomial G(b(t)) and has the property

Io(b,G) = 1n+ C,,. (19)

We show the proof for the case Cy > 2. Let the multiplicity of the tangent
y on the curve G be s. Then gpo=---=go,s—1 =0, go,s # 0 and

)= > g™t IO (< fyp — V)T 4 () =

—fro\’
- <go,s ( fo,1 + 1" (g1,0)

+ (terms of degree > n + 2).

We need to find the conditions under which the order of the polynomial
G(b(t)) is n + 1. One of the following two cases happen.
1. Let h =s=1. Then

=ttt (90,1 —f10 + 91,0> +(-),
fon

therefore the order of the polynomial G(b(t)) is n+ 1 if, and only if

Jo,1 ff:,ll’o + 91,0 # 0.

(20)




Contribution of a tangent of multiplicity one to the intersection multiplicity 55

2. Let h > 1 (hence fo1 = 0), or s > 1 (hence go,; = 0). Then
n+ hs > n+ 1 and the order of the polynomial G(b(t)) is n + 1 if,
and only if g1 0 # 0.
Both these cases can be described by a single common condition, ord(G(t))
n + 1 if, and only if

g1,0f0,1 # 90,1f1,07 (21)

otherwise, it is greater. In other words C, = Ip(b, G) —n > 2 if, and only
if,

g1,0f0.1 = go,1f10- (22)
This is equivalent to our desired condition,
—f10 —f10
f0,190,1 + g1,0f0,1 = fo0,190,1 + g0,1.f1,0,
Jo1 fo
—f1,0 —f1,0 23
fo1 (90,1 LU 91,0 | = 9o | fou LU fio], (23)
fo fo

fo,1(901Q + 91,0) = 90,1 (f0,1Q + f1,0) -

Analogous process can be repeated for the proof of the cases of Cy > 3
and Cy > 4. O]

Remark 4.2. Currently we do not have an equivalent result for Cy > 5
and higher. However, the results of Theorem 4.1 show a certain pattern
in the conditions. This suggests what the conditions for the general case
of Cy > z (z € N) could look like.

5 Conclusion

Contribution of an tangent to the intersection multiplicity (C}) is a ge-
ometrical property of an intersection connected to the intersection mul-
tiplicity. In this article, we are focused on the simplest case, where the
multiplicity of a given tangent is 1. We have calculated necessary and
sufficient conditions for small values of the number C; in this case.

Acknowledgements
The author has been supported by VEGA 1/0596/21.

References
[1] Bohumil Bydzovsky: Uvod do algebraicke geometrie, Jednota
¢eskoslovenskych matematiki a fysiku, 1948.
[2] William Fulton: Algebraic Curves: An Introduction to Algebraic
Geometry, http://www.math.lsa.umich.edu/~wfulton/.
[3] Egbert Brieskorn, Horst Knorrer: Plane Algebraic Curves,
Birkh&user Basel, 1986.



56

Bosakova Adriana

[4]

Ernst Kunz: Introduction to Plane Algebraic Curves, Birkhauser
Basel, 200.

Daniel Perrin: Algebraic Geometry, An Introduction, Springer-Verlag
London, 2008.

David Eisenbud, Joe Harris: The Geometry of Schemes, Springer-
Verlag New York, 2000.

Matasovsky, Alexander: Lokdlna Bézoutova veta 2014, PhD thesis,
Univerzita Komenského

Eduard Boda,Peter Schenzel Local Bezout estimates and multiplic-
ities of parameter and primary ideals Journal of Algebra, vol. 488,
p- 42-65, 2017



9" Slovak—Czech Conference on Geometry and Graphics 2023 57

Geometry of the Schwarzschild spacetimes
Jan Brajeréik
Department of Physics, Mathematics and Technologies
Faculty of Humanities and Natural Sciences, University of Presov

Ul. 17. novembra 1, 080 01 Pre3ov, Slovak Republic
email: jan.brajercik@unipo.sk

Abstract. In a broader sense, a Schwarzschild spacetime is a smooth
manifold, endowed with an action of the special orthogonal group
SO(3) and a Schwarzschild metric, an SO(3)-invariant metric field,
satisfying the Einstein equations. Explicit formulas of all Schwarzschild
metrics on 4-dimensional manifold R x (R?\ {(0,0,0)}) are introduced,
using spherical charts. Existence of a Schwarzschild metric on different
manifolds is also disscused.

Keywords: Schwarzschild metric, spacetime, special orthogonal group,
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1 Introduction

This contribution concerns mathematical foundations of the general rela-
tivity theory published by Albert Einstein in 1915 [1]. The theory provides
a unified description of gravity as a geometric property of four-dimensional
spacetime. Relation between the curvature of spacetime and the matter
of spacetime is given by the Finstein field equations. In generally, these
equations represent a system of second order partial differential equations
for metric fields. Its exact solution for a case of a single spherical non-
rotating mass was found by Karl Schwarzschild in 1915 [5]. The solution
is well-known as Schwarzschild metric and is formulated in adapted coor-
dinates on the subset R x (R?*\ {(0,0,0)}) of R* where the mass is placed
in its origin. This space with the Schwarzschild metric represents one of
the basic models of the general relativity called Schwarzschild spacetime.

In this contribution we revise the process of finding the solution of the
corresponding Einstein equations on the manifold R x (R3\ {(0,0,0)})
by geometric approach. The resulting family of Schwarzschild metrics is
parametrized by a function and two real parameters, the integration con-
stants. For any Schwarzschild metric, one of the parameters determines a
submanifold, where the metric is not defined, the Schwarzschild sphere. In
particular, the family admits a global metric whose Schwarzschild sphere
is empty.

By the winding mapping of the real line R onto the circle S*, these
results are transferred to the manifold S* x (R?\ {(0,0,0)}) which topo-
logically differs from R x (R?\ {(0,0,0)}).

All our assertions are derived independently of the signature of the
Schwarzschild metric; the signature can be chosen as an independent ax-
iom.
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2 The special orthogonal group and the rotations

Let us consider R? as a real Euclidean vector space of dimension 3 en-
dowed with the canonical (Euclidean) scalar product. A square matrix A
of dimension 3 with real entries

a1 a2 ais
A= a21 a2 a23
asz1 asz a33

is said to be orthogonal, if its row vectors (a11,a12,a13), (@21, a2z, as3),
(a31, asza,asz) constitute an orthonormal basis of R®. The set of orthog-
onal matrices is denoted by O(3). The matrix multiplication defines on
the set O(3) a group structure. Its subgroup consisting of all orthogonal
matrices with determinant 1 is called the special orthogonal group and is
denoted SO(3). With a smooth structure SO(3) is also a Lie group.

The group SO(3) is related with the rotations of R3. Equations of
counter-clockwise rotations of R? around the z-axis, the y-axis and the
z-axis in the canonical oriented frame in R? are

T=x, Y=wycosPy —zsinfBy, Z=ysinpf1 + zcospfy,
T=xcosfPs+zsinfy, Y=y, Z= —xsinpfs+ zcosFs,
T=wxcosfP3 —ysinf;, y==xsinf3+ycosfs, ZzZ=z,

respectively, where 31, B2 and (3 are the corresponding rotation param-
eters (angles). We call these transformations of R? elementary rotations.
By rotation of R® we mean any composition of elementary rotation around
the z-axis, the y-axis and the z-axis. Each rotation p of R? is uniquely
determined by its matrix B given by p(z,y,z) = B - (x,y,2) for all
(z,y,2) € R3.

Lemma 1. A matrix of dimension 3 is special orthogonal if and only if
it is a matrix of some rotation of R3.

3 Spherical atlas
Let us denote by U, U,V open subsets of R? determined as

U=R*\{(z,y,2) € R*|z > 0,y = 0},
U =R3\{(z,y,2) e R®*|z <0,2 =0},
V' =(0,00) x (0,27) x (0,7),

and by A : V 3 (r,¢,9) — (x,y,2) € U the mapping, defined by the
equations

x=rcospsing, y=rsingpsind, z=rcosv.
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Analogously, denote by A : V > (7,%,9) = (z,y,2) € U the mapping,
defined by equations
xr=—rFcosgsing, y=—rcosd, z=—rsing@sind,

Both A and A are invertible. Denoting ¥ = A™!, and ¥ = A~! we have

Lemma 2. The charts (U, ¥), (U, ¥) constitute a smooth atlas on R?\

{(0,0,0)}.

Now consider X = R x]1 R?\ {(0,0,0)} with the atlas formed by two charts
(R x U,®), (R x U,®), where ® = (,¥) = (t,r,¢,0), & = (£, V) =

(t,7,®,9), and ¢t is the canonical coordinate on R.

In this paper, we call this atlas the spherical atlas on X; the charts
(RxU,®), (RxU,®) are called first and second spherical charts on X.
4 Invariant metric
A metric of X is everywhere non-degenerate and symmetric (0, 2)-tensor

field on X. A (0, 2)-tensor field g on X is said to be invariant with respect
to a diffeomorphism o : X — X if its pullback a*g satisfies
a*g=g.
In the first spherical chart on X, a (0, 2)-tensor field g has an expression
g = gudt ® dt + g dt @ dr + gy, dt @ dp + grodt @ dv

+gredr ® dt + grrdr @ dr + grodr ® de + grodr ® dY

Fgptdp @ dt + gorde @ dr + gopdp @ dp + geedp @ di

+g9:dY @ dt + gordV @ dr + go,dV ® dp + gyedd @ dv.

Our aim is to determine (0, 2)-tensor fields g on X invariant with respect
to the following transformations of X:
action of SO(3)
SOBB) x X 3 (A, (t,x,y,2)) — (£, A (x,y,2)) € X,
time translations
Rx X3 (e tay2) = 1(t,z,y,2) = (t+¢e,2,y,2) € X,
time reflection
X3 (t,x,y,2) > o(t,z,y,2) = (—t,z,y,2) € X.
Theorem 1. Each (0, 2)-tensor field g on X invariant with respect to the

action of SO(3), to the time translations, and to the time reflection, is in
the first spherical chart expressed by

grxv = J(r)dt @ dt + P(r)dr @ dr + Q(r)(sin? ddy ® dp + dv @ dv),

where J, P, and @ are arbitrary functions of r on R x U.
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Analogous result can be obtained for invariant (0,2)-tensor field g 77
in the second spherical chart. Taking grxy and gg 7 such that the
corresponding components coincide on the intersection of domains we get
invariant (0, 2)-tensor field g globally defined on X (see [4] for details).

5 Einstein equations

In this section our aim is to find all invariant metrics on X satisfying the
Einstein equations. First we recall the basic notation and concepts to this
purpose. If we have a metric g on X, i.e. symmetric, regular (0, 2)-tensor
field g on X, its chart expression using coordinates (%) is

g= gijdmi ® da’.
The symmetry requirement is in this chart expression represented by the
condition g;; = g;; for all 4, j; regularity means that det(g;;) # 0 every-
where. The functions
Ik lgkl 9gil n 9gji  0gij
) Oxd  Oxt Ot )’

where g*! are functions defined by Jik gkt = 5;, are the Christoffel symbols,
the components of the Levi-Civita connection associated with the metric
g, in a chart (U, ¢). The curvature tensor of the Levi-Civita connection
is a (1, 3)-tensor field on X, expressed by

Rl g @ dot @ da

kij gl z T L7

where .

ar, Tt

l jk k l l
Ry, = axji - szj + Ui Ui — T Ll

The Ricci tensor is a (0, 2)-tensor field on X, expressed by

Rijdr' @ da?

where the components R;; is defined by a (1, 3)-contraction of the curva-
ture tensor,

Rij = R}
Contracting the (1,1)-tensor field R} = g*™R,,; we obtain a function R
on X, the scalar curvature of g, or the Ricci scalar. In coordinates,

R= g”R”

Extremals of the Hilbert variational functional, in which the scalar curva-
ture stands for the Lagrangian, are determined by the Finstein equations,

1
Rij — iRgij =0. (1)
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We consider invariant metric g on X, in first spherical chart determined by
Theorem 1. Due to the regularity condition, smooth functions J, P, @ are
non-zero at every point of their domain. Just three of the Einstein equa-
tions (1) are non-trivial and independent. Due to the functions J, P, Q
depend on r only we get the system of three ordinary differential equations

PO QN @ 4P
rotaly) g
JQ 1/(Q\ P
J_Q+2(Q) 2l =0 @
J! Q/ Q// J" P Q/ J P J! 2 Q/ 2 B
Tot e e g (5) - (8) =0

where ' denotes the derivative with respect to r. Supposing Q(r) > 0 on
its domain, the structure of the equations (2) allows us to denote ¢(r) =
/Q(r) where ¢(r) can be viewed as a smooth function depending on r,
and the coordinates (¢,7,¢,?), on R x U, can be replaced by (¢, q, p, ).
If Q(r) < 0, for all r, then we denote ¢(r) = \/—Q(r), and proceed as
above. Setting

. dr\
i@ =70, vl =P ()
q
a metric g can be rewritten in the form

g =j(q)dt @ dt + p(q)dq @ dg + ¢*(sin® 9dyp @ dp + dv ® dv),

and the system (2) turns to easily solvable system

Theorem 2. (Schwarzschild solution) For any constants C,C’, C" # 0,
formula

-1
g=C' (1 — S) dt@dt+ <1 — S) dq®dq+q*(sin® 9dp@ dp+di @ do)

defines a solution of the Einstein equations (3). The domain of definition
of this solution is an open set of R x U defined by g # C.
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Again, analogous result can be obtained in the second spherical chart.
Taking values of ¢, C, C’ coinciding at the intersection of the chart domains
we get the solution defined globally on R x (R?\ {(0,0,0}) (for C < 0), or
on open subset of R x (R?\ {(0,0,0}) given by equation ¢ # C (C > 0).
For any fixed ¢, the Theorem 2 defines a metric g on R x (R3\ {(0,0,0}).
We get a family parametrized by the constants C' and C’. Any element of
this family is a Schwarzschild metric. The manifold R x (R?\ {(0,0,0})
endowed with a Schwarzschild metric g, is a Schwarzschild spacetime.

6 Schwarzschild solution on S' x (R3\ {(0,0,0)})

Let us consider the canonical product manifold structure on the topolog-
ical space S x (R?\ {(0,0,0)}), and a winding mapping ko from R to
S1. This mapping induces a surjection

kR x (R*\ {(0,0,0)}) — 5" x (R*\ {(0,0,0)})

by &(t,z,y,2) = (ko(t),x,y,z). Our objective is to introduce an ana-
logue a Schwarzschild metric for the manifold S* x (R3\ {(0,0,0)}) which
topologically differs from the manifold R x R?\ {(0,0,0)}.

Theorem 3. Let g be a Schwarzschild metric on R x R? \ {(0,0,0)}.
The metric h on ST x (R3\ {(0,0,0)}) such that

g=~K"h
is a globally well defined solution of the Einstein equations.
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Abstract. City air mobility transport with vertical take-off and landing
capabilities challenges engineers across development spectra. Fast prototyping of
parametric propeller geometry will be introduced as well as start-up approach to
new geometry requirements. Capabilities and deficiencies of open propeller
geometry software will be compared to classical licensed software approach.
SLA 3D printer used as a suitable tool for basic geometry evaluation and aero-
acoustic testing will be described.
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1 Introduction

There are 3 main propulsion systems used for VTOL. First one and the easiest to
design is separate propeller units for horizontal and vertical flight. This system
allows effective design of each horizontal and vertical propellers however creates
higher drag forces during horizontal flight and ads weight of non-used system.
This problem can be solved by second type which is tilting rotor system. Here
transition phase of flight is carried by rotating rotors. The problem of this system
is need of compromise on propeller design for both vertical and horizontal flight
propeller efficiency and technical complexity of rotating rotor system. The last
system is ducted fan configuration where turbofan stator and rotor systems are
located inside wings ducts for vertical flight with benefits of higher ground effect
and other physical phenomena. Ducted fan approach provides batter aero-
acoustic optimization possibilities also allowing rotation of whole unit during
transition phase.

2 Propeller design approach

Procedure of every propeller design starts with analytical computation of
propeller design parameters based on aircraft performance demands [1]. From
propeller diameter, propeller revolutions per minute, desired power and air
conditions (pressure and density), main propeller design parameters (angle of
attack, angle of incidence, chord length, twist/lean/sweep angles) are computed.
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These parameters give complete description of propeller design which can then
be constructed by one of following approaches. [2]

2.1 Design engineer with commercial CAD software

This approach means construction of whole propeller by design engineer, starting
with propeller profile construction (usually from NACA library), manual
positioning of profiles along stacking line and final surface creation with desired
surface continuity. Problems of this approach are time consumption, cost
(engineer with commercial CAD software such as CATIA) and complicated
possibilities of geometry optimization and modification.

2.2 Parametric CAD of propulsion unit

Parametric CAD tools for propeller/blade design are the best option for fast
prototyping. Qprop for propeller and Xrotor for blade design opensource tools,
constantly being developed on MIT, give complete independent control of
parametric design together with low-fidelity aero-acoustic analyses. After
mastering non-intuitive environment, user is able to generate, quickly analyze
and optimize propulsion unit geometry. [3]

2.3 Parametric CAD of aircraft

Another parametric CAD tool for description of whole aircraft is than
implemented into design procedure to give geometry control of the whole
aircraft. NASA OpenVSP is a simple .exe opensource software allowing user to
create and parametrically describe simplified geometry of whole aircraft with all
avionic systems (wings, flaps, propulsion units, landing gear). This geometry is
than used for advanced high-fidelity aero-acoustic analyses to give complete
mathematical model of aircraft behavior. [4]

2.4 In-house parametrical geometry software

For the final stages of blade/propeller design, to capture all details and prepare
geometry built specifically for specific aircraft, python/c++ in-house software
are used. The main benefit of this step is high quality CAD generation with easy
and fast possibility of very fine parameter optimization.

3 SLA 3D printer — fast prototyping tool

Stereolithography (SLA) 3D printing is the most common resin 3D printing
process that has become vastly popular for its ability to produce high-accuracy,
isotropic, and watertight prototypes and end-use parts in a range of advanced
materials with fine features and smooth surface finish.

Most common desktop SLA 3D printer works on a simple principle of
submerging horizontal plate into vane with transparent bottom. LCD UV display
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than lights on printed area. By repeating process of lifting, submerging and
printing each layer, the desired resin object is printed.

The process of preparation consists of several steps. Firstly watertight
geometry needs to be transformed into mesh .stl format. Then in slicing software
the model is pre-processed by setting up internal (honeycomb, triangular etc.)
and external (supports) structures. Display and layer parameters are also set in
slicing software.

Final 3D print can be postprocessed directly in post-processing machine or
by cleaning in alcohol and hardening in UV oven.

Accuracy of average desktop SLA printer is the accuracy of LCD display
(full-HD, 4K) in horizontal plane and 0.01mm in vertical plane.
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Abstract. Subdivision surfaces are commonly used to simulate addi-
tional detail for mesh objects on the scene. For certain problems, such
as Lagrangian shrink-wrapping, determining the number of vertices
of the subdivision surface is crucial for estimating vertex density.
Furthermore, gauging the number of mesh primitives relative to the
subdivision level becomes useful for memory preallocation during the
surface creation process. We propose a general method for estimating
these values using solutions to simple systems recurrence equations.
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1 Introduction

Subdivision surfaces, created by refining a base cage surface, are used
in geometric design [7] and real-time rendering [8]. This paper presents
counting formulas for estimating mesh primitive (vertices, edges, faces)
counts based on the connectivity of the base mesh and the recursive prop-
erties of subdivision (see Fig. 1 (a)). These formulas help in computing
vertex density [6] and in efficient memory allocation for subdivision sur-
face construction.

(a)

N) =42 N} =159
NS =118 Nj =459

Fig. 1: (a) The amount of mesh vertices N{, and edges N3, with respect
to subdivision level s = 0, 1... depends on the initial connectivity M. (b)
Three snapshots of the evolution of an icosphere with subdivision level
s = 3 under an advection-diffusion shrink-wrapping model introduced in
[6]. The detail shows a chosen mesh vertex F; (red) with its corresponding
barycentric Laplacian co-volume V; (blue).
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2 Motivation

According to Section 2.4 of [6] a semi-implicit formulation of a parabolic
advection-diffusion evolution applied to manifold mesh surfaces, requires
us to ensure that the time step size 7 > 0 is close to the value of mean
area pu(V) of a barycentric Laplacian co-volume V' surrounding each mesh
vertex (see Fig. 1). The most straightforward approach is to compute a
2-dimensional scaling factor

T 472
= , where pu.(V)= . 1
¢ () pr(V) Ny (1)

This assumes a spherical evolving surface with uniform vertex distribu-
tion. To achieve stability and return to the original scale, the mesh is
scaled using ¢ and then reverted with 1/¢.

For a surface formed by s > 0 subdivision steps, a counting formula
evaluates IVy, from the recursive nature of the subdivision operation. A
typical example of such surface is an icosphere which is a form of spherical
geodesic grid used as a discrete computational domain for applications
such as climate modeling [13] and global data visualization [16]. Starting
from initial vertex count of an icosahedron N{, = 12 we have

Ny =42, NE =162, N = 642, Ny = 2562, Ny = 10242, ... .

Other, more general surfaces with different initial valences for each vertex,
would need individual evaluation, which is clearly impractical.

3 Related work

In acoustic simulations Alarcao et al. [2] subdivided an icosahedron’s radi-
ation pattern for ray direction determination, with formulas for counting
vertices and faces:

.
N‘S,:5<223—25+22m)+2, Nj =20 45 (2)

m=1

[12] discusses the OLAM geodesic grid construction, beginning with an
icosahedron inscribed in the earth. Each triangle subdivides into N2
smaller triangles, introducing 30(N? — 1) new edges and 10(N? — 1) ver-
tices. This approach differs from the icosahedron counting formula (2) as
it does not consider recursion and solely focuses on 4:1 triangle subdivi-
sions.

Both techniques, however, only handle a single type of triangular base
surface under a 4:1 triangle subdivision.
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4 Manifold mesh subdivision theory

Polygonal meshes are perhaps the most widely adopted representation
in the realm of 3D data storage and display. We evaluated the formal
definitions of meshes in the prominent literature from the field, such as
Botsch et al. [3], and Hoppe et al. [10], and formulated the following
definition:

Definition 4.1. Let K be an abstract simplicial complex containing at
most 2-simplices (triangles). Let V = {vi,..,vn,} C E? a finite set
of points referred to as the vertex set. Then (K,V) is called a triangle
mesh. A polygon is a union of 2-simplices (triangles) each of which is edge-
adjacent to another triangle!. Let M D K possibly contain polygons in
addition to triangles in K. Pair (M, V) is then called a polygonal mesh.

A pure point-set surface image M C E? of the O\

. ) o N AN
mesh is known as the geometric realization of (M, V). g
This notion is explained in more detail in Section 2
of [10]. / \ \

. Mesl}es.apprommatlng smogth 'su'rfaces Tequire |
distinguishing between general simplicial realizations —
and those approximating smooth surfaces. Hence, oM

we distinguish between manifold and non-manifold Fig. 2: Each tri-
meshes. angle has 3 half-
edges, and each
interior edge has
two opposing half-
edges, and there is
a single half-edge
for each boundary
edge.

Definition 4.2. Let X be a topological 2-manifold,
and F : X — E? its immersion. A polygonal mesh
(M, V) is then said to be a manifold mesh if M =
F[X]. If the geometric realization M does not have
a boundary M, we say that (M, V) is watertight.

A 2-manifold mesh is sometimes referred to as a
surface mesh for which there exists an efficient data structure [15] which
uses ordered 1-simplices - half-edges (see Fig.2).

Now define a map M — M* referred to as a tessellation-changing
operation on M, such that M*NM # & where M* is also an extension of
the resulting simplicial complex * containing modified polygons forming
a polygonal mesh (M*, V*). An example of such operation is evidently
subdivision:

Definition 4.3. Let T = {ig,i1,i2} € M be a triangle in a surface
mesh M. A tessellation-changing operation ¥ : M — M* which in-
troduces new 0-simplices (vertices) {i;}, {ii5}, and {i3,} per each edge

LFor example, triangles Ty = {i,j,k} and Ty = {j,4,1} are edge-adjacent sharing
edge {i,j5} € K.
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{io,i1}, {i1,42}, {ia,i0} € M, and replaces T with four triangles:

Ty = {ioaiéuiﬁo}v I = {Z;O’Z.Sl’iig}?
T, = {i817i1’i>1k2}7 T = {i;o7ifz,i2},

(3)

is called a 4:1 triangle subdivision on M. If the change in connectivity
information (for triangles and edges) also propagates to all three possible
edge-neighboring triangles 7Y, 7(2) "and T2 of T, we say that ¥ is
compatible with TV T2 or TR0 If ¥ is targeting all triangles of M,
and compatible with respect to all neighbors of all triangles, we say that
3 is globally-compatible.

A subdivision of T compatible with respect to T(¢), e € {01,12,20}
provided that no neighbors of 7 are also subdivided yields two edge-
adjacent triangles T(¢) Tée),Tl(e) sharing vertex {i} € M*. For the
purposes of this paper, however, we only consider globally-compatible
subdivisions, that is: if T" subdivides into Ty, T3, T3, and T3, so do its edge
neighbors T, e € {01,12,20} if they exist.

An approzimating® variant of such subdivision is a scheme proposed
by Loop [11]. An interpolating variant would be, for example, a simple
spherical projection scheme

Ve < projsa(ve) = ve/|vell. (4)

for constructing an icosphere.

This is, of course, not the only way to subdivide triangle faces in M.
If we also add an interior vertex {i;,} = {i*} € M* subdividing T into
three quadrilaterals

QO = {7;071.8171.*77;;0}, Ql = {Z.SDilai)leai*}v QZ = {i*a'f{%i??i;o}a (5)

we formulate the combinatorial Catmull-Clark subdivision variant for tri-
angles with its approximating scheme described in [4] and [5]. This scheme
can be extended to subdivide an arbitrary mesh (m > 3)-gon with the
resulting quads Qy, ..., Qm—1 sharing the inserted interior vertex {i*}. For
example, if m = 4, we get

{io,isl,i*,i§0}7 {iglﬂilvigbvi*}ﬂ {i*vii2>i27iﬁlﬁ3}7 {i§0ﬂi*77;*1‘377;3}‘ (6)

The subdivision operation can, of course, be repeated s > 0 times
s-times
. Hh . . . . . .
where we write X° = Y o ... o X. Infinite application of subdivision then
leads to a limit surface.

2Such that ({i},v;) # 3({i}, v;) because of the movement of positions v; of the
original vertices {i} € M under 3.
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5 Counting formulas

Recall that in Section 2, we wanted to evaluate the number of mesh ver-
tices Ny as a function of the subdivision level. This number is closely
related to both the count of edges Ng and faces Np through the Euler
polyhedron formula [9]. In this section, we utilize all the tools at our dis-
posal to prove such ”counting formulas” for different types of subdivision.

Theorem 5.1. Let My =X5(M), s € Na’ be a watertight triangle surface
mesh, and let ¥ : Mgs_1 — Mg, s > 0 be a globally-compatible 4 : 1
subdivision inserting a single vertex for each edge e € M. Let N§,, N,
and Ny, denote the number of vertices, edges, and faces of M respectively.
Then given starting counts NY-, N%, and N% we have:

N§ =4°NY%, Nj =4°N2, (7)

1

NS
V73

(NB(4° — 1)+ 3ND). 0
Proof. First, we consider that ¥ subdivides each face into 4 faces, that is
Ny = 4N1‘§_1 which yields Ni = 4°N9 for any s € N. However, since we
insert a new vertex for each existing edge, the number of added vertices
in step s will be equal to edge count Nﬁ;l. This gives rise to a system of
recurrence equations:

Ny = Ny '+ Ny

9
Nj = 4Nt ®)

Before solving this system, we need to verify that under ¥ the number of
edges in M,_; increases to 4 times the count in previous step (the second
equation for Ng).
Since for a triangle mesh without boundary, the total number of half-
edges is:
Ny = 2Ng = 3Np, (10)

and subdivision from Definition 4.3 updates the number of edge by dou-
bling the amount of existing edges, and adding 3 new interior edges per
each triangle, we have

Ny =2Ny '+ 3Ny ' =4N;
using (10).

After solving (9) using the s-th power of the matrix of the system, we
get Nj = 4°NY and (8). O
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The fact that the proof of the above theorem
depends only on identity (10) yields:

Corollary 5.1. The statement of Theorem 5.1 is
independent from the genus of the surface mesh.

Introducing boundary violates idenity (10)
which must be replaced by

Ni =2Nrg + Npg = 3Np, (11)

where N = N;g+ Npg with interior and bound-
ary edge counts N;g, Npg respectively.

Theorem 5.2. Let My = X5(M), s € NI be Fig. 3: (a) subdivid-
a possibly non-watertight triangle surface mesh, ing interior (Theorem
and let ¥ : Mg_1 — My, s > 0 be a globally- 5.1) (b) and bound-
compatible 4 : 1 subdivision inserting a single ver- 2y triangles (Theo-
tex for each edge e € M,. Let Ny, denote the TN 5.2).

number of vertices, Ny, the number of interior

edges, and Ngp the number of boundary edges of
M. Then:

1 1
Nj = S(4° — 443 X )N+ 5(4 — NS5 + N,
Nip =2""1((2° = 1)Npp + 2 N{p), (12)
Npp =2°N ]%E'
Proof. Recurrence relation (9) needs to be adjusted, so that it handles
edge vertex insertion differently for interior, and for boundary edges.
Y applied to boundary edges simply doubles their amount N3,. For

counting interior edges N requires us to use the generic identity N3 =
2N ' + 3N ! combined with (11) which yields the second equation in:

Ny =Ny + Nig' + Nig
Nip =4Nig' + Ngg, (13)
Npp = QNE_El'
(12) is then the solution of system (13). O

Theorem 5.3. Let M, = %°(M), s € N§ be a watertight quad surface
mesh, and let ¥ : Ms_1 — Mg, s > 0 be a globally-compatible 4 : 1
subdivision inserting a single vertex for each edge e € Mg, and a vertex
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for each face Q € Mg, according to connectivity scheme (6). Then

N§ = 25(N% 4 2(2° — 1)),
N3 = 45N, (14)
Ny = (2° —1)’Np + (2° = 1)Np + Ny.

Proof. Similarly to the derivation of previous recurrence formulas, we con-
clude that the amount of pre-existing edges doubles during subdivision,
and we add four additional interior edges connecting from the newly in-
serted edge vertices {if},e € {01,12,23,30} to the new interior vertex
{i*}. Analogously, the newly inserted vertices {if;}, {ii2}, {#33}, {i50},
and {i*} contribute to the updated vertex count:

Np = N+ N N

N =2Ny ' +4N;71, (15)
N =4N3 1t
Solving (15) then yields (14). O

6 Tests and performance improvement

We tested the simplest triangle case in Theorem 5.1 for an icosphere,
and additional watertight input meshes. We also verified the validity of
counting formulas (8) for tori with higher genus (see Fig. 4 (b)). An
icosphere with two holes (see Fig. 1 (a) and Fig. 4 (a)) was used to verify
Theorem 5.2. Moreover, the utility of theorems in Section 5 was tested
via time measurement speedup for Loop subdivision on dataset in 4 (c)
while using preallocated memory with the a priori known mesh vertex,
edge, and face counts (see Table 1).

Armadillo | Blub | Bunny | Max Planck | 3Holes | Rocker Arm
0.85% 3.61% | 2.08% 2.08% 2.06% 2.08%

Table 1: Speedup percentages for various test meshes.

s 1 2 3 4 5 6
Speedup [%] | -94.43 | -31.23 | -7.23 | 9.13 | 15.15 | 12.83

Table 2: Recursive vs preallocated icosphere construction speedup with
respect to subdivision level s.

Evidently, the computation of new vertex positions in Loop subdivi-
sion [11] limits the potential gain from preallocation. For this reason we
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. Ny =168, N) =474, N) =732, NO — g64, NG = 752,
NO = 42, Np =504, N =1428, N9 =2208, NE=2010,  ND — 2280,

0 _ 0 _
Nip =108, Npp =91 NO _336. N9 =952 NO—1472. N9 =1340. NO _ 1590
NO =75, r ’

(C) Armadillo Blub Max Planck 3Holes Rocker Arm

TR
RTRA
W

Ng = 1204, N‘[} 3433,

0 — 0 _ 0 _
N‘O/ 4045, Ny =1018, NP, =3353, N9 — 10216, NY = 3596, N = 2062,
Ng = 12129, N§ =3048, N%, =134, NY, = 40, N2 = 10800, N9 = 6186,
Np = 8086. NQ =2032. N =2280. N — 6824, N = 7200. Np = 4124,

Fig. 4: Three different tests carried out on mesh datasets: (a) icosphere
with boundary, (b) testing counting formulas for arbitrary genus, and
measuring preallocation performance on standard datasets (c).

performed another set of tests for an icosphere subdivision scheme (4). We
tried to mitigate the expensive vertex position computation by performing
simple barycentric interpolation within base triangles of an icosahedron
followed by more complex connectivity construction. As can be seen in
Table 2, we sacrifice a lot of computation time to the construction of con-
nectivity up to subdivision level s = 3 after which we start to save as
much as 15 % of the time.

Note that for the test mesh collection (¢), we perfomed isotropic remesh-
ing [1] to obtain better vertex distribution. This step was done in Mesh-
Lab™by the Visual Computing Lab team from ISTI, Pisa, and the final
3D visualizations were rendered in ParaView by the Kitware team.

7 Conclusion

Originating from the motivation for vertex counting formula, specifically
for 4:1 subdivision aimed at stabilizing the semi-implicit formulation of
Lagrangian evolution (refer to Section 2), this paper derives and justifies
the utility of counting formulas for mesh vertices, edges, and faces under
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recursive face subdivision operations (see Section 4). Theorems in Section
5 formulate the ” counting formulas” for triangle 4:1 subdivision for meshes
with arbitrary genus, and extend the statement even for meshes with
boundary loops (Theorem 5.2), and for Catmull-Clark scheme on quad
meshes (Theorem 5.3).

We validate the theoretical results with tests in Section 6 including
the measurement for performance improvement under memory preallo-
cation which yields up to 3.6% speedup for Loop subdivision and 15%
acceleration in parametric icosphere construction.
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Sliceforms in the education of architecture students
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Abstract. The article is focused on the use of Sliceforms in the education of
architecture students at CTU. It shows not only historical models created via this
method, but also the work of current students who used the latest technologies for
their creation (CAD modelling, GeoGebra, laser cutting, 3D printing). Sliceforms
are useful in improving cross-subject relationships, most notably showing a close
relationship between mathematics and descriptive geometry.

Keywords: Sliceforms, models of surfaces, geometry

1 Introduction

Sliceform models are models of surfaces, solids or other objects, which are
designed by slicing them at regular distances in two directions. Although these
models have a long history, their potential is still growing. The term Sliceforms’
was coined by Gerald Jenkins, the publisher of the first book written by John
Sharp about these types of models.

2 Historical background

The first models of this type, called moving models, were created towards the
end of the 19th century. In 1874 Alexander von Brill (1842-1935) proposed a
series of paper models of second order surfaces. These models were inspired by
a model of an elliptic paraboloid made from circles which was created by the
German-educated mathematician Olaus Henrici (1840-1918). Alexander Brill
apparently first simply displayed these, but by 1888 his brother, the publisher
Ludwig Brill, was selling them as ‘Carton Models’.

In the nineteenth century mathematical models were made for teaching and
understanding geometry. Currently, these historical models can be seen in
several places around the world, such as the British Museum of Science in
London or the Smithsonian National Museum of American History in
Washington.

John Sharp, a chemist by education, played a fundamental role in reviving
this method nowadays. He was a strong supporter of both artists and
mathematicians who wanted to join forces in creating, investigating, and
disseminating ideas connecting the two practices. His colourblindness implies
the importance of shape, forms and illusions.
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At the Czech Polytechnic in Prague (nowadays CTU) this idea was used in
the year 1876 to make models of translation surfaces and models of paraboloids.
The reference is published in the book KKK ([1] p.441).

Presently, RNDr. Marie Kupc¢akova is credited for the rediscovery of this method
in the Czech republic [2].

Fig. 1: Torus — Villarceau circles (foto J.Ryszawy)

2.1 Sliceforms at the Faculty of Architecture in Prague

Architecture students in their first year of their studies within the subject of
descriptive geometry create models of geometric objects. This year they were
tasked to do it using Sliceforms technology. They used the latest technologies for
their creation (CAD modelling, GeoGebra, laser cutting, 3D printing).

Fig. 2: Slice form model of the building of the Faculty of Architecture CTU
(foto J. Ryszawy)

Sliceforms are useful for improving cross-subject relationships, most notably

showing a close relationship between mathematics and descriptive geometry.
Photos of other models are published here:
https://media.cvut.cz/cs/foto/20230517-slice-forms-fa
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2.2 Recommended Model Realization

We prepared instructions on how to create a sliceform model and published them
on the web site of subject descriptive geometry at FA CTU. The following
example shows a circular conoid. GeoGebra modelling was used.

Fig. 3: Model of circular conoid made by GeoGebra (Ce¢akova)

The location of the conoid in the coordinate system is very important.
Parametric representation was used:
Directrix is a semi-circle

k(t) = [0;6+6 cos t;6 sin t], t€(0; )
Directrix line
r(u) = [9;8—8u;8u], ueR
Directrix plane
9 (x, z): y=0.
Surface p (t, s) = [9s;6+6cost;6sint+s (2 — 6¢cost — 6sint)], te(0; ), s€(0;1).

TR SR S i TR e Tl T )

Fig. 4: Slices of conoid in two directions
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3 Conclusion

Modelling is an important component in the education of architectural students.
The Sliceforms method combines a mathematical background with a creative
approach in modelling. By simply connecting these approaches, we show
students the meaning behind theoretical subjects. Geometry is represented here
on the boundary between science and art. Finally, we would like to quote from
John Sharpe's book: “Geometry is a part of mathematics that does not belong to
mathematicians. It plays a role in all cultures in defining aesthetics from patterns
through architecture to other aspects of day to day design.”
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Abstract. We survey the research of “Multicriteria Optimized Triangulation”.
This approach extends the classical Delaunay triangulation by incorporating
optimization objectives such as edge lengths, angles, and even user-defined
constraints. Multiple authors preferred stochastic methods mainly containing
genetic optimization and edge flip. This approach proves useful in various
applications, where different factors need to be considered simultaneously for
constructing accurate and adaptable geometric structures. Hence we will search
for the explorations done and results achieved in successive experiments
afterwards, and discuss the classification of edge-based criteria.

Keywords: Optimal triangulation, genetic optimization, Delaunay triangulation,
minimum weight triangulation.

1 Introduction

Triangulating a planar point set S of n>2 points, neN, is a fundamental task
with applications across diverse fields, including computer graphics, computer
vision, and robotics. We distinguish optimal and locally optimal triangulations.

Fig. 1: Two criteria triangulating 39 points [33].

An optimal triangulation, denoted as OT(S), is one that, with respect to
specific criteria, outperforms all other possible triangulations of the given point
set S. Locally optimal triangulation, referred to as LOT(S), means that every
convex quadrilateral formed by two adjacent triangles shares an edge that
aligns with the given criterion. LOT(S) is, e.g., the Greedy, GT(S) [16].

Achieving local optimality is often made possible through the ingenious use
of the local edge-flip procedure [35]. Any initial triangulation can be flipped
into the Delaunay Triangulation (DT) within a O(n?) number of steps [22].
One can find the notation and terminology of the field in [38], [1] or [3] (in
Slovak).
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Often, two primary criteria come into play; the first minimizes the total
length of edges, Minimum Weight Triangulation (MWT) [16], while the
second maximizes the smallest angle, DT [6]. They may have flipping distance
zero, see Fig. 2a, in an almost minimal example not containing the Travelling
Salesman Cycle (TSC) [7]. Moreover, T(S7) is Hamiltonian triangulated [5],
since the triangles can be connectively stripified.

gV, .
¢ P

Fig. 2a: Graph T(Sy) for dataset S = { A (4,6), B (0,0), C(5,0), D (11.1,0.1), E
(9,2), F (7,2), G (6,10) } [7] ; 2b: T(S7) including the flipped edge with
universal notation and colour encoding and the Dash-ed edge converts DT into
MCT and enables the TSC as a subgraph [5].

Apart from the metric or angular criteria of MWT and DT, there exist a user-
defined criteria of selective edge insertion, i.e., Constrained Delaunay
Triangulation (CDT) [4]. If the constraints depend on the characteristics and
attributes of the input-data points, then the triangulation is termed as Data
Dependent Triangulation (DDT) [17].

If we require the TSC in T(S7), the removal of CE and insertion of edge DF,
see Fig. 2b, has to be done. This single flip leads to the inclusion of the path
ABCFDEGA, which is the TSC for T(S7). The modified T(S7) is thus either
CDT or (flipped) multicriteria [5]. The solution, shown in Fig. 1, was achieved
by genetic algorithm using flipping procedure [33]. In the following, we survey
the published results and discuss the classification of criteria.

2 Multicriteria Optimized Triangulation (MCT)

The approach of applying multiple triangulation criteria to achieve a single,
optimized triangulated version was termed as ‘Multicriteria Optimized
Triangulation’ [33]. Genetic Optimization (GO) has been used to provide the
approximate solution of triangulation of a set of points, S, in the Euclidean
plane, employing biological terminology, referring to the set as ‘a population,’ a
potential solution as 'an individual,' the binary operation as 'a crossover, named
'De Wall", and the unary operation as 'a mutation'. It has been performed for
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100 or 200 generations and a well-designed fitness function is used in two
versions.

m

eval (T(5)) = Z w; fi,

i=1
m

eval,(T(8)) = l_[ fis

where T(S) is a triangulation; m is the total number of triangulation criteria; w;,
i =1, 2..., m are weight coefficients. Here w; € <0; 1>, Yw; = 1; and fi, i = 1,
2..., m are functions for particular criteria. The overall computational time
complexity of the procedure was O(n?), due to the crossover operation. The
underlying operation is edge flip. Though DT and MWT provides the base for
formulating triangulation, the versatile GO encompasses several other criteria,
e.g.,, Maximum Height, Minmax Length, Minmax Aspect Ratio, Minmax
Angle, Minimization of Maximum Angle Sum and Maximization of Sum of
Minimum Angles, Maximizing the Minimum Radius and Minimizing the
Maximum Radius and Minimum Sum of Radius Triangulation. A slight
difference in the preferred criteria can bring prominent changes in a
triangulation, see Fig. 1. The left side is representing the max edge length
triangulation and the right side is incorporating DT. The number of successful
cases is directly proportional to the probability of crossover, which is inversely
proportional to the computational time.

MCT was mentioned as an useful approximation method in the survey of
triangulations [29], [31] and in the survey of probabilistic methods of
triangulation [30] and the author included MCT as a tool to obtain specific
triangulations as a part of Computational Geometry Education [27], [28]. MCT,
as a type of triangulation, was referred for yeilding applications of
computational geometry [2], [26]. The author contributed a discussion on
multiple edge-based criteria and a valuable bibliography comprising 60 items in
[32]. In [21], the authors presented a comprehensive dataset of astronomical
data for 88 star constellations and assessed edge quality. Notably, only 7 star
constellations contained subjective edges that did not adhere to Delaunay
criterion, which is potentially attainable through combining several criteria and
constructing MCT.

Dorzan et al. proposed Ant Colony Optimization (ACO) metaheuristics to
find the MWT [9-11], [13], [15], [23]. ACO is a metaheuristic that employs a
colony of artificial ants to solve challenging discrete optimization problems.
These algorithms construct solutions incrementally by adding specific
components to an evolving solution, utilizing both pheromone trails and
heuristic information to guide their actions, instead of using genetic
information, like [33]. Pheromone values stored in variables influence their
probabilistic decisions when navigating a graph. They explained an ACO
algorithm comprising two specific components; ‘Initialization’, which sets
algorithm parameters, and ‘BuildSolution’, which extends a partial solution by
adding feasible components from current neighbors. The authors designed an
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instance generator and the ACO-MWT algorithm was implemented in C with
twelve parameter settings and for each setting, 30 runs were performed. They
considered the computation as “parametrically expensive”. In a series of papers
published from 2010 onwards, they conducted experiments using the ACO
algorithm on previously used instances and compared its performance to the
Simulated Annealing (SA), which involved five different parameter settings
[12], [14]. This made the SA a relatively more cost-effective option in terms of
parameter tuning. Though GO appears to be qualitatively superior and also
mentioned as an evolutionery algorithm for MCT in [47], the complexity has
been increased in the case of Re-triangulation of Standard Tessellation
Language (STL) meshes in [44].

In 2009 and consecutive years, Feciskanin R. discussed the generation of
Triangular Irregular Networks (TINs) for modeling georelief surfaces from
irregularly distributed input points using Lawson’s General Optimization
Algorithm (LOP) [18-20], whether SA has been used for DDT construction as a
part of texture reconstruction in [42]. It explores two types of triangulation
criteria: shape-dependent and data-dependent and in 2016, Rodriguez N. &
Silvera R. proposed a Higher Order Delaunay Triangulation (HODT),
satisfying both the data dependent criterion and good triangle shape, to build
the TIN, using similar process of LOP [39].

The authors of three research papers [36], [45], [46] refer to [33] in the
context of parallel computing. The two short papers in Chinese aim to use
stochastic optimization for MWT. The immune algorithm is inspired by the
immunologic defense metaphor.

In 2002, Hlavaty T. and Skala V. outlined a deterministic procedure that
employed a brute force approach to generate triangulations based on specific
criteria [24]. In the same year, Skvortsov explored various applications and
constructions of DT in the field of geoinformatics. The study highlighted
Multicriteria Triangulation as an approximate algorithm for DT [41].
Karbowski K. incorporated MCT into a chapter discussing point cloud filtration
and triangulation in a mechanical engineering monograph [25].

For the educational purposes, we are building a triangulation, named Dash,
providing the Distance Matrix and Edge-Crossing Matrix for optimizing the
qualitative and demanded edge insertion and flipping procedure for estimating
subgraphs of triangles like Euclidean Minimum Spanning Tree (EMST),
eventually to verify the TSPLIB dataset and the experiments are in the pre-
processing stage. Dash is a deterministic method that involves three stages: I.
Forming outer and inner convex hull with the extreme and internal points
respectively, i.e., the Nested Convex Hull (NCH) [38], Il. Performing DT in
the NCH, and Ill. Flipping of Edges. The color encoding and universal
notation has been proposed to reduce visual complexity, see Fig. 2b. The time
complexity for computing the first two stages has an upper bound O(nlogn).

The Distance Matrix of Dash is organized with vertices as indices, where
values above the diagonal indicate edge lengths, and values below represent the
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sequence of the three stages. However, Ludo is a stochastic procedure that
incorporates random edge insertion and flipping. The Edge-Crossing Matrix
representation provides essential information: 1. Whether the edges intersect or
remain unconnected, and II. If connected, the angle between them [5]. We
surveyed the above papers in the context of investigating the usage of MCT.

3 Discussing Single Criteria Edge-Based Classification

There are multiple criteria to obtain the triangulation, out of which DT and
MWT satisfy the two most promiment criteria of maximization of minimum
angle and minimization of the weight, respectively. Though the former one has
the optimal time complexity of @(nlogn), the later one is NP-hard [37]. The
time complexity for getting a triangulation combining two specific criteria
incorporated with angle and height is O(nlogn) or O(n?) (worst case scenario
for the crossover operation in most of the cases) [33]. The criteria of generation
of triangulation incorporating predefined edges, i.e, CDT is an appropriate way
of getting the demanded triangulated version and it can be achievable in
O(nlogn) time [4]. This is a user-defined criteria and another similar criterion is
DDT, whose complexity is dependent on the characteristics and attributes of
the vertices [17]. The Minmax Angle and Maxmin Height Triangulation can
be computed in O(n%logn) and the Minmax Height Triangulation can be
computed in O(n?) time [40]. Achieving the inclusion of TSC, i.e., Minimum
Hamiltonian Cycle (MHC) goes beyond a specific optimal triangulation with
singular criteria. In Fig. 2b, it becomes evident that when Delaunay criterion is
coupled with flipping, it results in the incorporation of the subgraph MHC. In
T(S7), employing Delaunay Triangulation within the NCH significantly
reduces time complexity at a specific level. This is because it provides the
necessary edges, thus eliminating the need for flipping. Consequently, the
number of edges that can be flipped is reduced to just three, which greatly
simplifies the computational process. Hence, criteria based on subgraph
inclusion in triangulation hold promise for a substantial reduction in time
complexity.

4 Conclusion

In [21], the authors observed that 7 edges of star constellations were not
satisfying the Delaunay criterion, which can be probably obtained further
through MCT, hence one promising avenue is the continued collection and
exploration of MCT. Delaunay triangulations are fundamental in computational
geometry and characterizing and analyzing specific subgraphs [43] within DT
is very crucial. We arrived at constrained edge insertion criteria, leading to
containing a prominent subgraph MHC and EMST [5]. Hence, there is a
significant potential for synergy between multicriteria triangulations and
subgraph analysis. Combining these approaches, such as using alpha shapes to
describe complex data in geographic regions can yield valuable insights.
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Abstract. The teaching of geometry, especially planimetry, in high schools focuses
on basic constructions and the use of congruences and similarities in construction
problems. In optional seminars or in technically oriented schools, construction
techniques for conics are introduced, but the construction of ovals tends to be
in the background. Students are usually not exposed to the problem until they are
at university. This paper will illustrate various oval constructions on original
technical documentation (blueprints) of buildings in 19" century Moravian Ostrava
and introduce the issue closer to students.

Vyuka geometrie, zejména planimetrie na stfednich skolach je zamétena na zakladni
konstrukce a vyuziti shodnosti a podobnosti v konstrukénich ulohach. V nepovinné
volitelnych seminafich nebo na technicky orientovanych Skolach se piredstavuji
konstrukéni techniky pro kuzelosecky, ale konstrukce ovali byva na pozadi. Studenti
se s problematikou setkdvaji povétSinou az na vysoké Skole. Prispévek bude
ilustrovat rtizné konstrukce ovald na pavodni technické dokumentaci budov
V Moravské Ostravé 19. stoleti a pfiblizeni této problematiky studentim

Keywords: Serlio's oval, arches, architecture Ostrava

Klic¢ova slova: Serlitiv oval, oblouky, architektura Ostrava

1 Teaching ovals from the perspective of high school
mathematics and engineering practice

The teaching of geometry in the Czech and Slovak Republics within the subject
of mathematics is divided into planimetric and stereometric parts in secondary
schools. Planimetry is mostly included in the second year of secondary schools,
where mathematics is taught at the rate of 4h/t. According to the RVP, the main
outcomes of this part are Fundamentals of Planimetry and Geometric
Representation. Due to the time allocation, ovals are not included. Technically
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oriented secondary schools of civil or mechanical engineering offer courses
in descriptive geometry, where basic constructions of ovals can follow
the teaching of constructions of conics. At the high school level, the teaching
of conics constructions is incorporated into an elective seminar following
the seminar on quotation and Monge. Due to the long-standing common teaching
system, the situation in Slovakia is similar, so that the teaching of ovals is
incorporated into the teaching of descriptive geometry at technical colleges or is
mentioned in the teaching of curve geometry. The aim of our paper is also
to point out and introduce basic constructions that are understandable by high
school students or could be used in project activities that would be focused
on the discovery of ovals within architectural elements of buildings or
in construction. The pilot integration therefore took place in the Synthetic and
Constructive Geometry lecture, which is attended by mathematics students
at the OU. Therefore, we decided to rediscover the construction practices that
were used by builders in their designs, and we priroritically focused on ovals,
which are widespread in building practice and were already used in Baroque
buildings [4].

1.1 The historical context of Ostrava

Ostrava is the third largest city in the Czech Republic and is located in the North
Moravian region very close to the borders with Poland and Slovakia. Overall, it
is mostly perceived as a city with heavy industry and automotive industry.

However, within the city there is an emphasis on the development and
accessibility of services for the population and the improvement of their quality
of life.

If we look back to the beginning of the 18th century, there was no indication
that the small mining town would later become one of the important cities not
only within the Habsburg monarchy, but especially later in the newly founded
republic (more in [1]). Coal had already been discovered in the area in 1763
in the Burfia valley, where mining was expected to take a maximum of 10 to 20
years. As there was not such a great demand for this raw material,
the development of mining was slow and the main boom did not come until
the second half of the 19th century, when the industrial revolution in our territory
began to gain momentum. This involved a sufficient amount of labour, and
the first mines in the Ostrava region used miners from the surrounding area.
In later years, a large migration from Halych began, from which only miners and
then their families were the first to arrive. This also increased the demand
for housing and buildings to provide for the basic needs of the population.
Therefore, within Ostrava, quarters and colonies were built for the incoming
population, as well as hospitals, schools, pubs and other cultural facilities. [2]
Since the planning or architectural aspect of the individual buildings in the first
half of the 19th century was under the Moravian Ostrava, it was only in later
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times that the first architectural studios opened and independent architects and
builders began to work in Ostrava, mostly from the Viennese schools, such as.
FrantiSek Fiala, Ottokar Bohm, Hans Ulrich, Alois Schon, Felix Neumann.[6][7]
Today some of their buildings have been preserved and underline the Art
Nouveau appearance of the historical centre of Ostrava, so they can be used
for further research.

2 Oval and their construction

The oval from the point of view of mathematics can be understood in different
Ways. Brun, in his work Ueber Ovale und Eiflichen, conceives of an oval as
a finite plane closed curve having two and only two points in common with every
line in its plane that passes through it. He then specifies other properties of the
curve in question, that it has no nodal points, is convex, etc. Overall, this is
a comprehensive work focusing on ovals using the knowledge of the time. [3]
In terms of engineering practice, it defines an oval using properties as a plane

closed curve satisfying the following properties:

e They are differentiable (smooth-looking),

o simple (not self-intersecting), convex,

o their shape does not depart much from that of an ellipse,

o there is at least one axis of symmetry.
The word oval derived from the Latin word "ovus" for egg, because oval is
a closed curve in a plane which "loosely" resembles the outline of an egg.

In technical practice, it is used quite a lot, mainly because it can approximate
the elliptical shape appropriately and quite accurately, and thus not only
architecturally interesting buildings could be created, but also their decoration
and other structural elements.

Among the most famous ovals are the so-called Serlio's ovals, described
by Sebastiano Serlio in Il primo libro d'architettura [5].

Fig. 1: The constractures of Serlio's ovals
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Four types of Serlio's ovals are drawn in the figure, where in case a) the ratio
of the length of the major and minor semi-axes is not constant, in case b) the ratio
a/b = (V2 + 1)/ (2V2- 1) and the ratio of the radii of the defining circles
is1/2.Forcasec)jea/b = V2 and the ratio of the radii of the circlesis V2 - 1,
for case d) isa/b = 3 /(4 - \/3) and the ratio of the radii of the defining
circlesis 1/2. (Fig. 1)

3 Identification of ovals on specific buildings and their use in
project-based learning

One way to incorporate the construction of ovals into the curriculum in high
school is through project-based learning. After teaching conics and therefore
the application of circles in practice, we would recommend supplying basic
information about ovals and, for example, the reconstruction of objects, where
students should decide whether a given structural element is an oval or a circle.
A simple awareness of the basic property of a circle given by three points,
for example, will show that a design feature involves the use of a circular arc
(Fig. 2). When reconstructing, they can use a simple tool within GeoGebra and
insert the chosen engineering feature as a background.
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Fig. 2: Reconstruction of the circular arch in the technical drawing [8]

If this is not a use of circles, then by looking for constructions of ovals,
students will become more in depth about the properties of circles and in fact
the ellipse, which is a curve of non-constant curvature.

A nice example of the use of ovals is in 19th century Ostrava architecture,
where in the original plans one can still see the individual insertions - the centres
of the circles used to define the drawn oval. In order to strengthen the cross-
curricular links, the students will also explore the historical context of the time
in their home area. The technical documentation of the German House, which
was built to the design of Felix Neuman and was a response by the German
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population to the planned construction of a Czech house, was used
as a demonstration.[1] The building still stands in front of today's Hotel
Imperiale and contained a representation area and a hall, a restaurant with
a capacity for 600 people. In the garden there was a music pavilion for 120
people. The opening ceremony took place in 1895. The Dutch Renaissance style,
popular in Germany, was used with a red facade that attracted attention from afar.
During World War 11, the building was damaged during the bombing of Ostrava
and it was subsequently decided to demolish it.[1][7]

Fig. 3: Original technical documentation of the German House [9]

And as we can see, Serlio's constructions according to types a) and c) were
probably used (Fig. 4).
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Fig. 4: Detail of the technical documentation [9] supplemented
by the construction of part of the oval. Left: construction according to type a)
of the Serlio's construction. Right: construction of type ) in red to draw
the contour arc, other constructions of type a)

If the teacher does not have the original building documentation directly
available, he or she can use project-based learning and students can find
individual architectural elements on their own in the field. These are usually
different types of facade decoration, arches over windows or doors of buildings.
The student takes a photograph and then tries to find the oval using
an approximation. For example, at Ostrava Architecture we can see that the oval
is also a popular design element used to decorate buildings. It appears
in individual elements on the building of the Kindergarten in Dvofakova Street,
which was originally the villa of Judr. Karel Richter. It is a neo-baroque villa
from 1896, designed by architect Felix Neumann, when villa construction was
already regulated in Ostrava and the nearby original cemetery was converted into
a park for capacity reasons. Since the building was reconstructed with sensitivity,
the valuable facade, richly articulated with historicizing elements and even
fragments of the original stucco decoration in the interior space, has been
preserved.[6][7] Most probably Serlio's construction of type a) was used
in the creation of the window above the entrance (Fig. 5).

Fig. 5: Detail of a window on the building of the kindergarten
in Dvorakova Street, Ostrava
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Another example is located near the kindergarten and is a building
on Mili¢ova Street, which originally served as a tenement villa for the architect
Paul Hawlik (1908), who designed it and embodied the Nordic inspiration based
on asymmetrical vertical composition unusual in Ostrava at that time. He thus
managed to combine Neo-Romanticism and Anglophilia with the receding
Vegetable Art Nouveau.[6][7]

Fig. 6: Building and its detail on Mili¢ova Street, Ostrava

4 Conclusion

At the beginning of the geometry lecture, when students sketch plane shapes and
curves, an oval was included in the assignment. The result was that the vast
majority of students sketched a "running oval” i.e. a plane symmetrical curve
which is bounded by two segments and two circular arcs, other answers included
a sketch of an ellipse and only in one case an oval in the shape of an "egg" was
sketched. Subsequently, the construction of ovals and their application
to practical demonstrations and reconstruction of buildings was incorporated into
the lesson, during which students consolidated and deepened their knowledge
of the properties of the circle. As the incorporation took place after the teaching
of conics, students already had an awareness of the properties of ellipses. One
student response was that an oval could be an approximation of an ellipse, which
they based on their knowledge of ellipses using occluding circles. They are also
aware of the realization of the basic properties of a circle given by three points
on it. From the technical practice, they mostly mentioned bridge structures,
the use of circular arches by supra-orbital arches, etc.

Therefore, we recommend that also in connection with the setting of teaching
standards for knowledge usable in practical applications, that, for example,
the basic properties of ovals be added to the part of teaching about conics.
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Abstract. In the frame of the KEGA project No. 004KU-4/2022 "Personalities of
Slovak Mathematics II" we continue the successful edition ,,Personalities of
Slovak Mathematics “. The project is aimed at capturing the life and work of

of important personalities of Slovak mathematics in the 20th century in their own
words. Within the paper we want to present the processed materials about doc.
RNDr. Daniela Velichova, CSc. She is an important personality in the field of
geometry and geometric modelling. She is also involved in computer graphics, e-
learning in teaching mathematical disciplines. Her example can serve as an
inspiration for young and prospective scientists, and it shows that even
mathematics can be an interesting and wonderful discipline accessible to the
young people.

Keywords: mathematics education, personalities of Slovak Mathematics, Daniela
Velichova, the ideas of personalities, publications about personalities

Klicové slovd: vyuCovanie matematiky, osobnosti slovenskej matematiky,
Daniela Velichova, myslienky osobnosti, publikdcie o osobnostiach

1 Ciele a zakladné informacie o projekte

Ciel'om prebichajticeho projektu KEGA ,,Osobnosti slovenskej matematiky II -
zivotné vzory pre buduce generdcie“ je zmapovanie osobnosti slovenskej
matematiky — matematikov a matemati¢iek, ktori zasvitili svoj Zivot tejto
krasnej, a bohuzial’, v su¢asnej dobe tak neoblibenej a nepreferovanej vede.

Na zaklade oslovenia vsetkych relevantnych pracovisk, kde sa na Slovensku
matematika vyuCuje na vysokych Skolach, vznikla databidza vyznamnych
slovenskych matematikov. lde 0 otvorenu databazu, kde postupne pribidaju
d’alsie osobnosti, podmienkou je, aby svoj zivotny pribeh vyrozpravali svojimi
vlastnymi slovami. Nasledné spracujeme ich zivotné pribehy, tieZz nazory na
kardinalne otazky sucasnosti (napr. ich vztah k matematike, k spdsobu
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vyuCovania matematiky, k smerovaniu su¢asnej matematiky, ...) a ich vysledkov
v oblasti matematiky, s dérazom na ich odkazy mladej generacii.

Ciastkovymi cie’mi je vydanie publikicii o Zivote a diele osobnosti
slovenskej matematiky, vytvorenie webovej stranky poskytujucej informéacie o
tychto osobnostiach, propagacia vysledkov a Sirenie svedectiev osobnosti.

Prostrednictvom projektu chceme spristupnit’ material nielen pre ucitelov
matematiky, ale aj pre zachovanie nasho kultirneho dedi¢stva a v neposlednom
rade chceme ziakom a Studentom zakladnych i strednych $kol priblizit,, Ze aj na
Slovensku zijii a pracuji svetovi matematici. Domnievame sa, ze tak by sme
mohli v nich vzbudit zaujem a motivaciu pre matematiku pomocou
osobnostnych vzorov a odkazu vyznamnych osobnosti slovenskej matematiky.

Projekt prebiehal v 2 ¢astiach, ten prvy zacal v roku 2018 a trval do roku
2021. Sucasny projekt prebicha v rokoch 2022 — 2024. Na jeho rieSeni sa
podiel'aji Pedagogicka fakulta Katolickej univerzity v Ruzomberku, Vysoka
Skola Dubnicky technologicky institt v Dubnici nad Vahom, Prirodovedecka
fakulta Univerzity Pavla Jozefa Safarika v Kosiciach, Pedagogicka fakulta
Univerzity Komenského v Bratislave.

2 Vytvorenie databazy a edicie publikacii o osobnostiach
slovenskej matematiky

Za G¢elom vytvorenia databazy o vyznamnych slovenskych matematikoch sme
oslovili predstavitel'ov stavovskych organizacii:
*  Matematicky ustav Slovenskej akadémie vied,
» Jednota slovenskych matematikov a fyzikov,
*  Slovenska matematicka spolo¢nost’.
*  Vysokoskolské pracoviskd, kde sa vyuCovala matematika (ucitel'ska
alebo vedecka).

Kazdé pracovisko navrhlo 10 zijucich vyznamnych osobnosti a na zaklade
spolo¢ného prieniku a odporucania vznikla databaza, z ktorej postupne
oslovujeme jednotlivé osobnosti.

Riesitelia prvého projektu PAF KU, FPV UKF, VS DTI a PdF KU iniciovali
vznik Edicie Osobnosti slovenskej matematiky. V ramci nej sa dohodla $truktira
publikécii, vzhl'ad a forma a zakladné otazky pre jednotlivé osobnosti. Najprv sa
prostrednictvom Slovenskej narodnej kniznice v Martine ziskali reSerSe domace;j
a zahrani¢nej publikacnej ¢innosti 25 vyznamnych osobnosti. Nasledne sa
komunikovalo s autorskym zvdzom LITA (p. Berglova), aby pri uverejiiovani
neboli dotknuté autorské prava. Vyznamnym krokom bolo vytvorenie Vedeckej
rady edicie Osobnosti slovenskej matematiky. Nakoniec sa schvalila predbezna
Struktara publikacii a jednotlivé otazky, ktoré boli v publikaciach polozené:

»  oficidlny Zivotopis osobnosti,
*  Zivotopis a dolezité medzniky v Zivote prerozpravané danou
osobnost’ou,
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+  otazky a odpovede, ktoré dopliiaju vyznamné udalosti v Zivote
danej osobnosti,

+  otazky tykajlce sa aktualnych otazok postavenia matematiky,
jej vyucovania, systému vzdelavania,

*  publika¢na ¢innost,

*  obrazova priloha.

3 Vydané publikacie o matematickych Skolach a osobnostiach

V ramci tohto aj predoslého projektu uz boli publikované (porovnaj s [1] az [7]):
Mikulésska matematicka Skola
Kosicka matematicka skola 1. diel - Seminar z teérie mnoZin a topologie
Osobnosti slovenskej matematiky Roman Fri¢ (1. diel)
Osobnosti slovenskej matematiky Milan Hejny (2. diel)
Osobnosti slovenskej matematiky Lev Bukovsky (3. diel)
Osobnosti slovenskej matematiky Anatolij Dvure¢enskij (4. diel)
Osobnosti slovenskej matematiky Stanislav Jendrol’ (5. diel)
Osobnosti slovenskej matematiky Ondrej Sedivy (6. diel)
Osobnosti slovenskej matematiky Daniela Velichova (7. diel)

V nasledujtcej Casti prispevku sa budeme venovat’ osobnosti Daniely
Velichovej (pozri [7]). V tladi st pripravené dalsie 2 diely o Katarine
Cechlarovej a Janovi Cizmarovi.

©CoOoNoaMLNE

4 Osobnost’ Daniely Velichovej

Jej profesijny rast predznamenal jej neskorsiu pracu v akademickom prostredi:

1969 — 1974 Prirodovedecka fakulta Univerzity Komenského v Bratislave,
Specializacia Matematika a Deskriptivna geometria

1981 Matematicko-fyzikalna fakulta Univerzity Komenského v Bratislave,
Statna rigordzna skuska, titul RNDr., Diplomova praca Zvéizy v geometrii,
veduci doc. RNDR. Milan Hejny, CSc. (Milan Hejny (2. diel))

1992 Matematicko-fyzikalna fakulta Univerzity Komenského v Bratislave,
dizertacia v odbore geometria - topoldgia a poéitadova grafi-ka, titul CSc.,
Dizertatnd praca Kreativna geometria — modelovanie utvarov
trojrozmerného priestoru, $kolitelia doc. RNDr. Jan Cizmar, CSc., prof.
RNDr. Vaclav Medek,

1999 Fakulta elektrotechniky a informatiky Slovenskej technickej univerzity
v Bratislave, habilitacia — komisia pre Aplikovani matematiku, titul doc.
Habilita¢na praca Modelovanie masivov

2012 Strojnicka fakulta Slovenskej technickej univerzity v Bratislave,
mimoriadna profesorka v odbore Aplikovana matematika

Pracovne pdsobila:
19751976 Stavebna fakulta Slovenskej technickej univerzity v Bratislave
externd asistentka na Katedre matematiky a deskriptivnej geometrie
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1982 — 2022 Strojnicka  fakulta  Slovenskej technickej univerzity
v Bratislave, odborna asistentka, docentka, mim. prof. na Katedre
matematiky

2011- 2021 Strojnicka  fakulta  Slovenskej technickej univerzity
v Bratislave, veduca Ustavu matematiky a fyziky

S jej pracovnym posobenim uzko suvisi aj jej vedecka a publika¢na ¢innost’

zamerana na oblasti:

Diferencialna geometria kriviek, ploch a masivov (MDT: 514.1, MSC:

53A04-A07)

— modelovanie nehomogénnych buniek masivov (MDT: 514.18, MSC:
68U07)

— modelovanie diferencovatel'nych variet pomocou Minkowského
mnozinovych operacii,

Geometrické modelovanie s podporou pocitacov (MDT: 514.1, MSC:

65D17)

— pocitacova geometria (MDT: 514.1, MSC: 65Y25)
— interpola¢né utvary (MDT: 514.182, MSC: 65D05, 65D010)
— simulacie (MDT: 514, MSC: 68U20)
Deskriptivna geometria (MDT: 514.182.1-7, MSC: 51N05)
— premietacie metody (MDT: 514.182.1-7)
— algoritmy vizualizicie viacrozmernych priestorov (MSC: 51N10 - 25)

Pedagogika/didaktika matematiky na technickych univerzitach

— e-learning (MSC:97 U50)
— tvorba elektronickych ucebnych textov (MSC:97 U20)
Docentka Daniela Velichova ma aj bohat ¢innost’ v réznych organizaciach:
e Clenka riadiaceho vyboru eurépskej spoloénosti pre vzdelavanie
inzinierov SEFI Mathematics Special Interest Group - SEFI MWG
e Clenka vyboru European Women in Mathematics EWM, narodna
koordinatorka pre SR
e Ambasidorka ICM - medzinarodného vyboru pre Zeny
vV matematike pri Medzinarodnej matematickej unii IMU
e Predsedni¢ka Slovenskej Spolo¢nosti pre Geometriu a Grafiku -
SSGG
e Clenka vyboru Medzinarodnej Spolo¢nosti pre Geometriu a Grafiku
- ISGG
e Cestna ¢lenka Polskiego Towarzystwa Geometrii i Grafiki
Inzynierskiej - PTGIGI
e Clenka Jednoty slovenskych matematikov a fyzikov - JSMF, resp.
Slovenskej matematickej spolo¢nosti SMS
Cenné st aj jej mySlienky o uciteloch matematiky a o jej vyucovani:
,Jedinym vychodiskom je navratit’ uc¢itelom spolo¢enské uznanie, ktoré im
pravom patri, a obnovit’ vaznost’ postavenia ucitel'ov v hierarchii spolocenského
rebricka reflektujucu ich zodpovednost za formovanie mladej generacie.
Zastupcovia Statnej moci by mali aklamativne prejavit’ uc¢itel'om patricny respekt
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a ocenit’ ich nezastupiteIni ulohu, ktorti zohravaji zodpovednou pracou pri
formovani buducnosti celej spolocnosti a jej hodnot. Spoloénost’, ktora si nevazi
pracu ucitelov, je nevyhnutne odstidend na neuspech. Kvalitné vzdelanie
ucitel'ov je zarukou rozvoja vzdelanosti a prosperity, napredovania spolocnosti,
udrzatel'ného rastu a zachovania dedi¢stva nasich predkov. Nezaujem o ucitel'ské
povolanie, nedostatok ucitel'ov, najméa matematiky a prirodovednych predmetov,
ktory zadina naSa spolo¢nost’ intenzivne pocit'ovat’, je dosledkom narastajiicej
narocnosti tejto zodpovednej prace v dosledku vyznamnych spolocenskych
zmien. Tieto st vo velkej miere spdsobené paradigmou 21. storocia, ktorou je
digitalizacia vsetkych procesov spolo¢enského diania, zasahujuca az do zakladov
kognitivnych procesov pri utvarani poznatkov a svetondzoru jednotlivcov,
spoloCenstiev, resp. l'udského vedomia vSeobecne. Kvalita vzdelavania,
¢i kvalita pripravy buducich ucitel’ov, a to nielen ucitelov matematiky, si takmer
vzdy predmetom a témou celospolocenskej diskusie; ale skutocnd zodpovednost’
stale ostava na pleciach spolo¢nostou systematicky nedoceniovanych a sustavne
kritizovanych uditeliek a u¢itel'ov, skutoénych nositel'ov, strojcov a realizatorov
tol'ko glorifikovaného kvalitného vzdeldvania. Ale kto si trafa s istotou povedat,
¢o mame povazovat za kvalitné vzdelavanie? A je vobec mozné pokusit’ sa
0 jeho zabezpecenie bez ndlezitej podpory, uznania a celospolocenského
reSpektu?*

5 Zaver

V sucasnosti sa pripravuje publikdcia o profesorke Katarine Cechlarovej
a profesorovi Janovi Cizmérovi. Predpokladame pokracovat’ v Edicii Osobnosti
slovenskej matematiky aj v nasledujucom roku. Mame zaujem spracovat’ d’alsie
seminare a konferencie v ramci koSickej matematickej skoly. Zameriame sa na
konferencie

e Konferencia (Cycles and Colourings),

o Konferencia koSickych matematikov v Herl'anoch.
Riesitel'sky kolektiv je otvoreny d’alsim napadom, ako su vyvoj, vzdelavanie
a vychova matematickych talentov vratane matematickej spolocnosti.
Z uvedenych dovodov predpokladdme spolupraicu aj so Slovenskou
spolo¢nost’ou pre geometriu a grafiku.
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On the use of Bézier bicubic surface
for shape reconstruction
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Abstract. How to exactly interpolate quadrilateral grid of points?
In this article, some possibilities of using a Bézier bicubic patch for
interpolation surface modelling are presented.

Keywords: CAD model, interpolation, Bézier bicubic surface, continu-
ity, patching, accuracy

1 Introduction

A Bézier surface [1] is a type of mathematical representation used in
computer graphics and computer-aided design (CAD) to describe freeform
curved surfaces. It is an extension of the concept of Bézier curves, which
are widely used for defining smooth and precise curves in two-dimensional
space. The great advantage of Bézier surfaces is a possibility of patching
that allows to describe a much more complex shape without increasing the
surface degree (in both directions). The main topic of this article is to use
Bézier bicubic surfaces to interpolate the same set of definition points in
different ways and compare the accuracy of the interpolation CAD models.
In this article, the grid of definition points was selected from a set of points
obtained by means of real tactile measurement of CTU freeform standard
Pharaoh [2] on coordinate measuring machine (CMM), fig. 1 left. The
measured area (47 mm x 30 mm) with 58622 measured points and the
grid of selected 8 x 8 definition points is shown in fig. 1 right. Maximum
distance between two adjacent definition points is 11.0553 mm. From the
same set of measured points, the test set of 24719 points was chosen to
compare the accuracy of the interpolation CAD models.

This paper is organized as follows. In section 2, some key properties
of Bézier bicubic surface are mentioned and the basic assignment of the
task is outlined. An example of the simplest use of a such surface for
this kind of shape reconstruction is given in subsection 2.1. Subsection
2.2. contains several examples of solving a more difficult variant of the
assignment, subsection 2.3. compares all solutions in terms of accuracy.
Section 3 concludes the paper.
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Fig. 1: CTU freeform standard Pharaoh (left), CAD model of its func-
tional freeform surface (right) with all measured points (black) and the
grid of definition points (red).

2 Interpolation and Bézier bicubic surface

A Bézier bicubic surface P(u, v) is defined by a grid of control points V; ;
(where i =0,1,2,3 and j =0, 1,2,3), arranged in a 4x4 matrix

Voo Vo1 Vo2 Vg3
Vio Vii Vig Vi3
Vao Va1 Vas Vo3
Vso V31 Vszo Vi3

Vector equation of such surface is given by
P(u,v) = B(u) - M - BT (v), (u,v) € [0,1]?,

where B(’Uj) = (3073
and By z(w) = (i)(
als.

The mesh of these 16 control points determines the shape of the surface
and allows to create a CAD model of a smooth, C? continuous, and curved
surface. Although it is an approximation surface, the Bézier surface can
be used for interpolation, because it interpolates the four control corner
points Vo0, Vo3, V30 and V33 and four boundary Bézier cubic curves
given by boundary control polygons.

w), B1 3(w), By 3(w), Bs 3(w)), w € {u,v}

)

( 1
1- w)(3*k)wk,k =0,1,2,3 are Bernstein polynomi-

2.1 The basic task and Example 1

Suppose, we have a quadrilateral grid of definition points Q; ;,
i€{0,1,...,m},j € {0,1,...,n} for the surface to pass through and we
need to find the solution how to simply interpolate these points using
Bézier bicubic surfaces.



On the use of Bézier bicubic surface for shape reconstruction 105

Thanks to the fact, that Bézier bicubic surfaces allow C? continuous
patching, the simplest solution is a uniform clamped bicubic B-spline sur-
face, which is just composed of C? joined Bézier bicubic patches. The
corner points of each Bézier patch are the definition points and the re-
maining 12 control points (of each patch) are calculated according to the
C? condition of continuity. In fig. 2 (left), the grid of definition points
(red), control points of each Bézier patch (black) and boundary curves of
each Bézier patch (blue) are shown. Visual evaluation of this CAD model
accuracy is depicted in fig. 2 (right). The distances of the 24719 test
points from surface were processed using the Rhinoceros tools.

Rhinoceros

5 Point Devistion

|

Al measurements are i 3
-7 lgnore: 1

Bad point: 06

- Good poin: 0.09

OnSurface

Fig. 2: C? continuously joined Bézier patches (Example 1).

2.2 The task modification

However, the result of the tactile measurement on the CMM does not have
to be only the coordinates of the measured point, but also information
about the normal vector of the measured surface (at the given point) [3].
This insight will certainly lead to an improvement in the shape of the fitted
surface, but due to the requirement to use the Bézier bicubic surface, it
will be necessary to reduce the demands on the continuity of the joined
patches. The C' continuous patching is possible in the case of a Hermite
bicubic surface with zero twist vectors at corner points, also known as
Ferguson 12 vector surface [4]. This kind of surface can be easily redefined
as Bézier bicubic patch, because each triplet of corner neighboring control
points with this corner point have to form a parallelogram. To meet
the normal vector requirement at all definition (i.e. corner) points, this
parallelogram must lie in the tangent plane of the patch. Consequently,
there are countless possibilities to place the remaining 12 control points
of each Bézier patch in ”their” tangent planes to form parallelograms of
four. In the following, three examples of the specific location of these
points will be presented and the accuracy of the resulting CAD model
will be evaluated.
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2.2.1 Example 2

For interior Q; ; (i € {1,2,. —1},5€{1,2,...,n — 1}) definition points,
the missing boundary Bez1er control points (for each Bézier patch) are ob-
tained by orthogonal projection of points

l—m—— l—m
Q Qz 1,]QZ+1,]7 Q,J Qz,j IQZ,j+1

into the tangent plane at definition point Q, ;. In each Bezier patch,
the quartet of interior remaining control points is then added from the
parallelogram condition. In fig. 3, all definition points with control points
of each Bézier patch and visualization of C'* continuity are shown.

Fig. 3: C! continuously joined Bézier patches (Example 2).

2.2.2 Example 3

Using the same notation as in Example 2, the missing boundary Bézier
control points (for each Bézier patch) are obtained by orthogonal projec-
tion of points

l—— l——
Q,; Qz 1 Qiv1,; and Q, ; £ Qw 1Qi j+1

into the tangent plane at point Q; ;, remaining inner control points are
computed via parallelogram condition. This CAD model is just a variation
of previous Example 2, but from fig. 4 it is clearly seen that increasing
the distance between the boundary control point and corner point in the
tangent plane has a favorable effect on the accuracy of the surface.

2.2.3 Example 4
In the last example, the missing boundary Bézier control points are given
by orthogonal projection of points
b;
3ci(a; + ;)

Qi

Qi’j + 3¢ (ai + bl) ’

Qi —
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Fig. 4: Visual comparison of accuracy, Example 3 (left) and Example 2
(right).

— — —
(i = 1Qi=1,;Qit1 1l ai = [1Qi—1 Qi I, bi = Qi ; Qi1 511
b; a;
P 737 ii— 797
it 3oty 18 Y 3o + 1)
5 — —

(c; =11Qij—1Qij+1lla; = 1Q; j—1Q; ;11,05 = 1Q; Qi j+1l)

into the tangent plane of point Q; ;. Thanks to the proportional distribu-
tion of the boundary control points created in this way, the patches will
not be connected with parametric C! continuity, but only with geometric
continuity G*, fig. 5.

Fig. 5: G' continuously joined Bézier patches (Example 4).

2.3 Accuracy evaluation

The accuracy of each CAD model exampled was evaluated using the set
of 24719 test points selected independently on the set of definition points
from the set of 58622 measured points. In table 1, all important values
obtained by Rhinoceros tool were collected. From this table it can be seen
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’ CAD model \ average distance | standard deviation | max. distance

Ex. 1 (C?) 0.1199 0.1129 0.6500
Ex. 2 (CT) 0.0612 0.1029 0.6346
Ex. 3 (C7) 0.0606 0.0639 0.4216
Ex. 4 (GV) 0.0603 0.1078 0.6833

Table 1: Statistical evaluation of accuracy, all values in mm

that the use of normal vectors leads to a decrease in average distance com-
pared to Example 1 and the maximum distance of test points from CAD
model is the smallest in the case of Example 3. These two values, together
with the largest distance between two interpolated points (11.0553 mm),
is very significant for comparing the accuracy of the given model.

3 Conclusion

Some possibilities of using the Bézier bicubic patch for shape reconstruc-
tion via interpolation are described and demonstrated on specific assign-
ments in the paper. It is clear, that the idea of preserving the normal
surface vectors to make the most accurate CAD model of surface leads to
many solutions. In our case, the proposed result models consist of only
C' resp. G' joined Bézier bicubic patches, but this degree of continuity is
for CAD models and its further processing quite sufficient. A significant
advantage of this approach is the modifiability of Hermite/Bézier patch
control point locations, which will be addressed in future work.
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Abstract. Last year, as usual, we participated in the Czech European
Researchers’ Night at MENDELU. Since the theme was “With all the
senses” , as geometers we focused on vision. We created two of Adelbert
Ames Jr.’s most famous illusions, namely the Ames Room and the
Ames Window. In this paper we will describe how these illusions work
and how we recreated them.

Keywords: Ames window, Ames room, illusion, perception.

1 Introduction

Adalbert Ames, Jr. (1880 — 1955) was an American ophtalmologist and
perceptual psychologist.

As an ophtalmologist, he is credited with diagnosis of aniseikonea, a
malformation of the eyes in which the right and left retinal images are so
distinctively varied in size that they cannot readily be fused by the brain.

He is more widely remembered as a perceptual psychologist and the
creator of a series of visual illusions, most of them summed up in the
Ames Demonstrations in Perception [2]. There is about 22 laboratory
demonstrations, probably the most famous are Ames window and Ames
room.

2 Ames window

The shape of the Ames window is an isosceles trapezoid created as anamor-
phosis of the rectangular window with 6 openings. It is usually mounted
on a vertical shaft that rotates, driven by a small electric motor.

The rotating trapezoid should be viewed from a short distance monoc-
ularly, or binocularly from a long distance. Most of the observers would
not see the window as rotating, but oscilating back and forth. The per-
ception of the illusion is better when the center of the trapezoid is at
eye-level height, illumination of the object and the surrounded scene is
uniform and the viewer can focus only on the rotating window.

It was believed that the only reason of this illusion lies in the fact that
we are living in the environment where most of the objects as houses,
rooms, furniture, windows are rectangular, but we usually see them as
trapezoids. When looking on the Ames window, our brain suppose it is
rectangle. This hypothesis was mostly declined by Harvard study among
Zulus [3]. Two groups of children were formed, one from the city and the
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Fig. 1: Ames window.

other one from the villages, where they were living in round huts. There
was expected difference of perceiving the illusion when looking with two
eyes from 10ft distance, but nearly no difference when looking with one
eye from 20ft distance.

Experiments with percieving the illusion among small babies [5] con-
firmed that the ability of percieving the illusion is connected to the depth
perception.

To make the illusion even more interesting, various objects can be
attached on the trapezoid and rotate with it. For example, a tube can
be suspended through one of the openings, or a cube can be attached to
side edge of the trapezoid. The attached object looks rotating while the
window looks oscilating, which is quite confusing for the viewer.

It is possible to find templates for making the Ames window on the
internet. These templates are usually not drawn in perspective correctly.
Therefore when creating model, we started by drawing the window in per-
spective projection. Our first model was made from paper and cardboard.
It was clear at first glance that it was not ideal. After gluing the layers
together, the window bowed. In addition, we later discovered that it did
not have the ideal proportions to create a strong optical illusion. Despite
these flaws, the illusion worked.

We always supposed that not every trapezoidal window gives illusion of
the same strength. Later on, we came upon the experiment [4], where the
authors looked for the best dimensions of the trapezoidal window. They
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selected nine various trapezoids of various parameters. These parameters
were ratios of the lengths of the segments marked on the Fig. 1. The
parametres and the presence or absence of shadows are given in next
tabular.

DF

|DF|
Sebol1 o1 107 1,07 107 115 115 15 15
|BE|
Bel |1 15 225 15 10 225 1 15 1

shadows | 0 0 0 1 1 1 1 1 1

They asked observers to report changes in the direction of rotation and
investigated how different shape of the window affect the illusory effect.
Results of observation are given in Fig. 2.

100%
90%

70%
60%
50%
40%
30%
20%
10% I
o - 1 |
4 5 6 7 8 9

Fig. 2: Results of experiment.

-l

Conclusions of the experiment:

e The bigger the % ratio, the stronger the illusory perception.

e The longer the horizontal length of the window, the weaker the
illusory perception.

e The application of shadows increases the illusory effect.

We followed these results when making the second attempt to create
the Ames window from the board. You can see our final plan for Ames
window on Fig. 3.
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Fig. 3: Our Ames window.

3 Ames room

The Ames room is somehow deformed room, but when viewed from a
proper point with one eye, it looks like ordinary orthogonal room. That
is one part of the illusion. The viewing point is usually placed in one of
the walls as a peephole and it has to be the center of projection which
was used to project some parts of ordinary shaped room (or whole room)
to get the deformed one.

When looking for the Ames room on internet for the first time, we
came across many templates which used such construction that the floor
and ceiling were surfaces of higher degree (not developable). That was
not solution for us, because we wanted to create the room from boards.
Therefore we gave up trying to make our work easier and started again
from scratch with modeling the room. We wanted to get such distorted
room, that would be easy to construct. Such a shape is in Fig. 4. Walls,
floor and ceiling are planar and two side walls are parallel.

We found out later that this shape is probably the most common,
when creating the Ames room and the construction is similar to the one
Ames used. The difference is in the shape of original room. Ames used a
cube and he projected most of it to get the resulting deformation.

There are infinitely many possibilities how the Ames room can be
shaped and Ames was aware of that. He first created two such rooms in
laboratory size and later one of them in full size (roughly corresponded
twelve—foot cube). There is a detailed construction of that room in [2]
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Fig. 4: Projection of the orthogonal room.

To make the illusion more believable, it is good to have windows in
there and furnish the room. It is necessary to think about the location of
these objects in advance, because their position in the room clearly deter-
mines their deformation as well (moving of the furniture is not possible
later on).

Fig. 5: Our model of the Ames room viewed from the peephole.

The other part of the illusion lies in the fact that we can put in the
corners (facing the viewing point) two objects of the same size, but one
of them will look smaller. We used paper dolls, which can switched the
places. When viewed through the peephole, the one in the more distant
corner will always look smaller (Fig. 5).

The illusion does not work when viewed with both eyes or from another
point of view (Fig. 6).
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“

Py

Fig. 6: Model of the Ames room from other then viewing point.

4 Conclusion

Ames did not propose only these illusions. The room we call by his
name, Ames called monocular room and also proposed and constructed
less known binocular room. We advise the reader to see [2] for the details
of other illusions Ames created.
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Abstract. The work is focused on the applicability of the Box Counted Method for
determining the fractal dimension of natural formations that show self-similarity
features. The questionable moments of this approach are pointed out.
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1 Zakladné definicie a vzt’ahy

Mandelbrotova kniha [1] a v nej zavedeny pojem fraktalu méa dodnes vel’ky ohlas
(napr. [5]). Google dnes nachadza pre pojem ,fraktilna mnozZina“ viac ako
44 000 000 odkazov a pre pojem ,fraktalna dimenzia“ takmer 20 000 000
odkazov. Zaujem o tito metodu vyjadrenia geometrie je motivovany tym, ze
Vv prirode ¢asto nachadzame objekty so zlozitou §truktarou, ktora pri prechode na
podrobnejsie zobrazenie ma tendenciu sa opakovat’, napr. [1], [2], [3].

V c¢lanku chceme wukazat wurCiti spornost’ pouzivanych konstrukeii.
Obmedzime sa na analyzu samopodobnych Struktir, ktoré su tvorené iteracne
linearne lomenou ¢iarou, kde v nasledujuce;j iteracii kazdu jej usec¢ku nahradime
adekvatne Skalovanou replikou generatora (Lindenmeyerovské systémy).

1. Kochova krivka K, kde generatorom pre useCku AB= je linearne lomena
tiara ACDEB, s dizkami useciek
|AC| = |CD| = |DE| = |[EB| =42
a uhlami medzi tise¢kami
a(AC,CD) = a(DE,EB) = 120°, a(CD,DE) = 60°
2. raciondlny variant Kochovej krivky V1, (napr. v [4] pod nazvom Vicsek
growth model). Generatorom pre AB= je ortogonalna linearne lomena Ciara
ACDEFB, kde
AC L CD,CD L DE,DE L EF,EF 1L FB
a dizky tseciek su
|AC| = IDE| = |[FB| = 42, |cD| = |EF| =42,
3. raciondlny variant Kochovej krivky V2, s generatorom ACDEFGHB, kde
AC 1L CD,CD L DE,DE 1 EF,EF 1 FG,FG L GH,GH L HB 2
a dizky useciek su
|AC| = |HB| =B |DE| = |EF| = |FG| = “E, |cD| = |GH| = &,

3 !
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K vt V2,

Kz Viz vz,

] 02 04 06 08 1 0 0.2 0.4 06 08 1 0 0.2 04 08 08 1

Obr. 1: Prva a druha iteracia pouzitych $truktir K, V1 a V2

Fraktalnou dimenziou nazyvame hodnotu
1. logN,
b =lim log ' @
kde r je dizka jednotkového elementu a Ny je pocet jednotiek, pokryvajticich
analyzovany objekt. Je jednoduché sa presvedCit, ze vySsie uvedené Struktiry

maju fraktalnu dimenziu
log4 .

log3 — 1,2619. 2
Pre odhad hodnoty fraktalnej dimenzie sa spravidla pouziva metdda zvana Box
Counting (BCM). V naSom pripade to znamena, Ze
1. skonStruujeme k-tu iteraciu objektu, F, < [0,1] x [0,1],
2. F;, preskalujeme a rasterizujeme v celo¢iselnej rastrovej mriezke
Fon €{12,..,n} x{12,..,n},
3. fraktalnu dimenziu odhadneme z hodnot

_ logNg n
Dbien = "ogn @)

Dg = Dy = Dy =

kde N, ,, je pocet pixelov reprezentujtcich Fy, ,, an definuje jemnost rastrovej
mriezky.

2 BCM pre rozne scenare zjemnenia rasteriza¢ne;j siete

Snaha o urcenie fraktalnej dimenzie realnych objektov nardza na to, ze v realnych
situaciach vzdy mame len kone¢ny pocet analyzovanych rastrovych obrazov
roznych rozliSeni. Preto vo vysoko zjemnenej rastrovej mriezke, ked’ je velkost
pixelu podstatne mensia ako najmensi detail analyzovaného objektu, vztah (3)
zjavne konverguje k D =1. Je to doésledok Shannonovho vzorkovacieho
teorému. V tomto kontexte je analyza fraktalnej dimenzie zalozend na analyze
podvzorkovych obrazkov.
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K(2x)

6 V1(2x) v2(2x)
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Obr. 2: , Dizka“ rastrového obrazu krivky pre rozny pocet iteracii a rozne
scénare zjemnenia rastrovej mriezky pre §truktary K, V1 a V2

Na Obr. 2 vidime rézne modifikacie dizky Lg,, = % Iteraciam k = 1, ... 6 (1.
jemnosti reprezentacie jednotlivych fraktdlov) odpovedaju postupne farby
R,G,B,K,C,M. Roznym scénarom zjemiovania diskrétnej mriezky odpovedaju
kody
(2x) — tj. zdvojnasobovanie diskrétnej mriezky:
n€{3,5,9,17,33,65,129,257,513,1025, 2049, 4097}
(3X) — tj. strojnasobenie diskrétnej mriezky:
n € {4, 10, 28,82, 244,730,2188, 6562}
Na horizontalnej osi je logaritmicka $kala hodnoty n. Vidime, Ze s narastajicou
hodnotou n kazda z kriviek postupne prechadza “z exponencialy na priamku”.
Vidime taktiez, Ze strojnasobenie rastrovej mriezky je vzhl'adom na konstrukciu
pouzitych fraktalov prirodzenejsia ako zdvojnasobenie, o sa prejavuje mensim
zat'azenim diskretizacnou chybou (grafy vykazuju hladsi priebeh).
Exponencialnost’ l'avych Casti grafov je viac patrnejSia z Obr. 3, kde obe osi st
v logaritmickej 8kale (x = logn,y = log Ny, , — logn). Vzhl'adom na vzt'ah (3)
by v idealnom pripade vSetky krivky mali v 'avej Casti splyvat’ do jednej usecky.

K(2x)
2 V1(2x) v2(2x)
N 2 2
15 .
— 1.5 = - 1.5 —
! 1 # 1 é
0.5 0.5 05
0 0 0
2 4 6 8 2 4 6 8 2 4 6 8
K(3x) V1(3x) V2(3x)
2 2 2
15 :_’ — 15 — 15 —
1 1 1
05 05 0.5
o b— . : : o l— . : : ! . : :
2 4 6 8 2 4 6 8 2 4 6 8

Obr. 3: Odhad fraktlnej dimenzie pre k = 3,...6 anuyy =9, NEy = 28.
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Nazornejsie vyjadrenie odhadov fraktalnej dimenzie (3) je na Obr. 4, kde ¢ervena
Ciara reprezentuje skuto¢na hodnotu (2) fraktalnej dimenzie.

K(2x)
v1(2x) v2(2x)
1.3 1.3
12 ¢t\$ i : 12%
1.1 1.1
1 1
4 6 8 4 6 8 4 6 8
K(3x) V1(3x) V2(3x)
1.3 1.3 1.3
1.2\ E E 1_2% 12 § .
1.1 1.1 1.1
1 1 1
4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9

Obr. 4: Odhad fraktalnej dimenzie pre k = 3,...6 a Ny = 9, N3y = 28.

3 Zaver

Vysledky ukazuji, Ze BCM metdda odhadu fraktalnej dimenzie je vel'mi citliva
na scenar diskretizacie pouZitej rastrovej mriezky. Jej pouZitie sa zda byt vel'mi
problematické pre fraktaly, v ktorych sa vyskytuje zlozitejsia Struktiara prvkov
generatora (rozne velké elementy generatora).

Naviac, i pre najjednoduchsi pripad (Kochova krivka) je nutny vysoky stupen
iteracie (k = 5, k = 6), ktory moze byt v praxi tazko dosiahnutel'ny.
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Abstract. The paper covers a marching triangle approach for triangu-
lating an implicitly defined surface in E®. The surface is allowed to have
singularities which are given or can be computed. The singularities
are of ADE type or non-isolated regular curves. Local approximations
around singularities are extended over the regular part of the surface.
Comparisons with SingSurf using quntitative criteria as well as using
visualized examples are provided.

Keywords: triangulation, marching triangles, singularities

1 Introduction

During the processing of surfaces (e.g. modeling), they are often given in
an implicit way. The approximation and visualization of such surfaces
is one of the key items in a long list of procedures with them. We also
propose a method of visualizing for certain isolated and non-isolated sin-
gularities on a surface as well as marching triangle type of approach for
approximation of a regular part of an implicitly defined surface. Since the
determining the position and type of isolated singularities is a difficult
task on its own, we suppose such data are given for the surface in a suit-
able way. The non-isolated singularities, which are spatial regular curves
can be often computed (traced) as intersection of induced surfaces.

An implicitly defined surface (IDS) Z(F) = {x € R® : F(x) =0} is a
zero set of a suitable function F': R® — R. We often work with polynomial
F', hence arbitrary order differentiability of F' is guaranteed.

Typically, the set Z(F') can be locally parameterized by a regular sur-
face in a suitable neighborhood of almost each of its points. However,
singular points given by an additional condition VF = 0 might not have
this property. Among them, we distinguish between simple isolated sin-
gularities (having a regular ring neighborhood and ADE structure) and
non-isolated singularities along regular curves laying on the surface.

Visualization of IDS has already been done by several approaches for
several decades — Marching cubes [4], Marching Triangles [1, 5], raytrac-
ing (developing rapidly with hardware acceleration), volumetric methods
(used in many scanning techniques in medicine), particle based images
and others.
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Fig. 1: Steps and results of Marching Triangles algorithm (a) estimation
of the new triangle vertex (b) projecting the new vertex to a surface and
forming a new approximation triangle, (c¢) results of the MT of torus using
several starting lengths of the edge of the triangle with adaptive approach
(top row) and uniform approach (lower row).

2 Triangulation

A triangulation approximating the surface can be obtained in several ways.
Marching Triangles (MT) algorithm is briefly introduced for regular sur-
faces.

In general, finding a first point of a triangulation is a difficult task
due to the fact that it deals with its existence. Suppose we are given
such a point and it is a regular one. Using a triangle in its tangent plane,
we might obtain the first triangle of the triangulation using a projection
of this tangent triangle onto the given IDS. The edges of the projected
triangle form a starting boundary of the triangulated region.

Continuing from such a triangle, one adds another neighboring triangle
at a time along the boundary of the triangulated region so that a final
triangulation is obtained (see Fig. 1). A boundary has to be updated
and maintained when a new triangle is added. Such a boundary can
have several connected components that appear or are enclosed. It is a
technically complex problem.

The approach of the determining of the new triangles can be modified
using several additional properties of the surface Z(F'). Often, various
functions of curvature of the approximated surface (principal, Gaussian,
mean, see Fig. 2) are taken into account. They are important local and
after integration also global characterization of a surface. In the proposed
approach, the lengths of the triangle edges are computed adaptively ac-
cording to curvedness (see [2]) resulting in the triangulation shown in
Fig. 1 (c), top row.
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L4}

a) minimal b) maximal ¢) Gaussian d) mean

Fig. 2: Various types of curvature measured on a surface. Blue represents
high values, white corresponds to middle values, red means low values (by
the authors of [6]).
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Fig. 3: Local behavior of ADE singularities.

3 Singularities

Isolated singular points on a surface can have a complicated and numer-
ically unstable structure. Hence, only ADE singularities are considered
(see Fig. 3). Although there are infinitely many ADE singularities, they
can be classified into several groups locally given up to a smooth change
of coordinates by the equations

Apnty : f(z,y, 2) s Lyl 22 n>1
Dpis: flo,y,2) = ya+y" 1+22n>4
Fers: f(z,y,2) = 234y +£22

Broey: f(z,y,2) = 22 xaxy’+22

Esiy : f(z,y,2) x3 + 95 + 22

Singularities come into play in many circumstances. One of them
considers finite subgroups of SO(3) corresponding to the isometries of
regular or semi-regular polyhedra (see Fig. 4). Certain types of non-
isolated singularities (curves in this case) are considered as well.

Considering their shape, there have been created only few mesh pat-
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Fig. 4: Isometries of some polyhedra form ADE singularities.

Fig. 5: Local meshes for the ADE singularities.

terns for their approximation (see Fig. 5). Using the symmetry and ge-
ometrical characteristics of the canonical isolated singularities, a set of
parameters is determined for each type of singularity for the enhance-
ment of a local approximation which is computed (see Fig. 6). One still
has to take into account numerical limitations of such triangulations.

4 Results of the algorithm and their evaluation
The computed triangulations are compared using several criteria of quality
(see Fig. 9).
e Ly — the mean ratio of the length of the sides of the triangle.
e ko — a discrete approximation of the Hausdorff distance of the orig-
inal surface and its approximation.

e k3 — the mean distance of the gravity center and its perpendicular
projection for each triangle.

e Lk, — the mean distance of the neighbor vertices from a vertex and
the standard deviation of the distance from the mean.
Main comparison was between adaptive and non-adaptive approaches to
the SingSurf program [5].
Visual comparisons of the results in several setups follow.
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Fig. 6: Local approximation of singularities based on local parameters.
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Fig. 7: Visual comparison of the approximation with Marching Triangles
approach (left) and Marching Cubes (right) approach.
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Fig. 8: Example of the surface with isolated singularities (left) and non-
isolated singularities (right) constructed using CSG operations.
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A, singularities

D, singularities
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Ay
Ao

Fig. 9: Comparison of the
ing the criteria ki-k4.
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Dy

Dy

Dsy

Uniform

Adaptive

0.003
03

type
Egis
Eg+— | Uniform
Adaptiv
SingSurf 0.024  0.004
Eris 0.027  0.004
Adaptive 0.028 0.004
SingSurf 0.004
Ejs.. | Uniform 0.028  0.004

Adaptive

0.022

0.004  0.056

computed triangulations with singularities us-

10: Uniform triangulations of ADE singularities.

Fig. 11: Adaptive triangulations

of ADE singularities.
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Triangulation of implicit surfaces with singularities

T
S

GO0

Ay

Ay

Es i+

is significantly less

Fig. 12: SingSurf triangulations of ADE singularities
quality in term of triangle distribution.

e=0.20

Fig. 13: Uniform triangulations with singular curves and various length

of the triangle edge.

14: A more complex uniform triangulations with ADE singularities.

Fig.
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5 Conclusion and future work
There are much detail on algorithms and examples written in the diploma
thesis of the first author upon which is this paper based (see [3]).
Further progress of this topic is focused on the computation of the
position and type of singularities on a surface. The determination of the
singularities is particularly difficult via numerical methods for isolated
singularities. Other qualitative methods have to be taken into account.
The non-isolated singularities (curves) may themselves contain singu-
lar points. Their determination is another challenge though such case are
even rarer.
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Abstract. This paper describes the derivation of parametric equations
of selected screw surfaces. This allows us to create graphical represen-
tations of these surfaces in the Maple graphic program.
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1 Uvod

Tento prispévek predklada odvozeni parametrickych rovnic u vybranych
sroubovych ploch, pomoci nichz jsou vytvoreny vizualizace téchto ploch
v programu Maple, pfipadné v programu GeoGebra. Protoze nejobtiznéjsi
je nalezeni parametrizaci pro sroubovy torzus a Archimédovu serpentinu,
bude se ptispévek vénovat pravé témto dvéma plocham.

2 Sroubovice

Vychozim objektem pro nalezeni parametrizaci Sroubovych ploch je jeden
zavit pravotocCivé sroubovice s parametrickymi rovnicemi

S(p) = (reose, rsing, vy ), ¢ € (0;2m),
které vyjadiuji, ze Sroubovy pohyb bodu je v zdkladni situaci slozenim rov-
nomérného rota¢niho pohybu bodu po kruznici o poloméru r se stfedem
[0,0] v pudorysné m = (z,y) a rovihomérnym posunem tohoto bodu ve
sméru osy z. Sroubovice je kfivka navinutd na rotaéni vélcovou plochu,
kterou po rozvinuti do roviny vidime jako pfimku. Jeden zavit Sroubovice
dany oto¢enim o thel 27 a posunutim o vysku zdvitu v je po rozvinuti
pfeponou pravothlého trojihelnika s odvésnami 27r a v. Otoceni bodu
o uhel 1 radidn prislusi oblouk kruznice o délce r a posunuti o redukovanou
vysku zdvitu vy. PTi otoCeni o obecny tihel ¢ mé oblouk kruznice délku r¢
a posunuti je ddno hodnotou z. Je tedy

Vo v z v

—=—=— = 1= N z2=10.

r 2rr  rp 2
Dvé zéakladni skupiny Sroubovych ploch jsou dany tim, zda se Sroubuje
piimka nebo kruznice. Jejich poloha pak urcuje konkrétni typ primkové
resp. cyklické sroubové plochy.
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Obr. 1: Vlastnosti Sroubovice

3 Kosotuhla oteviena primkova sroubova plocha

Plocha vzniké §roubovym pohybem piimky, kterd je s osou o = z Sroubo-
vého pohybu mimobéznd a svira s ni obecny thel ¥ € (0,7)\{5}. Bod
piimky umistény nejblize k ose vytvaii pii pohybu hrdelni Sroubovici S.
Budeme parametrizovat plochu P, jez vznikd sroubovanim tsecky dané
délky d s krajnim bodem na hrdelni sroubovici § urc¢ené hodnotami r a vy.

f<3_

Obr. 2: Vytvoreni kosoihlé oteviené ptimkové sroubové plochy

Tvofici tsecka u = SU, |SU| = d, je pieponou pravotihlého trojihelni-
ka a se smérem osy z svird thel ¥. Kolmym prumétem do pidorysny m
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je usecka S1U; o délce d; lezici na tetné kruznice Sp, kterd je kolmym
prumétem Sroubovice S do 7. Z toho plyne, Ze z = dcos¥ a d; = dsin .
Poloha obecného bodu X na tsecce u je ddna soucinem k - d pro para-
metr k € (0;1). Promitnutim do pudorysny je |S1X1| = k- d; = kdsind.
Prumeétem Sroubovice S do pudorysny je kruznice S; = (rcos g, rsinp),
takze tecny vektor o délce r mé vyjadreni S| = (—rsiny, rcos ).
Pomoci jednotkového tecného vektoru 7= (—sin g, cos¢) lze parametri-
zovat bod X7 € w pro k € (0;1) vztahem
X1 =51+kdsin9-7= (rcosp—kd sindsin g, rsinp+kdsind cos p).
Rozdil z-ovych soutadnic bodi X a S je roven kz = kdcosd, z ¢ehoz
z-ovou soufadnici bodu X uréime jako vy + kdcosd.
Tim jsme pro k € (0;1) a ¢ € (0;27) nasli parametrizaci kosoihlé
oteviené primkové sroubové plochy ve tvaru
P = (rcosg — kdsindsin g, rsing + kdsind cos p, vg p + kdcosv) .

3.1 Rozvinutelna pfimkova Sroubova plocha

Pokud hodnota uhlu ¥, ktery svira tvorici usecka s osou o = z Sroubovice
neni libovolnd, ale tato tisecka je vuci hrdelni Sroubovici teénd, ziskdme
rozvinutelnou piimkovou sroubovou plochu neboli sroubovy torzus.

Tecny vektor ke sroubovici mé tvar 8’ = (—rsinp, rcosy, vg), jed-
notkovy vektor osy z je 7= (0,0, 1), pokud tyto vektory sviraji ihel mens{
nez %, jednd se o hledany thel 9. Pro odchylku vektort plati

=
cosV = et = —20  sind = +v/1 — cos2 9 = L
ST = o’ + e

Tytéz vztahy vidime na obr. 1 po rozvinuti sroubovice do roviny. Je-
jich dosazenim do parametrizace plochy P ziskdme vyjadfeni rozvinutelné
sroubové plochy

R = (rcosgo — \/]:QdTrvgsinap, rsin p + \/’;‘ﬂri’“vgcoscp, vo @ + %) .
Standardné se zobrazuje ¢dst rozvinutelné sroubové plochy, kterd je ome-
zena hrdelni Sroubovici S a kfivkou £ v pudorysné w. Tedy z = 0 neboli

kd__ — (). Pozadujeme, aby tvofici tsecka plochy, jez je omezena

v e

krajnim bodem S sroubovice S lezicim v obecné vysce vy i, méla druhy
krajni bod v bodé P € w. To znamen4, ze délka této tisecky je rovna hod-
noté d = /12 4+ v - p, coz opét vidime v obr. 1. Poloha bodu P tedy od-
povida hodnoté parametru k = —1. Dosazenim do parametrizace plochy R
obdrzime vyjadieni kiivky & = (rcos¢ + rpsiny, rsing — rpcosy, 0).

Tato kiivka je evolventou kruznice S; € 7, do niz se kolmo promita
hrdelni Sroubovice S. Nazorné si lze evolventu kruznice pfedstavit jako
drahu koncového bodu natazené nité, kterou odvijime z civky. Obecny
bod E evolventy £ lezi na teéné ke kruznici ve vzdalenosti r ¢ od doty-

kového bodu S7 s kruznici. Vektor S E méa opacny smér vzhledem k jed-
notkovému vektoru 7= (— sin ¢, cos ¢), takze pro evolventu kruznice plati
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E=S—-rp-7 = E=(rcosp+rpsing, rsing —rpcosp),
coz se shoduje s pfedchozim vysledkem.

Pro zobrazeni ¢asti rozvinutelné sroubové plochy mezi hrdelni sroubo-
vici S a evolventou € je tfeba do parametizace R plochy dosadit odvoze-
nou délku d = p+/r2 + v tvofici usecky plochy, pricemz rozsah parametru
k je dén intervalem (—1;0).

R = (reosp —krpsing, rsinp + krocosy, (k+1) v )

Y

Obr. 3: Evolventa kruznice

3.2 Vizualizace Sroubového torzu

Rozvinutelnou sroubovou plochu zobrazime v programu Maple pomoci
nasledujici animace, kterou bychom mohli pfizpusobit i programu Geo-
Gebra.

> restart;with(plots):

> bl:=color=blue:b2:=color=red:b3:=color=violet:tl:=thickness=3:
st:=style=patchnogrid:

> r:=5:v0:=6:
> ST:={[r*cos(p)-k*r*p*sin(p) ,r*sin(p)+kxr*p*cos(p), (k+1)*vO*pl},k=-1..0,
p=0..pos,st:

> S:={[r*cos(p) ,r*sin(p),v0*pl},p=0..pos,bl,tl:
E:={[r*cos(p)+r*p*sin(p) ,r*sin(p)-r*p*cos(p),0]1},p=0..pos,b2,tl:
u:={[r*cos(pos)-k*r*pos*sin(pos) ,r*sin(pos)+kxr*pos*cos (pos),
(k+1)*vO*pos]},k=-1..0,b3,tl:

Al:=animate(plot3d, [ST],pos=0..4%Pi,frames=240):
A2:=animate(spacecurve, [S],pos=0. .4*Pi,frames=240) :

A3:=animate (spacecurve, [E],pos=0..4*Pi,frames=240) :
A4:=animate(spacecurve, [u] ,pos=0..4*Pi,frames=240,trace=24):
display({A1,A2,A3,A4},scaling=constrained) ;

vV Vv

vV V. V Vv VvV

4 Archimédova serpentina

Jedna se o cyklickou Sroubovou plochu, kterd je urc¢ena podminkou, ze
Sroubovand kruznice k o poloméru R lezi v kazdé poloze v roviné p kolmé
k tecné sroubovice. Stfed O kruznice k je pfitom bodem Sroubovice. Ar-
chimédova serpentina je zaroven obalovou plochou Sroubujici se kulové
plochy K o témze poloméru R.
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Teény vektor sroubovice je normalovym vektorem roviny p, takze ro-
vina p ma rovnici —z rsin e 4+ yrcos ¢ + 2z vg + d = 0, pficemz hodnotu d
dopocitame dosazenim soufadnic bodu Sroubovice. Je tedy

—r2cospsing +risinpcosp+vip+d=0 = d=—v3¢
Rovnice roviny p: zrsing —yrcosg — 2vg + v ¢ = 0.

Kulovou plochu K budeme parametrizovat pomoci ihla « a 3, kde «
je odchylka prumétu OK; € 7 pruvodice OK, |OK| = R, od kladného
sméru osy « a 3 je odchylka pruvodice OK od kladného sméru osy z. Pro-
zatim uvazujme, ze 00,0, 0]. Pro soufadnice bodu K € K plat{ vztahy

x = |0OKi|cosa A y=|OK;|sina A |OK;|=Rsinf8 A z= Rcosf
Tim ziskdme vyjareni kulové plochy
K = (Rcosasin 8, Rsinasin 3, Rcos ), a € (0;27), B € (0; ).
Protoze stred O kulové plochy lezi na Sroubovici S, parametrizace se zmé-
ni na K = (rcosp + Rcosasin 8, rsing + Rsinasin 8, vg ¢ + Rcos ) .
Dosazenim vztahu pro kulovou plochu K do rovnice roviny p a naslednou
tipravou ziskdme vyjadieni kruznice k.
7 sin ¢ (r cos p+ R cos asin B)—r cos ¢ (r sin p+ R sin a sin ) —vg (vo ¢+ R cos B)+v3 ¢ = 0
r R cos asin Bsin p—r Rsin asin 8 cos p—vg Rcos B = 0
rsin B(sin ¢ cos a—cos p sin a)—vg cos § = 0
rsin Bsin(¢—a)—vgcos B = 0
Déle rovnici umocnime na druhou a vyjadifme funkce sin? 8 a cos? §.
r?sin? Bsin?(p—a) = v cos® B = 7’2(1—0052 /5) sin?(p—a) = v3 cos®
cos? B(v§+r2 Sinz(gpfa)) = r?sin?(p—a)

r2sin2(p—a)
vg+¢25hﬁ(¢—a)

Protoze 8 € (0;7), je sin8 > 0, a tedy sin 8 =

2
Yo

cos? B = = sin?f = 1—cos? 8 =

vZ+r2sin2(p—a)

Vo
V2 +r2sin?(p—a)
Funkce cos 8 nabyva kladnych i zapornych hodnot a jeji znaménko je dé-
rsin(p—a)

Vo2 4r2sin?(p—a)

Dosazenim téchto vyrazu ziskame vyjadieni kruznice k na Sroubové ploge,
a tim i parametrizaci Archimédovy serpentiny.

no znaménkem funkce sin(¢ — ). Vyjddifme cos § =

Ruwg cos a Ruwg sin a r Rsin(p—a)

—— rsinp+ - vo p+
/o2 +r2sin2(p—a)’ \/vg+Tzshﬂ(¢7a)) w2472 sin2 (p—a)

4.1 Vizualizace Archimédovy serpentiny

A= rcos p+

> restart;with(plots):

> bl:=color=red:b2:=color=blue:b3:=color=violet:tl:=thickness=3:
st:=style=patchnogrid:

> r:=8:R:=3:v0:=2.5:

> AS:={[r*cos(p)+R*vO*cos(a)/sqrt(v0~2+r~"2*(sin(p-a))~2),
r*sin(p) +R*v0*sin(a)/sqrt (vO~2+r"2*(sin(p-a))~2),
vO*p+r*R*sin(p-a)/sqrt (vO~2+r~2*(sin(p-a))~2)1},
p=0..pos,a=0..2+Pi,st,grid=[100,100] :

> S:={[r*cos(p) ,r*sin(p),v0xpl},p=0..4%Pi-pos,b2,tl:

> K:={[r*cos(4*Pi-pos)+Rxcos(a)*sin(b) ,r*sin(4*Pi-pos)+R*sin(a)*sin(b),
vO* (4*Pi-pos)+R*cos(b)]},a=0..2%Pi,b=0..Pi,st,b3:
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> k_1:={[r*cos(pos)+R*vO*cos(a)/sqrt(v0~2+r"2*(sin(pos-a))~2),
r*sin(pos)+R*xvO*sin(a)/sqrt (vO~2+r~2*(sin(pos-a))~2),
vOxpos+r*R*sin(pos-a)/sqrt (vO~2+r~2*(sin(pos-a))~2)1},a=0..2*Pi,t1,bl:

> k_2:={[r*cos(4*Pi-pos)+R*v0O*cos(a)/sqrt (v0~2+r~2*(sin(4*Pi-pos-a))“~2),
r*sin(4*Pi-pos)+R*vO*sin(a)/sqrt (v0~2+r~2*(sin(4*Pi-pos-a))~2),
vO* (4*Pi-pos)+r*R*sin(4*Pi-pos-a)/sqrt(v0~2+r"2*(sin(4*Pi-pos-a))~2)]1},
a=0..24Pi,tl,bl:

> 1l:=spacecurve ([r+R*vO*cos(a)/sqrt(v0~2+r"2*(sin(a))"2),

R*vO*sin(a) /sqrt (vO~2+r~2x(sin(a))"2),

-r*Rxsin(a)/sqrt (v0"2+r"2x(sin(a))~2)],a=0..2*%Pi,t1l,bl):

Al:=animate(plot3d, [AS],pos=0..4*Pi,frames=380) :

A2:=animate (spacecurve, [S],pos=0..4%Pi,frames=80) :

A3:=animate(plot3d, [K],pos=0..4*Pi,frames=80) :

A4:=animate (spacecurve, [k_1] ,pos=0..4%Pi,frames=80) :

A5:=animate (spacecurve, [k_2],,pos=0..4%Pi,frames=80) :

display({A1,A2,A3,A4,A5,1},scaling=constrained) ;

VvV V V V V VvV

\

Obr. 4: Animace sroubového torzu a Archimédovy serpentiny v Maplu

5 Zaveér
Ackoliv je prace v GeoGebie vyrazné jednodussi nez v Maplu, podstatnym
omezenim je, ze pii parametrizaci ploch v GeoGebfe je nutné obé promén-
né ohranicit ¢iselnymi hodnotami a nelze vykreslit plochu, v niz je jeden
parametr funkciondlné zavisly na druhém parametru. Piestoze se pii vi-
zualizaci vyse uvedenych ploch tento problém nevyskytl, je tfeba mit toto
omezeni na paméti a v pripadé nutnosti pouzit Maple.

Zaveérem lze fici, ze vhodné zobrazeni urcité plochy technické praxe
muze byt ndhradou fyzického modelu této plochy.

Literatura
[1] F. Machala: Plochy technické praze, Rektordt Univerzity Palackého
v Olomouci, Olomouc, 1986
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Abstract. The paper presents the development of a fully parametric
CAD model of axial blood pumps components in Grasshopper, a
graphical algorithm editor integrated in Rhinoceros. Since scientific
papers report very little (if any) geometric information about the
pumps, a special reverse engineering process was used to develop the
parametric CAD model.

Keywords: parametric CAD model, axial blood pump, helicoidal blade,
Rhinoceros, Grasshopper.

1 Introduction

Parametric CAD (Computer Aided Design) modelling represents a high-
performance tool for designing virtual 3D geometries of engineering com-
ponents and assemblies. An appropriately chosen system of input pa-
rameters allows defining mutual relationships and dimensional properties
of the modelled geometric shapes. This paper presents the development
of underlying geometry for CFD (Computation Fluid Dynamics) analysis
of hemolytic properties of blood pumps in a form of a fully parametric
CAD model. The CAD model is created in Rhinoceros, which is intended
for direct modelling. Parameterisation of the CAD model is provided by
Grasshopper, a graphical algorithm editor integrated in Rhinoceros.

Blood pumps are implantable mechanical rotary support systems pro-
viding artificial assistance for patients with heart failure. The optimi-
sation of the rotary blood pumps design with respect to the hemolytic
properties of the device such as avoidance of thrombogenicity and red
blood cell damage represents a highly challenging problem [1]. To in-
vestigate the hemolytic properties of blood pumps, CFD mathematical
models of blood flow are developed and various blood pump geometries
are analysed, [2, 3, 4, 5]. In [5], the hemolitic properties of axial blood
pump shown in fig. 1 (left) are analysed while the impeller and diffuser
designs are varied. In this paper, the development of parametric CAD
model of the diffuser inspired by geometry given in [5], see fig. 1 (right),
is described.

2 Set of parameters for diffuser modelling

The diffuser drawn in fig. 1 (right) consists of cylindrical hub with flat and
hemisphere caps and helicoidal blades. Unlike [5], where the geometry of
the diffuser blades is varied by only two values of inlet angle (25° and 45°)
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and two values of chord length (9 mm and 14 mm), the set of parameters
proposed here allows full control over the geometry, see table 1.

Pump Case
Cylinder Bearing

BLDC Motor Stator

BLDC Motor Rotor
Secondary Washout Impeller

Fig. 1: Axial blood pump design (left), CAD model of diffuser (right) [5]

CAD model Parameter | Description
r1 Hub radius
T Tip radius
t Blade thickness
b Tip shape
n Blades number
w Wrap angle
h Height
p Helix shape

Table 1: Set of parameters

Set of parameters

e ry — hub radius in mm.

e 1o — tip radius in mm.

e t — thickness of the blade in mm.

e b — tip shape parameter allowing to design convex (b > 0), straight
(b =0) or concave (b < 0) shaping of the blade tip, see fig. 2. The
profile of blade tip is modelled as a Bézier cubic curve given by
four control points V, V1, Vo and V3. Parameter b determines the

orientation of VyV; and Vo V3 vectors.
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Va
Vs

Convex Straight Concave
b>0,b=038 b=0 b<0, b=—

Fig. 2: The influence of tip shape parameter b

diay

p<l p=0.25 p>1, p=2

Fig. 3: The influence of helix shape parameter p

e n — number of blades.
e w — wrap angle of the helicoidal blade in degrees.
h — height of the diffuser hub in mm.

p — helix shape parameter allowing to control disproportionality be-
tween the translation along the axis of screw motion (z-axis) and
angle of rotation about the axis of screw motion, see fig. 3.
Parametric equations of the directing helix are given by

x(v) =rq cos(v)
y(v) =rqsin(v) (1)
z(v) =h <%>p, v e [0,w], p>0.
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Consequently, the cross-section of the gap between the blades
changes, see fig. 3, where the helix (1) is drawn in red. The decreas-
ing (b < 1) or increasing (b > 1) cross-section of the gap between
the blades is used for the flow regulation. For b = 1, the translation
is directly proportional to the rotation and the cross-section of the
gap between the blades is constant.

Note that the blade tip is straight, i.e.

examples in fig. 3.

The variability of the diffuser CAD model created by suitable param-
eter settings is almost infinite. Four different CAD models similar to the
ones analysed in [5] are shown in table 2 together with the parameter

values.

b = 0 for all the three

Diffuser I

Diffuser 1I

Diffuser II1

r1 = 1.25 mm
ro = 6.00 mm
t = 0.6 mm
b=0
n=3
w = 100°
h =9 mm
p=0.31 mm

r1 = 1.25 mm
ro = 6.00 mm
t = 0.6 mm
b=0
n=3
w = 67°
h =9 mm
p=20.25

L

Diffuser IV

r1 = 1.25 mm

ro = 7.00 mm

t = 0.6 mm
b=0.8
n=3

w = 150°

h =15 mm

p=0.33 mm

3 Diffuser modelling in Grasshopper

Table 2: Examples of diffuser geometries

Grasshopper as a graphical programming environment is implemented in
Rhinoceros. Individual components are placed onto a canvas and con-

nected with subsequent components.

The preview of the Grasshopper

project of the diffuser parametric CAD model is shown in fig. 4. To keep
the clarity of the picture, the connecting wires are hidden.
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Fig. 4: Grasshopper project (wires are hidden)
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4 Conclusion

The paper presents the development of a parametric CAD model of a dif-
fuser for axial blood pumps. Fully parametric geometry is modelled in
Grasshopper integrated in Rhinoceros. The Grasshopper project has the
following sections: definition of a set of parameters through which it is
possible to control the geometry of the diffuser, modelling the hub as
a cylinder of revolution with flat and hemispheric caps, modelling the
blade profile as a normal section of the blade helicoidal surface, and mod-
elling the blade helicoidal surface by helical motion of the blade profile.

Acknowledgements

This work was supported by the Student Grant Competition of the Czech
Technical University in Prague, grant Applications of mathematical-geo-
metric modelling in mechanical engineering SGS21/148/OHK2/3T/12.

References

[1] Arvand, A., Hormes, M. and Reul, H.: A Validated Compu-
tational Fluid Dynamics Model to Estimate Hemolysis in a Ro-
tary Blood Pump. Artificial organs. https://doi.org/10.1111/j.1525-
1594.2005.29089.xdoi: 10.1111/j.1525-1594.2005.29089.x

[2] Blum, C., GroB-Hardt, S., Steinseifer, U. et al. An Ac-
celerated Thrombosis Model for Computational Fluid Dynam-
ics Simulations in Rotary Blood Pumps. Cardiovasc Eng Tech
13, 638-649 (2022). https://doi.org/10.1007/13239-021-00606-ydoi:
10.1007/s13239-021-00606-y

[3] Dai W-F, Wu P, Liu G-M.: A two-phase flow approach for modeling
blood stasis and estimating the thrombosis potential of a ventric-
ular assist device. The International Journal of Artificial Organs.
2021;44(7):471-480. https://doi.org/10.1177,/0391398820975405doi:
10.1177/0391398820975405

[4] D. Carswell, D. McBride, T.N. Croft, A.K. Slone, M. Cross, G. Fos-
ter: A CFD model for the prediction of haemolysis in micro axial
left ventricular assist devices. Applied Mathematical Modelling 37
(2013) 4199-4207, http://dx.doi.org/10.1016/j.apm.2012.09.020doi:
10.1016/j.apm.2012.09.020

[5] Smith, P.A., Wang, Y., Bieritz, S.A. et al.: Design Method
Using Statistical Models for Miniature Left Ventricular As-
sist Device Hydraulics. Annals of Biomedical Engineering 47
(2018): 126 - 137. https://doi.org/10.1007/s10439-018-02140-wdoi:
10.1007/s10439-018-02140-w



9" Slovak—Czech Conference on Geometry and Graphics 2023 139

Subdivision and conchoids

Marcel Makovnik

Katedra algebry a geometrie, Fakulta matematiky, fyziky a informatiky,
Univerzita Komenského v Bratislave
Milynskd Dolina, 84248 Bratislava, Slovenskd republika
email: marcel.makovnik@fmph.uniba.sk

Abstract. We discuss the refinement of a planar polyline using
conchoids. For each segment of the polyline, we construct a conchoid,
which interpolates its endpoints. This is achieved by choosing a feasible
coordinate system, scaled by the input global parameter. Then, we
choose new points from the interpolating conchoid, symmetrically to
the horizontal axis. Afterwards, we transform the new pair of points
to the original coordinate system. The refined polyline is obtained in
the ”corner-cutting” fashion, i. e. by joining the subsequent pairs of
new points. The process of refinement may be applied repeatedly to
achieve the desired level of detail. The proposed refinement scheme
is approximating and non-linear. We provide several examples that
demonstrate the behaviour of the refinement. Also, we inspect on the
influence of the value of the global parameter. For the specific value,
we obtain the well-known Chaikin’s algorithm.

Keywords: Subivision, conchoids, curve fitting.

1 Introduction

Subdivision curve is generated by iterative refinement of the input poly-
line. If the points of the refined polyline are obtained as linear combina-
tions of the original ones, we refer to such schemes as linear and non-linear
otherwise. Convergence and continuity of linear subdivision schemes is
well studied [2]. For the case of non-linear schemes (see e. g. [4, 5, 7]), the
idea of proximity to a certain linear scheme is used, see [3] and [6]. In our
contribution, we describe a subdivision scheme in a plane which utilizes a
local interpolation by conchoids.

2 Preliminaries
2.1 Conchoids
In our work, we utilize a conchoid of de Sluze C, which is a cubic curve
given implicitly by
C:(x—1)(z*+y?) — az® = 0. (1)

Depending on the value of the parameter a € R, various families of curves
may be generated (classified by the type of the singularity at the point
(0,0)T). For a # 0, the conchoid C has an asymptote = = 1, see Fig. 1.
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0 1 1+4+a T

Fig. 1: Conchoid of de Sluze (red) given by the parameter a and its
asymptote = 1 (blue).

2.2 Subdivision step

Consider an input polyline, given by a sequence of points Vg, Vi,...,V,, €
R2. For each segment V;V;,; of the input polyline we assign a pair of
new points P; and @); in corner cutting fashion, similarly as in Chaikin’s
algorithm [1]. After one step of subdivision we obtain a new sequence of
points Py, Qo, P1, @1, ..., Pu_1, @n_1 € R%. Hence the refined polyline has
2n points after one iteration.

3 Computation of newly inserted points

In this section, we describe the computation of the coordinates of the new
points P;, @; assigned to the segment V;V;,1. These are precomputed in
the coordinate system (O;, m;,n;), given by

n; =V, —Vig1 = (wni’y"i)—r’
m; = (_ynﬂxni)—r’ (2)
O'L = El — wm;,
where
1 1
By = SVi+ 3Vin ®)

and w € R, w # 0 is a global parameter.
For clarity, coordinates of a point in the system (O;, m;, pi> are distin-
guished by a bar, e. g. for the point V; we use the notation V; = (zy,, yy,)-
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Fig. 2: Fitting of the conchoid in the coordinate system (O;, m;,n;) .

Now, we fit the conchoid C : (z — 1)(2? + y?) — az® = 0, so it passes
through the points V;, Vii1, see Fig. 2. By plugging the z-coordinate of
V; we easily obtain the parameter a as

o (wm—l)(jc% +y‘27i). @

Then, we set the y-coordinates of the new points P; = (zp,yp,)' and
Qi = (2g,,9g,)" as

Yv, Yviia
p = —* 5, = —. 5
Yp, 5 Yg, 5 (5)

Subsequently, the coordinate x p, is obtained as follows:
1. Plug the value yp, into the equation of the conchoid C.

2. Compute the roots of the resulting cubic polynomial (in variable z)
using Bézier clipping on the interval

[min(1 + a, 1), max(1 + a, 1)]. (6)

3. Set zp, as the root, whose value is the closest to zy;. .
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input polyline 1 iteration 2 iterations 4 iterations

input polyline 1 iteration 2 iterations 4 iterations

Fig. 3: Refinement with respect to increasing number of iterations. Top
row depicts subdivision of the simple polyline with w = 1.5. Bottom row
depicts subdivision of the polyline with self intersections with w = 0.75.

The value z, is computed analogously.

After these computations, the points P; and Q; are transformed back
to the original system, and these are the new points P; and Q;. After
repeating the process for all segments V;V;11, i = 0,...,mn — 1 we obtain
the refined polyline. The process of refinement may be repeated iteratively
to reach the desired level of detail.

4 Results

We demonstrate performance of the proposed method on various examples
and provide several observations.

In the top row of Fig. 3, we see the refinement of the simple non-
intersecting polyline with the value of the global parameter w = 1.5.
In general, the points of the polyline after one subdivision step do not
lie on the original polyline. After several steps of subdivision we obtain
visually smooth curve, which respects the shape of the input polyline. In
the bottom row, we refine the polyline with several self intersections and
w = 0.75. Since the proposed scheme does not interpolate the endpoints
of the input polyline, some of the self-intersections disappear and new
may be introduced with increasing number of subdvision steps.

In the case of the input polygon in Fig. 4 we focus on the impact of the
global parameter w. The polyline after 10 subdivision step is enclosed,
which is ensured by adding two more control points V,, 11 = Vp, V420 = V1.
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G

w = 0.57 w = 0.75

w=0.9 w=1

.w:1.2 w—
w=>5

Fig. 4: Refinement of the control polygon (green) after 10 iterations with
respect to different values of the global parameter w. Note, that for w =1
we obtain the same result as produced by Chaikin’s algorithm.
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For the value w = 1 our method is identical to Chaikin’s algorithm, since
each fitted conchoid is a line. If w < 1, we see, that decreasing of this
value causes expansion of the refined curve. For the sufficiently small
value (w = 0.57 in Fig. 4) the resulting curve even encapsulates the input
control polygon. In the case w > 1, the increasing values cause shrinking
of the curve. Note, that for w > 1 the resulting curve lies in the convex
hull of the control polygon.

5 Conclusion

In this paper, we introduced a subdivision scheme utilizing local conchoid
interpolation. The proposed scheme is non-linear and approximating. Our
method provides the adjustable the global parameter which affects the
shape of the output curve. Moreover, our approach contains Chaikin’s
algorithm as a special case. In future, we plan to provide the proof of
convergence and inspect on the order of continuity w. r. t. the global
parameter. Also, we need to describe and prove properties of the curve,
mainly the convex hull property. The rescaling of the global parameter
would provide more intuitive handling of the resulting curve and find its
applications in e. g. graphic design for shrinking and expanding polygons.
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Abstract. Professor Ferenc Karteszi was a charismatic personality of the
Hungarian mathematics education and science (descriptive, projective and finite
geometries). He made presentation trips also in Slovakia. A brief information is
presented, how to start with a school task dealing with triangle configurations,
which could be extended from the elementary Euclidean case to more general
ones, as hyperbolic plane, "absolute plane" by Janos Bolyai (just 200 years ago),
then Minkowski and Galilei (isotropic) plane. Comments on prof. Ferenc Karteszi
are included in connection to his presented didactical credo.

Keywords: configuration of triangles, Karteszi point, three reflections theorem,
geometric algebra

Let us recall a well-known school task: In the (Euclidean E?) plane of a triangle
ABC we draw regular triangles outward on sides of ABC, say A4BC~, BCA",
CAB’, respectively. Prove that the segments AA~, BB, CC™ intersect each other
in a point K, that is the isogonal point of ABC and the distance sum AK + BK +
CK is minimal for K among all points of the plane.

Professor Karteszi noticed that instead of regular triangles we can draw
isosceles ones with all equal base angles, and the above K (called Kdrteszi point)
exists also in the Bolyai—Lobachevsky hyperbolic plane H? (in the sphere S? as
well, (see also Kalman, 1989 and Sect. 2), the orthocentre, barycentre are specific
cases. There is a more general extremum problem of a similar kind (Yaglom,
1968, problem 83, with modified notation):

In the plane (E?) of a given triangle ABC find a point K such that the quantity
aKA + BKB + yKC, where a, B, y are given positive numbers, has the smallest
possible value.

This problem leads to a more general triangle configuration and to an
analogous extremal point K. Moreover, as a new result of this paper, an
extension onto "absolute plane" (S?, E2, H?, M2 Minkowski plane, G2 Galilei (or
isotropic) plane) can be formulated and solved by three reflections theorem (see
e.g. Molnar, 1978 and Sect. 4, Weiss, 2018), and geometric (Grassmann—Clifford
type) algebra (Perwass et al., 2004 and Sect. 3). Open problems arise as well.

By this we want to follow F. Karteszi's didactical credo (see also his
wonderful book (Karteszi, 1976) of great international success):
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Molnar Emil

Start with a natural, elementary, visually well understandable task! Then
follow the manipulations, tools, new mathematical concepts, the technical
machinery; then the solution, occasional theory, further applications, extensions,

The full publication with title On the Karteszi point of a triangle via three
reflections theorem and geometric algebra is to appear in the monograph volume
of The 9" International Scientific Colloquium Mathematics and Children,
founded by Margita Pavlekovi¢, Osijek, Croatia, 19-20 May 2023.
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Abstract. In an engineering environment, continuity is one of the im-
portant concepts. Not only does it have a significant impact on the
aesthetic aspect of products, which is an essential parameter for com-
mercial success, but it is equally a very crucial parameter from a techno-
logical point of view. The continuity of the geometry of 3D CAD models
determines how smooth the transition between two adjacent surfaces of

the model is.

C? continuity, i.e. continuity up to the second derivative, has become
the standard for the vast majority of CAD software today. This work
focuses on increasing the degree of contiguous surfaces to C* continuity
using CAD software Rhinoceros 7 to improve the quality of the model
for CNC processing.

Keywords: Bézier curve, CAD model, surface continuity, C* continuity,
CNC processing.

1 Introduction

CNC (computer numerical control) machining became one of the most
reliable ways for developing highly sophisticated models and products
while staying consistent in quality and quantity beside other means of
production.

The process begins with the preparation of a quality model that be-
comes core for a CAM (computer-aided manufacturing) code for CNC
processing. While CAM code is prepared, processed and a prototype is
made for acquisition of data for further analysis, the prototype may ap-
pear insufficient in spaces, where different surfaces meet, as these places
provide a challenge for a correct toolpath and an optimisation is needed.
Usual way to fix such issues is via changing the parameters of process to
reach optimal conditions for best outcome.

For complicated geometries this optimalization might be insufficient
and other solution is needed. One of the possibilities is to focus on the
3D model that lies on the very beginning of the process.
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2 Impact of surface continuity on 3D model

As proved by experimental measurements [1], [2], the C? continuity of
surfaces is most suitable option for a smooth CNC toolpath on highly
sophisticated surfaces of 3D models. With C? continuity being standard
for the CAD software nowadays, easily obtained from software itself, C3
continuity has to be obtained through other means. Following theory
of Bézier curves [3], [4], decomposition of curve is used in reversed pace
to build up control polygons between examined surfaces. Polygons are
then used to define Bézier surface interconnecting aforementioned surfaces
achieving C® continuity not only on cylindrical surfaces joined along a
plane curve, as is investigated in [1], [2], but also on freeform surfaces
joined along a spatial curve.

2.1 Continuity of Bézier curve

Suppose quartic Bézier curve C(u), u € [0,1] is given by control points
Vo, V1,Vy, V3V, with known positions and derive the rules for con-
struction of unknown control points Wg, W1, Wy, W3, W, of quartic
Bézier curve K(v), v € [0,1] connected with C¥, K = 0,1,2,3 conti-
nuity at the common point C(1). Vector equation of Bézier curve C(u)
and its first three derivatives is given by

4
C®(w) =Y NP @V, K=01,23 (1)
i=0
Thus, it is useful to calculate function values of Bernstein polynomials
of 4-th degree and their first three derivatives at u = 0 and v = 1, see
tab. 2.1 where the simplified notation N(u) is used instead of N; 4(u).
With respect to the values in tab. 2.1, the continuity conditions

CY(1)=KD0), i=1,.. K. (2)

expressed as positions of unknown control points W, see fig. 1.

i N(u) N(0) N(1) N’(0) N’(1) N”(0) N”(1) N'"(0) N"(1)
0 (1—-w)? 1 0 -4 0 12 0 -24 0

1] 4u(l—uw)? 0 0 4 0 -24 0 72 —24

2 | 6u2(1—w)? 0 0 0 0 12 12 -72 72

3| 4ud(l-u) O 0 0 -4 0 —24 24 —72

4 ut 0 1 0 4 0 12 0 24

Table 1: Bernstein polynomials of 4-th degree and their derivatives for
u=0,1
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Fig. 1: Constructive conditions of C°,C',C? and C? continuity of two
quartic Bézier curves

e CY: Unknown position of Wy is given by
W, =V, (3)

i.e. the curves have a common endpoint. The positions of all other
control points have no influence on C° continuity.

e (' Considering condition (3), unknown position of Wy is given by
W, =2V, - V3, (4)

i.e. the common point of the curves lies at the centre of straight line
segment with endpoints V3 and W;. In other words, the vectors
given by the adjacent legs of control polygons are identical, desig-
nated by a in fig. 1. Positions of all other control points have no
influence on C* continuity.
Note that vector a represents 1/p of tangent vector at end points of
Bézier curve of p-th degree.
e C?: Considering conditions (3) and (4), unknown point W, is given
by
Wy, =V, + 4(V4 - Vg) (5)



150 Miiller Jakub, Linkeova Ivana

Thus, point W5 can be determined by Wy = V5 + 4a. Or, desig-
nating b the vector given by sum of vectors

b =V3V, +V3Vy, (6)

point A lying at the centre of straight line segment with endpoints
V3 and Wy, is given by

A=V, +b. (7)

Note that vector b represents 1/(p(1—p)) of second derivative vector
at end point of Bézier curve of p-th degree.
e (3 Considering conditions (3), (4) and (5), unknown point Wy is
given by
W3 =~V + 6V, + 8V, — 12V, (8)

To construct point W3, modify condition (8) into the form

Ws +V,

5 =V, +3b. (9)

The left side of (9) represents the centre B of straight line segment
with end points at W3 and V7.

2.2 Study artefact

For the purpose of testing the effect of continuity on CNC processing,
four indentical sets of two cubic-quartic Bézier surfaces were prepared.
The quartic Bézier curve were oriented into the space, where connection
of surfaces was intended to be constructed.

Following the conditions for C° and C' continuities, interconnecting
surfaces were prepared. For the C? and C? continuity, reversed decom-
position was used. Fig. 2 shows the reversed decomposition in case of C3
continuity. Result is smooth C® connection between initial Bézier curves
done via four quartic Bézier curves as shown on fig. 3.

The process was then repeated for each of the quartic curves, until a
grid of control points was achieved for connecting with Bézier surfaces.
Fig. 4 shows final form of the artefact with increasing degree of continuity
between surfaces from left to right. Place of connection between initial
surfaces and interconnecting surfaces is shown with black curves.
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Fig. 3: Graph of curvature on the constructed chain of curves

Fig. 4: Final model of the artefact
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3 Conclusion

Using the knowledge of Bézier curves, an artefact was designed and con-
structed for further studies of impact of surface continuity on CNC ma-
chining. Ranging from C° to C? continuities, the artefact will be used
to examine machined surfaces mainly aiming on quality and efectivity of
CNC machining process.
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Abstract. We show that Frégier’ s theorem allows for some gener-
alizations within the framework of prOJectlve geometry. This also

contains the notion of non-Euclidean versions of Frégier’s theorem and
Frégier conics. Two different generalizations of Frégier’s theorem shall
be considered: (1) The involution of right angles is replaced with an
arbitrary involution induced by some polarity. (2) The envelopes of
chords of a conic whose endpoints are assigned in a projective mapping
(not involutive) are conics.

Keywords:  Frégier’s theorem, Frégier conic, involution, polarity,
projective mapping, pencil of conics.

1 Introduction

Let ¢ be a conic and assume that P is a point on ¢. Then, let (g,¢’) be a
pair of lines through P such that g and ¢’ are orthogonal (in the Euclidean
sense). Further, let Q@ = cnNg\ {P} and Q' = cNg’ \ {P}. Now, Frégier’s
theorem states (cf. [1, 2]):

The chords [Q, Q'] pass through a single point F (the Frégier point of P
with respect to' ¢) independent of the choice of g.

Generalizations to non-Euclidean Frégier conics have been studied in
[4]. Quadratic transformations based on Frégier’s constructions are de-
fined and investigated in [5, 6] along with higher dimensional analogues.
The fact that the ordinary Euclidean Frégier conics are the only conic
shaped generalized offsets to conics is shown in [3]. Especially in the lat-
ter article, the right angle which is a substantial ingredient for Frégier’s
theorem was replaced with an arbitrary fixed angle ¢. It turned out that
the thus defined chords [Q, Q'] envelop conics (the generalized Frégier
conics) ¢, assigned to the point P and w.r.t. c. If the angle ¢ traces the
open interval |0, 7 [, then the generalized Frégier conics ¢4 trace a pencil of
conics of the third kind (to which ¢ also belongs, see [3]) and the ordinary
Frégier point is the only real point of a singular conic in the Frégier pencil.

In the following, we generalize Frégier’s theorem by replacing fixed
angles at first by an involutive mapping induced by some polarity in Sec.
2. There are six different types of such Frégier constructions depending on
whether the polarity is elliptic or hyperbolic, and then, since a hyperbolic
polarity is always that of a conic d, we have to distinguish between the five
different types of pencils spanned by ¢ and d. For special assumptions on
the polarity, this yields the non-Euclidean notion (cf. [4]) of Frégier conics

We shall write w.r.t. short hand for with respect to.
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as by-catch. This immediately raises the question: What happens if we
look at the chords of a conic ¢ whose endpoints are assigned in an arbitrary
projective mapping acting on ¢? This will be described in Sec. 3.

2 Polarities instead of the right angle

The right angles appearing in Frégier’s construction as well as the constant
angles in the Frégier variant described in [3] induce special projective
mappings on the underlying regular conic ¢ with the polarity . Now, we
may assume that in the pencil around the pivot point P € ¢ an arbitrary
involution is acting. The involution shall be induced by an arbitrary
polarity 6 which assigns to each line g 3 P a unique line ¢’ 3 P by

g9 =1[0"(9), P,

where ¢0* is the adjoint mapping of the polarity §. The lines g and ¢’
intersect ¢ in P and each in a further point Q € g and Q' € ¢’. Now, we
can state and prove:

Theorem 2.1. Let ¢ be a reqular conic, let P be a point on c, and let
further 6 be a regular polarity (different from that w.r.t. ¢). Now, consider
the projective and involutive mapping « in the pencil of lines around P
that sends each line g to the line g’ = [P,6*(g)]. If now Q and Q' are
defined as above, then the chords [Q, Q'] pass through a single point F' (the
generalized Frégier point of P w.r.t. c).

Proof. The generalized Frégier point F' is simply the center of the involu-
tion « lifted to the conic ¢ (see [2]). O

H? E2

Fig. 1: Left: A Frégier point F' defined by means of a generic involution
induced by a polarity w.r.t. a conic d. Center and right: Frégier conics e
of a conic ¢ in a hyperbolic and an elliptic plane.

The polarity ¢ may either be that of a conic d with real points (hyper-
bolic polarity) or that of an empty conic (elliptic polarity). The case of the
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elliptic polarity causes no special cases since there no real self-conjugate
points w.r.t. §. In the case of the polarity w.r.t. a real conic d, we have
to distinguish between five cases, according to the type of pencil spanned
by ¢ and d. We are able to show:

Theorem 2.2. The construction of the generalized Frégier conic from
Thm. 2.1 does not depend on the type of pencil spanned by ¢ and d.

Proof. We just lay down what is necessary in order to give a synthetic
proof. First, it means no restriction to assume that c is given by zgzs —
22 = 0. The polarity § shall be that of a conic d that spans a pencil of 1.,
..., 5. kind with ¢. Therefore, we can assume that the equations of the
conics d in the pencil of type are given by d = ¢ + As; (we identify the
conic with its equation), where s; is the equation of a singular conic in the
pencil of the i-th kind and can be chosen as: s1 : 21 (pzo— (1+p)z1 +22),
so: ma(wa —x0), 831 23 =0, 84: wa(r1 —x2) =0, and s5 : 22 =0. In
any case, the pivot point P can be given by 1 : ¢ : t? (with ¢ # 0,1, 0).
In s1, p # 0,1, 0o guarantees that ¢ and s; really span a pencil of the 1.
kind. Further, Q@ = 1 : u : u? (with u # p,t,0,1,00). For a special but
proper choice of i, we obtain a regular conic d in the pencil, and thus, a
polarity §. Then, g = [P, Q] and we are able to compute the pole 6*(g) of ¢
w.r.t. all conics in the pencil (variable A # 0). Finally, ¢’ = [P, 6*(g)] and
Q' =g'Nnc\ {P}. Then, we can show that [@Q, Q'] passes through a point
F (independent of @, i.e., the parameter w). For variable pivot point P
(i.e., variable t), the points F' trace a conic, the generalized Frégier conic
e of ¢ w.r.t. 6. It can be shown that e passes through the base points of
the pencil only if they are at least of multiplicity two by intersecting e
and c. O

Fig. 2 shows a generalized Frégier conic e (red) of a conic ¢ (blue) w.r.t.
to the polarity § of a regular conic d (magenta) which, together with c,
spans a pencil of the first, second, third, fourth, or fifth kind.

Fig. 2: The generalized Frégier conics e according to Thm. 2.1 pass
through base points of the pencil Ac+ pud only if these are at least two-fold.
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2.1 Non-Euclidean versions

We assume that the polarity w.r.t. to ¢ and the polarity 6 have a common
polar triangle, i.e., the corresponding bilinear forms can be diagonalized
simultaneously. Thus, we can assume that c is given by % /a?+23 /b? = 22
(with a,b # 0 and a # b). The case b? < 0 needs a separate discussion.
In the hyperbolic case, §’s self-conjugate points can be given by w : z% +
23 = x3. The conic w can be viewed as the absolute conic of hyperbolic
geometry. Therefore, for any point P = 1 +t? : a(1 — t?) : 2bt (with

t € RU{oc}), the Frégier point
F,=(a?b*—a?—b?)(1+¢%) : a(a®b?+a®—b%)(t*—1) : —2bt(a®b? —a®+b?)
in the sense of hyperbolic geometry traces the hyperbolic Frégier conic

) (a2b2—a2—b2)2 ) (a2b2—a2—b2)2 9
T0= 5723 2 122 1 T 120,212 2 p2y2 02"
a?(a?b?+a?—b2) b2(a?b?—a?+b?)

The hyperbolic Frégier conic is regular if, and only if, (a?b*—a?+b?)(a?b>+
a? — b?)(a®b? — a® — b?) # 0. This leads to a three-branched variety of
singular hyperbolic Frégier conics which are studied in detail in [4].

The conic w : z% + 27 + 23 = 0 is empty (over the real numbers)
and can serve as the absolute conic of elliptic geometry. Then, the point
P =1+1t?:a(l—1t?):2bt on the conic ¢ : x?/a® + x3/b> = 22 defines
the elliptic Frégier point

F, = (a*0*4+a*+b*)(1+t?) : a(a®b® —a*+b*)(t* —1) : —2bt(a*b*+a*—b?)
which traces the elliptic Frégier conic

9 (a2b2+a2+b2)2 ) (a2b2+a2+b2)2 9
T0= 5579 o 2271 2220 2 _pay2 L2
a?(a?b?—a?+4b?) b2(a?b?+a?—b?)

The elliptic Frégier conic is regular if, and only if, (a?b?—a?+b%)(a?b?+
a’?—b?) # 0. (The factor a?b*+a+b? cannot vanish under the above made
assumptions.) However, in elliptic geometry, the singular Frégier conics
of a given conic can only be arranged in two groups (for details see [4]).
Fig. 1 shows the generalized Frégier conic (in the sense of Thm. 2.1) for a
hyperbolic (center) and an elliptic polarity (right). The curves e can be
viewed as the Frégier conics of the conic ¢ in the hyperbolic and elliptic
plane.

2.2 Euclidean and pseudo-Euclidean Frégier conics

A singular polarity, 7.e., an involutive mapping on a straight line [ can
also be the basis of the Frégier construction. If [ is chosen as the line at
infinity, then the involutive mapping « : [ — [ can either be hyperbolic
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or elliptic. In the first case, we can consider this Frégier construction as
the pseudo-FEuclidean version, while in the second case, o acting on [ can
serve as the absolute polarity of Euclidean geometry which leads to the
well-known Fuclidean version.

3 Arbitrary (non-involutive) projective mappings

In what follows, we shall replace the involutive projective mapping «
acting on ¢ with an arbitrary projective mapping S : ¢ — ¢. Such a
mapping is uniquely defined by prescribing three pairs of assigned points,
i.e., three by two points A, A’, B, B’,C,C" € ¢ with A’ = a(A)’, B’ =
a(B), and C" = a(C). We can show the following result:

Theorem 3.1. The chords [X,a(X)] of ¢ joining each point with its
projective image envelop a conic f which spans with ¢ a pencil of conics
of the third kind if o is elliptic or hyperbolic. In the case of a parabolic
projectivity «, the conics ¢ and f span a pencil of the fifth kind, i.e., they
hyperosculate each other.
Proof. It means no loss of generality to assume that c is given by the
homogeneous equation zgze — x% = 0. Further, we can assume that
A=1:0:0,B=1:1:1,C=0:0:1and A =1:u:u?
B ' =1:v:0% 0" =1:w:w? (with u,v,w # 0,1,00, u # v # w #
u). Then, the axis a of the projectivity « (which contains the points
[A,B'|n[A",B], [A,C'|N[A,C], [B,C']|N[B’,C]) has the homogeneous
coordinates a = ul : ww —u : —w, whereu =v—w, v =w—u, W = u—"0.
Hence, a point X = 1:¢:t? (with t # u,v,w,0,1,00) is mapped to

X' = (tw+7u)? : (tw + 0) (tww + un) : (tww + vu)?.
The chords s = [X, X'] with homogeneous coordinates

s = t(tww + ut) : —t*w — t(wW + W) — v : tw + T

envelop the conic

u?u> (Wi — ) —uw(v + w)
e: x| va(ww—1u) W ((ut+w)?+4u—4w+4) —w(ww—u) |e=0,
—uw(v + w) — (W —) w2

The conics ¢ and e span a pencil of the third kind with the repeated line
a as a singular conic in the pencil. The common points of a and ¢ are
the fixed points of a. The projectivity « is parabolic if, and only if, a is
tangent to ¢, and then, ¢ and e hyperosculate each other, i.e., they span
a pencil of the fifth kind. O

Figure 3 shows the three possible cases: an elliptic projectivity (left), a
hyperbolic projectivity (in the middle), and a parabolic projectivity where
Do touches ¢ and e (which are hyperosculating at the common point).
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Fig. 3: The chords of ¢ envelop a conic e provided that the endpoints
are assigned in a projective mapping «. If « is elliptic or hyperbolic, the
pencil spanned by ¢ and e is of the third kind. A pencil of the fifth kind
is obtained if « is parabolic.

4 Conclusion

We have shown two variations of Frégier’s theorem. Both can be for-
mulated in terms of projective geometry. The mathematical approach
towards these generalizations are formulated in terms of polynomial equa-
tions and rational parametrizations. At no instant, extensions or assump-
tions on characteristic of underlying fields are necessary which makes the
computations possible within the framework of finite fields. Hence, these
results are universal in the sense of [7].
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Printing as a supporting tool
teaching mathematics through discovery

Bronistaw Pabich

XX Liceum Ogolnoksztatcace win Krakow
Wyzsza Szkota Nauk Oedagogicznych Warszawa, Polska
email: bronek.pabich@gmail.com

Abstract. Nowadays, many of us know what 3D printing, its design and other
technical details are all about. However, it is worth considering how 3D printing
can help teach geometry, especially spatial geometry, and even make it easier for
students to discover algebraic patterns of abbreviated multiplication.

In my presentation, | will show some of models, the purpose of which is to better
assimilate concepts such as the duality of polyhedrons, stellations, quick
determination of the volume of selected solids, the search for geometric relationships
between them and the development of students' spatial imagination by preparing
numerous puzzles and 3D puzzles.

Key words: Printing 3D, software SketchUp, GeoGebra, teaching math,

3D models allow you to:

1. Discover the formula for the volume of a 3D solid — for example the volume

of a regular tetrahedron. - just put the tetrahedron in the cube.
b

A

— 43 B R 2.3 = 1.
Vtetrahedron_a_4§_a a—a-za—ga

2. Visualize dynamically that the rhombic dodecahedron has a volume twice as
large as the cube from which it was created
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3. Discover a new problem - the volume of the Stella Octangula is equal to %
the volume of the cube in which we placed it, so we should construct a second
stele from the remaining elements. Can we do this? This is known as Hilbert's
Third Problem. Perhaps after such an experience, Hilbert posed his Third
Problem at the 1900 Conference.

g

1 1 1 1 1
—a®= Za¥+2a¥ = =43
3 3 6 2

+4-V, =1.a3+4.

red tetra 3

@ |

Vstella = Vblue tetra

4. Dynamic visualization of what is difficult to show on a sheet of paper - Hill's
tetrahedron - this is one of the few pyramids that can be cut so as to obtain a
prism with the same volume.

Not every pyramid can be cut into elements that can be used to assemble
a prism. Hill discovered six such pyramids. Here is a printout of one of them
and a prism created from it

5. Discovering elements of algebra - abbreviated multiplication formula: sum
cube. Transforming one polyhedron into another - a truncated octahedron can
be cut so as to create a cube of the same volume in two ways.
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(a+b)3 = a® + b3 + 3a%b + 3b%a

6. Show that rhombic dodecahedrons can fill 3D space

7. Show three Dormann stellations of a rhombic dodecahedron and see that they
are all made of the same pentahedrons.

From these pentahedrons you can build a rhombic dodecahedron
and any of its stellations.

8. lllustrate spatial fractals, for example built on a regular octahedron.




162 Pabich Bronistaw

9. Visualize how the Klein bottle is composed of two Maobius strips.

10. Developing spatial imagination by solving appropriate puzzles — for
example dividing a cube into 4 congruent polyhedra

ZA L
<w

11. Dividing a cube into 6 congruent polyhedra (two ways).

First way: Second way:
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13. Dividing a cube into 12 congruent polyhedral

The rhombic dodecahedron also consists of these pentahedrons

15. Dividing a cube into 24 congruent polyhedra (idea of Tadeusz Dorozinski -
polish architect in Deutschland).
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17. Transformation of a cube into a cubeoctahedron and an octahedron in 4
steps (idea of Bronek Pabich)

18. Find a solid so that it can be moved through the holes: circle, triangle and
square.

References
[1] http://www.math-comp-educ.pl
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Abstract. Few mathematicians in geometry deal with uniform polyhedra.
Many of my friends, serious mathematicians find these polyhedrons difficult
to create and do not see their use in other fields of knowledge. Hence, little
interest in this issue. However, these polyhedrons are so captivating and
beautiful, they require so much hard thought on how to create cardboard
models or 3D prints of them.

They were mostly created in the 20th century. They are somewhat analogous
to what Archimedean polyhedra are to Platonic polyhedra, with the
difference that we now allow faces to be non-convex polygons. There are 54
of them in total, but the last ones were discovered in the 1970s and are very
difficult.

In my presentation, on the example of one of the uniform polyhedra, I will
show the principle of their construction and I will show the ones whose
models [ made with my students.

Keywords: Printing 3D, software SketchUp, GeoGebra, uniform polyhedra.

1 Introduction

Uniform Polyhedra is a family of semi-regular polyhedra whose corners are
congruent and whose faces are regular convex or concave polygons.

The UP include 5 Platonic solids, 13 Archimedean solids, two families of
regular prisms and regular antiprisms and 54 non-convex polyhedra

2 Main part of paper

Historically, the first uniform polyhedron was created
by Johannes Kepler in the 17th century. Kepler called
it the eared or spiky polyhedron (Fig. 1).

In the 19th century, Badoureau discovered 37 non-
convex homogeneous polyhedra. In the 20th century,
polyhedrons of this kind were studied by H.S.M.
Coxeter, J.C.P. Miller, H.C. Higgins, J. Lesavre, R.
Mercier, and J. Skiling.

Each of them discovered dozens of them.

Fig. 1
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Coxeter in 1954 found that there are 75 polyhedra in which only 2 faces can
share one edge, which was proved by the Russian mathematician S. P. Sopov in
1970.

John Skilling in 1975 confirmed this proof using computer algorithms.

My students have been making Uniform Polyhedra models from cardboard in the
math circle (Fig. 2). This was a difficult task, because it was necessary to find
meshes of segments of such a polyhedron. In the era of computers and printers,
it is worth designing UNIFORM POLYHEDRA on such printers. There are even
more problems with this.

Fig. 2

In the last two years, my students have started printing uniform polyhedra. The
hardest part was designing them in SketchUp. They had to demonstrate good
spatial imagination and knowledge of spatial geometry. They managed to print a
set of polyhedra with tetrahedral and cubic octahedral symmetry (Fig. 3).

Fig. 3: Fig. 4
Tetrahemihexahedron Octahemioctahedron
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Fig. 5: Fig. 6:

Cubohemioctahedron Cubocuboctahedron

——

Fig. 7: Fig. 8:

Small thombihexahedron Stellated truncated hexahedron

Fig. 9: Fig. 10:

Great thombi hexahedron Great cubicub octahedron
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Fig. 11: Fig. 12:
Rhombi cubocthedron Cubocta truncated cuboctahedron

Fig. 13:
Great truncted cuboctahedron

They also printed several polyhedra of dodecahedral symmetry (Fig. 14).

Fig. 14
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3 How to create uniform polyhedral

The drawings below illustrate the steps to create Rhombi cubocthedron, an example
of Uniform Polyhedra

We rotate the upper square face by 45°
and from the intersection of sides with
sides of this upper face we will get the
vertices regular octagon.

We connect the obtained points with
segments to create lattice on the top face
of the cube.

We mark it intersection points of these
segments.

We draw gride points on the remaining
ones walls.
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Let's create an equilateral triangle and
two squares with sides of length a.

We create copies of the triangular wall
for all possible ways.

Similarly to the triangle, we now create
6 copies of a vertical square (blue).
Rhombi cubocthedron is ready.

4 Conclusion

The introduction of 3D printers to Polish schools has resulted in significant
progress in the use of computer technologies. However, printers are not always
used for teaching purposes. This lecture shows how to properly direct the use of
3D printers for teaching purposes in mathematics, especially geometry.
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Priamkové plochy — tlacené 3D modely vytvorené
v prostredi Rhinoceros

Ruled surfaces — printed 3D models created in
Rhinoceros environment
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Abstract. Ruled surfaces are often used in construction and architecture for their
mathematical simplicity and adaptability. They are efficient in terms of usable
material and construction. They provide the opportunity to create unique
architectural elements that are aesthetic and modern. Students of architecture are
familiar not only with this group of surfaces within the course Descriptive
geometry Il. We suitably supplemented the teaching process with groups of
printed 3D models. We represented the modeling of lines lying on these surfaces
using the "pipe" tool in the Rhinoceros environment in combination with the
graphical editor Grasshopper.

Keywords: ruled surface, Rhinoceros, Grasshopper, 3D printed model

Klucové slova: priamkova plocha, Rhinoceros, Grasshopper, 3D tlaGeny model

1 Vyuzitie priamkovych ploch v architektire

Priamkové plochy st v stavebnictve a architektire ¢asto vyuzivané pre ich Siroka
variabilitu. St efektivne z hl'adiska materialu a pevnosti, ¢i stability konstrukcie.
Je mozné ich jednoducho priemyselne vyrabat’ postupmi ako liatie alebo presné
frézovanie. Lahko sa s nimi pracuje pri navrhoch a modelovani. Poskytuji
moznost vytvarat’ jedine¢né architektonické prvky, ktoré su Cisté, estetické
a moderné. Jednym zo svetovych architektov, ktory sa nimi inSpiroval pri
viacerych svojich navrhoch je napr. Santiago Calatrava (Obr.1, [5]).

Obr. 1: vlavo - Zel. stanica Reggio Emilia AV, Mediopadana, Taliansko,
vpravo - Vinarstvo Bodegas Ysios, Laguardia, Spanielsko
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2 Priamkové plochy — vyucbové a Studijné materialy

V ramci predmetu Deskriptivna geometria sa Studenti na FAD a na SvF STU ucia
o roznych typoch geometrickych ploch. Z nich najcastejsie aplikované v praxi st
prave priamkové plochy. Studenti st oboznameni s ich klasifikaciou a principom
generovania. Naucia sa ich tiez zobrazovat’ v Mongeovej projekcii prepojenej s
axonometriou (kolmou aj Sikmou).

Konod urézny riaciacou Kiivkou . fiacsaco paamkau b, risdiacou rovinou ay prisom
prismka b e koims ne rovini a, nazjvame kolmy Konoid. Ak piamka b nie & kolma na
rovinu @ tak ho nazjvame $ikmy konoid.

Obr. 2: Ukazka snimok zo §tudijnych materialov [2]

Velmi efektivnym nastrojom pre vyucbu st $tudijné materialy pristupné
online vo forme PowerPoint prezentacii [1], [2], (Obr.2). SG doplnené
pocitatovymi modelmi (*.dwfx) a umoznuju pohl'ad na objekty pri spojitom
otacani.
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V nich su studentom prezentované okrem teoretickych znalosti aj konkrétne
priklady realizovanych diel v oblasti architektury a dizajnu, kde boli aplikované
a ucebny nastroj, ktory ukazuje, ako moézu byt’ geometrické principy aplikované
v redlnom svete. Vyucovaci proces sme vhodne doplnili skupinou tlacenych 3D
modelov.

Grasshopper - Mor
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Obr. 3: Modelovanie konusoidu: Montpeliersky obluk

3 Modelovanie v Rhinocerose s nadstavbou Grasshopper

V nadviznosti na predchadzajice skusenosti pri tvorbe takychto modelov [3],
nad’alej testujeme moznosti ich vytvarania pomocou rdéznych vhodnych
softvérov. Pre tvorbu digitalnych modelov priamkovych ploch sme vyuzili
softvér Rhinoceros, ktory poskytuje Siroké spektrum nastrojov pre 3D
modelovanie a ktoré mozu byt prispdsobené r6znym potrebam a odvetviam.

So zamerom zvyraznit' priamky na prislusnych plochich sme efektivne
vyuzili nadstavbu Grasshopper, ktora je integrovana do softvéru Rhinoceros ako
vizualny programovaci nastroj [6]. Namiesto tradi¢ného pisania kddu umoziuje
vytvarat parametrické modely a generativne dizajny pomocou grafického
rozhrania. Deje sa tak pomocou spajania a usporiadania rozli¢énych
komponentov, ktoré reprezentuju rozne akcie a operacie.
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Sl Fhde RRAGRSJ
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Obr. 4: Modelovanie 1- dielneho hyperboloidu

Grasshopper umoziiuje vytvarat parametrické modely, kde modzeme
interaktivne menit’ hodnoty parametrov a vidiet’, ako sa sprava vysledny model.
Tento pristup sa ukazal vel'mi uzitocny pre rychle experimentovanie s r6znymi

variantami modelu.
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Obr. 5: Modelovanie kruznicového konoidu
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Pri tvorbe nasich modelov sme na reprezentaciu priamok vyuzili komponent
pipe (potrubie), kde sme mohli menit’ priemery rurok a ich vypli (Obr. 3, 4, 5).
Pomocou komponentu divide (delenie) generujicich elementov sme mohli
upravovat pocet ,,priamok* (rirok). Taktiez sme mohli menit’ napriklad velkost’
generujucich elementov, ¢i ich pohyb v danom smere v priestore (komponenty:

scale, move, vector).
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$tramberska truba Marseillesky obluk Montpeliersky obltk

KruZnicovy konoid §ikmy’ kruznicovy konoid
— Kiipperov konoid

Hyperbolicky paraboloid 1 dielny hyperboloid Veobecny cylindroid

Obr. 6: Ukazky tlaéenych 3D modelov priamkovych ploch

4 Zaver

Vytlagené 3D modely, ktoré si Studenti m6zu prakticky ohmatat’, ve'mi vhodne
dopliajii vyucbu tematického celku Priamkové nerozvinutelné plochy. Takyto
spdsob 3D tlace priamkovych modelov pomocou tlace ,,mnoziny priamok®, ktoré
st rozlisitelné aj na dotyk, je tiez velmi vhodny napriklad pre zrakovo
postihnutych Studentov. Fotky tychto modelov, a tieZ modelov réznych inych
typov geometrickych ploch sa daju pozriet’ v galérii na stranke [4]. Na Obr. 6 je
ukézka niekolkych modelov spolu s nazvom zodpovedajiicej plochy, ktort
reprezentuju.
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Abstract. There is a trend in many countries to replace geometric
synthetic proofs with other proofs. We present some geometric proofs
and constructions that can replace other types of proofs. The paper will
be focused on one of the many geometrical proofs of Pappus-Pascal’s
theorem and the construction of an osculating circle of an ellipse.

Keywords: Pappus-Pascal’s theorem, Osculating circle, Geometric
construction.

1 Introduction

The methods of synthetic geometry are powerful, and using them can
make some proofs simpler than using analytical methods. Historically,
but also nowadays, a lot of proofs of geometric constructions are based on
analytical calculations. But for many analytical proofs it is possible to find
a synthetic geometric proof, which in addition develops logical thinking
[9], [14]. There are even a few authors who sometimes primarily use
geometric proofs that are based only on figures. For example Bogomolny
[3] in his book uses some proofs based on figures, and Akopyar [1] in his
book proofed a geometric statement only with one figure.

In many countries geometry in secondary schools has almost disap-
peared from the curriculum and has been replaced by calculus, and the
same efforts have been made in the Czech Republic [10].

This article describes the most common proof of Pappus-Pascal’s the-
orem which uses homogenous coordinates. In addition, we present two
another geometrical proofs of the Pappus-Passcal’s theorem. One uses a
perspective point of view, and the other uses projectivities.

We will focus not only on proofs of this famous theorem but also on
some geometric constructions, especially the construction of the osculating
circle of an ellipse. This article is inspired by the book The Universe of
Conics: From the ancient Greeks to 21st-century developments [5].

2 Pappus-Pascal’s theorem

Pappus-Pascal’s theorem is one of the fundamental theorems of projective
geometry. The theorem was originally stated by Pappus of Alexandria in
the 4th century in Pappus’s Collection, book VII. [7] as Pappus’s hexagon
theorem. In the 17th century, the French philosopher and mathematician
Blaise Pascal generalized this theorem to the case where points A to F lie
on a conic. Pascal formulated his Pascal’s theorem in 1639 when he was
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16 years old and published it as a broadside titled Essay pour les coniques
[2]. Later, the theorem was generalized into Pappus-Pascal’s theorem.

Theorem 1 (Pappus’s hexagon theorem). Let A, B, C be three points on
one line and D, E, F be three points on another line. If AE intersect BD
at X, AF intersect CD atY, and BF intersect CE at Z, then the three
points X, Y, Z are collinear.

Theorem 2 (Pascal’s theorem). Let the points A, B,C, D, E, F be given.
Morover suppose that the three intersections X = (AE x BD), Y =
(AF x CD), Z = (BF x CE) exist.

The three points X, Y, Z are collinear if and only if the point A, B,C, D, E, F
lie on the same conic.

Theorem 3 (Pappus-Pascal’s theorem). Let A, B,C and D, E, F be two
non-simultaneous systems. Moreover, suppose that the points X = (AE x
BD), Y = (AF xCD), Z = (BF x CFE) exist. Then X,Y,Z are
collinear.

Pappus’s hexagon theorem is stated for lines, Pascal’s theorem is
stated on a conic and Pappus-Pascal’s theorem generalizes the statement
for two non-simultaneous systems. Let us start with the most common
proof of Pappus’s hexagon theorem which is based on homogeneous coor-
dinates [8].

Proof of the Theorem 1. Without loss of generality, let us choose homo-
geneous coordinates such that:

A=(0,1,0), D=(0,0,1), X =(1,1,1), O =(1,0,0),
where O is intersection of lines ABC and DEF. We have
OAUDX =B =(1,1,0), AXUOD =EFE =(1,0,1).
Assuming that A # C and D # F we get
C=(1,s,0), F=(1,0,1),
where s, € R. Then the remaining points are
AFUCD =Y = (1,s,t), BFUCE =2 = (1— st,s— st,t — st).

Points X,Y, Z are collinear because Y = Z + (s t) X. The situation is
illustrated in Fig. 1. O

Let us introduce the first geometric proof in this paper which is based
on a perspective view.
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Fig. 1: Proof of the Pappus’s hexagon theorem based on homogeneous
coordinates.

Proof of the Theorem 1. Let the lines between the collinear points ABC
and DEF be parallel. In Euclidean space or a perspective, parallel lines
intersect at a line at infinity. Parallel lines in a ground plane 7(z,y)
intersect at a point on the horizon line h. In this case, the parallel lines
AFE and BF intersect at point X, the parallel lines AD and CF intersect
at point Y, and the parallel lines BD and EC intersect at point Z. All
three intersection points X,Y, Z lie on the horizon h (Fig. 2b) or at the
line at infinity I (Fig. 2a).
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(a) Parallelism with the line at (b) Perspective point of view
infinity

Fig. 2: Proof of the Pappus’s hexagon theorem based on paral-
lelism /perspective

There are several proofs of the Theorem 2. We will present one which
uses collinearity, projectivity and Steiner’s definition. For clarity, we recall
here this definition.
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Definition 1 (Steiner’s definition). Let two pencils of lines at two points
H,H' and a projective but not perspective mapping © from H to H' be
given. For any line a in pencil H we have w(a) = o' in pencil H'. The
intersection points of corresponding lines (a N a’) form a non-degenerate
projective conic section.

Theorem 4. In the projective plane, any projectivity between two differ-
ent ranges h and h' of points can be created as the product of at most two
perspectivities between ranges.

A projetivity is a perspectivity if, and only if, the point h N h' is mapped
onto itself.

Using Definition 1 and Theorem 4, we can prove the Pappus-Pascal’s
theorem on the conic.

Proof of the Theorem 2. We prove the two implication separately.

1. There are 6 points on the conic ¢ = {4, B,C, D, E, F'}. According to
Steiner’s definition 1, we put H = A and H' = C¢. The projectivity
« from the pencil H to the pencil H' generates conic c¢. The straight
line h = DE is a perspective from the pencil H, and the straight
line ' = EF is a perspective from the pencil H’. According to
the Theorem 4, h and h’ are linked with a projectivity (3, which
is perspective, because «(FE) = E. The projectivity 8 sends X =
HBNhtoZ = BH Nk because a(HB) = BH' [a(AB) = BC).
Since f is pesrpective on X and Z = [B(X) is collinear with Y,
which is the center of perspectivity 8. Let D' = H’D N h' and
F' = HF N h. Using a(HD) = H'D, we obtain D = $(D’) and
B(D") = D. Similarly, it follows from a(HF') = H'F that F = 3(F")
and B(F') = F. Therefore, the center of perspective is the point Y,
found as Y = DD’ N FF' (Fig. 3).

2. Every conic is uniquely given by 5 points A, B,C, D, E. We need
to prove that the point F' lies on the same conic ¢. The chain 3 of
perspectivities from pencil H to the line h and further to the line A’
with the center in Y and then through the line i’ to the pencil H'
is a projectivity because it is a finite chain of perspectivities. Then
B is well-defined and HB — BH',HD — DH' and EB — EH’
for XY, Z are collinear. Therefore, the chain § is a factorization
of the projectivity o and therefore HF — F H’. Therefore, points
A, B,C,D, E, F lie on the same conic c.

It is also worth mentioning that according to Steiner’s definition 1, it does
not matter which point is labelled as H and H’. O

There exist another geometric proofs of Pappus-Pascal’s theorem. For
example [12] shows a proof based on double-rations and a proof via ori-
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Fig. 3: Geometric proof of collinearity of points X, Y, Z based on projec-
tivities

ented triangle area, [4] uses Tarski’s geometry in proofs and [13] nicely
reinterprets the proof of Pappus-Pascal’s Theorem using determinants.

Geometry is suitable not only for proofs but also for constructions. It
is known from differential geometry that an osculating circle exists at any
point of an ellipse. The center of that osculating circle can be computed
by curvature. In descriptive geometry, osculating circles are drawn only at
the vertices of an ellipse. Usually no general construction of an osculating
circle is given. The following section describes the geometric construction
of the center of the osculating circle.

3 Osculating circle of an ellipse

Description of osculating circles is often based on differential geometry:

"The osculating circle of a curve ¢ at a given point P is the circle k
that has the same tangent as c at point P as well as the same curvature.
Just as the tangent line is the line best approrimating a curve at a point
P, the osculating circle is the best circle that approximates the curve at
P.” ([6], pp. 111).

The set of all centers of the osculating circles forms an evolute (Fig. 4),
where the cusps! are the centers of the osculating circles at the vertices of
the ellipse. There are many constructions of osculating circles at vertices
of the ellipse. In descriptive geometry, an ellipse is often drawn according
to the plotted osculating circles. Let us begin with the construction of an
osculating circle at any point of the ellipse.

1Cusp is a point of a curve, where the moving point must reverse direction. It is a
type of singular point of a curve.
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Fig. 4: Evolute of an ellipse Fig. 5: Construction of an osculating circle

7

Fig. 6: The Osculating circle o as Fig. 7: Hyperosculating circle
collinear image of ¢

Let ¢ be a given ellipse, C a center and a,b the axes of this ellipse.
Moreover, let P be an arbitrary point of the ellipse ¢ which is not equal
to some of it’s vertices. We construct tangent ¢ to the conic ¢ at the point
P (see Fig. 5). We continues as follows:

1.

6.

We find a point P’ and a tangent ¢’ axisymmetric along one of the
axis of the ellipse (WLOG a).

. We draw a straight line r parallel to the tangent line ¢’ through the

point P

The straight line r intersects conic ¢ at points P and R. (Point R
also lies on the osculating circle)

. We find a line np normal to the tangent ¢ at the point P (line np

is perpendicular to the line ¢ at the point P).

. We draw a line s perpendicular to the line r at a point of intersection

of lines CP’ and r.

Then the lines s and n p intersect at the center O of osculating circle
o of the ellipse ¢ at the point P.

The correctness of this construction could be verified using differential
calculus. In this paper we prefer a verification using projective geometry.
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Firstly, we need to show that the center O of the osculating circle
o lies on the normal line n,. This follows from the basic knowledge of
differential geometry.

Secondly, the osculating circle o and the ellipse ¢ osculate each other
at the common point P, because there exists perspective collineation with
the center at P and the axis ¢. This follows from the fact that the straight
line r of an elation passes through the point P. Finally, we need to prove
that the tangents of the ellipse ¢ parallel to the straight line r are mapped
to parallel tangents of the circle o. Elation is a special case of axial
affinity, where the direction of the affinity is parallel to the axis of the
elation. Therefore, we can conclude from Fig. 6 that tangents of the
ellipse ¢ parallel to straight line r are mapped to parallel tangents of the
circle 0. Therefore, we can say that o is the osculating circle of the ellipse
c at point the P.

Now, we will address a previously omitted case of the osculating circle
in the vertices. In the Fig. 7, there is the given ellipse ¢ and the searched
circle 0. The tangential line ¢ through the vertex P is identical to the line
r from the previous construction. Therefore, an invariant point on the
tangential line ¢ has to exist. For this reason, a collinearity centered at
the invariant point mapps the ellipse ¢ to the circle o.

4 Conclusion

In this article, we have demonstrated the power of geometry. We showed
two proofs of the Pappus-Pascal’s theorem different from the proof using
homogeneous coordinates. Our proofs are based on a perspectivity and a
projectivity. In the second part of this article, we showed the construction
of an osculating circle of an ellipse including geometric clarification instead
of using the standart method of computation via curvature. Another ex-
ample of how to replace arithmetic calculation by geometric constructions
is given in article [11], where the author finds roots of a quadratic equation
graphically.
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Abstract. Graph theory is a valuable mathematical modelling tool with a wide
variety of geometric connections. It deserves more attention in all types of
education. Starting with Euler paths, graph colouring, and Hamilton icosian game
pupils can learn the terms and methods important for future programming. This
concept can be very useful in real-life applications, such as how to solve
transportation problems. In the contribution, the Hamiltonian paths and Eulerian
cycles are presented together with their connection to the vehicle routing
problems
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1 Introduction

Graphs can be used to model a wide variety of real-world problems, including
social networks, transportation, and communication networks.
Graphs are highly visual, making it easy to communicate complex data and
relationships clearly and concisely. This makes them useful for presentations,
reports, and data analysis. It gives the perfect comprehensible tool that helps in
all phases of mathematical modeling:

» Understanding of the problem.

» Simplification and structuring of the problem.

» Mathematization of the real problem.

« Math work using the right tools and skills.

« Analysis of the results.

+ Validation of the results in the environment.

2 Graph theory in education

Authors such as [1, 2] consider the use of graph theory as a conceptual tool in
the construction of models; problem-solving enables the acquisition and
development of skills such as intuition, exploration, discovery, and the design of
hypotheses, which contribute to the development of logical thinking, spatial
vision, and abstract reasoning in students.

Many problems related to the graph theory could be applied in everyday
situations and non-academic contexts, providing a practical application of the
mathematical concepts worked on in the classroom. The classic application is in
maps and plans, where vertices represent places and edges present roads. This is
a very helpful metaphor used to think about graphs (Fig. 1).
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Fig. 1: The Shortest path in GeoGebra

Educational games and puzzles (Fig. 2) could offer introduction to the
formulation and solution of the Traveling Salesmen Problem (TSP) and other
routing problems because only a relatively small number of routes are feasible,
thereby reducing the real situation to a manageable size for beginning students
[2].

Further processing includes translating notations (natural language
description, drawing, list, matrix) and systematic traversing. The point is to make
pupils understand a few key points which will make their approach systematic
and which will enable them reinvent the algorithm if needed [3].

Fig. 2: Left — Graph izomorphism, learning website umimeto.org,
Right — Friedman, E: Hamiltonian game
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Excellence of the graph theory topic in education on all types of schools is
given by following features:

« The transition from pure mathematics to the applied mathematics that has
meaning to students.

« The use and the role of digital tools in the teaching of mathematical
modelling.

» Geometric representation and application in purely geometric problems,
such as tessellation colouring and classification of polyhedral.

3 Eulerian Path

The most famous problem of Graph theory is the Eulerian path traversing each
edge of the graph exactly once. Eulerian paths and cycles are sometimes used as
puzzles for small children but historically they played a remarkable role. The
year 1736, when Euler solved the problem of seven bridges of Konigsberg, is
taken to mark the birth of graph theory.

Leonard Euler (1707-1783) proved that a necessary condition for the
existence of Eulerian circuits is that all vertices in the graph have an even degree
and stated without proof that connected graphs with all vertices of even degree
have an Eulerian circuit [6].

i Arad. Sé.Bm WMW’/_‘QJ

Fig. 3: The problem of the 7 bridges of Konigsberg (L. Euler to L.G. Ehler,
March 9th, 1736) and modern representation of graphs.

Euler felt this problem was trivial, stating in a 1736 letter to Carl Leonhard
Gottlieb Ehler, mayor of Danzig (now Gdansk in Poland, 120 km west of
Konigsberg), who asked him for a solution to the problem [9, 11].

Thus, you see, most noble Sir, how this type of solution bears little relationship
to mathematics....
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...In the meantime, most noble Sir, you have assigned this question to the
geometry of position, but I am ignorant as to what this new discipline involves,
and as to which types of problem Leibniz expected to see expressed in this way

Nevertheless, after ten days L. Euler wrote a letter to G. Marinoni, an
astronomer in the court of Emperor Leopold I: [9]

This question is so banal, but seemed to me worthy of attention in that geometry,
nor algebra, nor even the art of counting was sufficient to solve it. In view of this,
it occurred to me to wonder whether it belonged to the geometry of position
[Geometrian Situs/, which Leibniz had once so much longed for...

In the same year, Euler wrote up his solution in his celebrated paper in the
Commentarii Academiae Scientiarum Imperialis Petropolitanae under the title
“Solutio problematis ad geometriam situs pertinentis”[6] together with a diagram
of the Konigsberg bridges (background in Fig. 4). Let us note that Euler didn’t
draw the standard schematic graph with red vertices and straight edges in Fig. 4;
graphs of this kind didn’t make their first appearance until the second half of the
nineteenth century.

It is not hard to invent some strategy for finding an Euler circuit (a closed
walk that covers every edge once) on the small graph. Some naive algorithms are
useful for real applications, for example, Fleury’s algorithm is implemented in
the Python graph library Network X [15]. Fleury’s method is simple: at each step,
it chooses the next edge in the path to be one whose deletion would not
disconnect the graph, unless there is no such edge, in which case it picks the
remaining edge left at the current vertex. Due to the bridge-finding algorithm,
Fleury’s path has quadratic complexity in the number of edges, i.e. O(|E|2).

Construction of the Eulerian path is an important part of heuristic algorithms
of NP-hard problems, such as variations on the Traveling Salesman Problem
(TSP) or Chinese Postmen Problem (CPP) [3, 10].

4 The Chinese postman problem

The Traveling Salesman and Routing Problems are integral parts of bachelor and
master programs related to Operations Research/Management Science. This is
due to their relevance in both practical applications and research. The Routing
Problems lead to many other related areas of Operation Research, including
integer programming, approximation algorithms, Lagrangean relaxation, and
various heuristic approaches (such as greedy and k-opt).

For students, it is essential to gain a deep understanding of the problems’
inherent complexity [13]. The combinatorial complexity of these problems
demands a practical and comprehensible visualization for teaching purposes.
Without any digital tools, only very small instances can be analysed in the
classroom. These are typically too small to give students the right impression of
their computational complexity [3].
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The Chinese postman problem or Routing Problem is to find the shortest
closed path that visits every edge of a graph at least once. When the graph has an
Eulerian circuit, that circuit is an optimal solution. Otherwise, the optimization
problem is to find the smallest number of graph edges to duplicate so that the
resulting multigraph (graph with multiple parallel edges) does have an Eulerian
circuit. The exact algorithm for an undirected graph consists of three parts:

e Find all nodes with odd degree

e Add edges to the graph such that all nodes of odd degree are made even.

Added edges must be duplicates from the original graph.

e Given a starting point, find the Eulerian tour over the augmented dataset.
As we can conclude from the above-mentioned method, the CPP can be solved
in polynomial time [3], but in real applications, we hardly get the basic CPP. In
contrast to the solutions for basic Chinese Postman Problem, some variants are
NP-complete or NP-hard.

5 Conclusion

The objective of proposing a problem based on a game was to bring mathematics
closer to students’ hobbies, which helped to attract their attention, as observed
during the development of the problem’s resolution in class.

Educational targets combine both the practical usability of graphs and
theoretical knowledge. These two shall strengthen each other synergistically.
This enhances students’ lives, providing them with tools to solve problems and
making them understand the usefulness of mathematical modeling at the same
time. On a higher level, students should be aware of some metaknowledge and
heuristics. Influenced by all the examples in graph theory, students learned to
work systematically with presentable structure, virtually whenever it is possible.

The Chinese postman problem and the Traveling Salesman Problem are
perhaps the most studied discrete optimization problems. Their popularity is
because they are easy to formulate, difficult to solve, and have a large number of
applications with several variations and generalizations. The strategy for solving
the real application is sometimes analogous to the one used in the classroom.
Once the students are familiar with the basics of mathematical modeling and
graph approach, they can implement their own algorithm on real data.
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Abstract. Many algorithms designed to compute symmetries often
have a common unifying pattern that greatly simplifies the symmetry
identification process by treating it as an alternative problem. In the
following article, we present this technique in more detail and refer to
several recent papers where this idea has been used effectively.
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1 Introduction

Symmetry detection is a classical challenge that finds applications in var-
ious domains, including geometry, computer graphics, computer vision,
geometric modelling, and pattern recognition. This research field has wit-
nessed a significant surge in interest, exemplified by a growing body of
literature on the subject.

Mathematicians primarily focus on uncovering the global, exact sym-
metries of objects that are described implicitly or through rational
parametrizations. Conversely, the task of identifying symmetries in ob-
jects represented discretely as point sets is a vital concern within the realm
of computer science. Remarkably, the numerous algorithms designed to
compute symmetries often share a unifying pattern that greatly simpli-
fies the symmetry identification process by treating it as an alternative
problem. In the following text, we discuss this technique in more detail.

2 Symmetries of algebraic objects

Roughly speaking, algebraic object is an object which can be given by
a collection of polynomial equations. Among typical representatives oc-
curring in applied geometry we can include, for instance, the following
particular examples:
1. algebraic curves and surfaces — these are the solutions of polynomial
equations (e.g. the unit circle 22 + 3% — 1 = 0),

2. rationally parametrized curves and surfaces — curves and surfaces
in parametric form given by rational functions (e.g. the unit circle

[2t/(1+1%), (1 - %) /(1 + %)),
3. finite sets of points,

4. algebraic vector fields — vector fields whose coordinate representa-
tions are given by rational functions.
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In order to define a notion of a symmetry of an object we need to spec-
ify a group of its admissible transformations first. We always consider a
object contained in some ambient space together with its group of auto-
morphisms, i.e., we have the pairs (X, G), where X is a space and G the
group of automorphisms X — X. The typical examples are the projec-
tive space with the group of projective transformations (P, PGL, 1), the
Euclidean space with its isometries (E™, &, ), the sphere with the Mdbius
transformations (52, Mob), etc.

For ¢ € Gand Y C X we write ¢(Y) = {¢(y) | y € Y}. The group
Gy ={p € G| oY) =Y} will be called the group of symmetries of Y.

Recall that a group G is algebraic if it is at the same time an algebraic
variety and two maps given by (¢1, o) — ¢1¢ and ¢ — ¢! are regular
maps, see [8] for more details.

Proposition 1. If both Y C X and G are algebraic then so is Gy .

The above observation has two immediate consequences. First, a pos-
sible group of symmetries of an algebraic objective must be restricted.
For example, an algebraic object Y C E? cannot have a frieze group or
a wallpaper group as its group of symmetries. This is obvious as these
groups have infinitely many connected components, which is impossible
for an algebraic group. And second, Gy can be given by a collection of
polynomial equations and thus it may be directly found.

Example 2. Consider the ellipse Y = Z(z? + 2y?> — 1) C E? in the
Euclidean plane, i.e., (X,G) = (E2,&). Any isometry ¢ € E can be

given as
P& g(n,y) = (:?;2 2521) (;) * (Z;> 7 W

where a;,b; € R and a? + a2 = 1. ¢~! and thus ¢ as well is a symmetry
of Y if and only if f o ¢ = Af for some nonzero A. Using (1) this can be
rewritten as

b4+ 2b3+A—1=0, —2ayaz = 0,
2a2b1 + 4ayby = 0, aj +2a3 -\ =0,
2a%+a§—2)\:07 a%—&—a%—l:(),

2a161 F 4&2()2 = O7

which is a system of polynomial equations with unknowns ai,as, by, bs.
This system has exactly four solutions which yield the four obvious sym-
metries of the original ellipse:

sen = (5 ) () et o= ) @
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Finally, any geometric construction in (X, G) is said to be G-invariant
if it commutes with any element of G. For example, the construction of
a convex hull is &, -invariant because it does not matter whether we first
apply an isometry to a set and then compute the convex hull or vice versa.

Lemma 3. Let ¥ be a G-invariant construction. Then for all admissible
X it holds

gX C go’(X)a (3)

i.e., G-invariant constructions preserve the symmetries of the set w.r.t.
the group G.

Proof. Let Y = ¥(X) and let ¢ € Gx then

3 Application examples

Symmetries of planar curves. By a planar curve we understand a
set defined by a single polynomial equation f(z,y) = 0, where f is a real
polynomial in & and y. Consider the Laplace operator Af = % + %.
Replacing the curve f =0 by Af = 0 is &-invariant construction, which
means that all the symmetries of f = 0 are the symmetries of Af =0
as well. The resulting chain of Laplace operators terminates in so called
harmonic curve whose symmetries are easy to compute. For more details
see [1]. This approach was also used for implicit surfaces in [2].

Projective equivalences of rational curves. Projective equivalences
of rational curves were studied in [4], where the computation of projective
equivalences was replaced by the computation of M&bius transformations
of a finite subset in one-dimensional projective space. This may be seen
as a generalization of the G-invariant constructions, where the domain
and the target space of the construction are not the same. This approach
also allowed to compute affine equivalences between implicit curves or
projective equivalences between rational ruled surfaces.

Symmetries of point clouds. The approach used in [5, 7] decom-
poses the point cloud into simpler shapes whose symmetries can be found
more easily. The decomposition is based on the discrete Laplace opera-
tor, which analogously to continuous case is &,-invariant. In 2D situation
the problem is closely related to the so called trigonometric curves and
their symmetries — see [6]. Note that this approach can be used for the
computation of approximate symmetries as well.
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Symmetries of vector fields. An algebraic planar vector field is a field
Viz,y) = (v1(z,y),ve(x,y), where v; are real polynomials. Tts symmetries
can be found among the symmetries of a suitable finite subset of E2, which
in addition is a collection of the roots of the univariate complex polynomial

24w z—w Z+w z—w
oy (z) =resy (| v1 5 g )2 5 ' o :

This is true as the map V — oy is E-invariant construction. Since the
symmetries of roots of the univariate polynomial can be found without
knowledge of the roots, this significantly simplifies the problem, see [3].

4 Conclusion

In this short note we discussed a unifying pattern identified in several
algorithms devoted to computation of symmetries of algebraic objects.
The method was presented on particular examples with a number of ref-
erences to recent papers where the idea has been thoroughly studied and
then efficiently applied.
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Abstract. The elementary geometric Miquel theorem concerns a triangle ABC
and points R,S,T on its sides, and it states that the circles OART, OBRS, OCST
have a common point M, the Miquel point to these givens. To a given point M
there exists a one-parameter set of point triplets R,S.T. Choosing R,S,T in special
ways one receives the so-called “Beermat theorem ”, the Brocard theorems, and
the Simson-Wallace theorem as special cases of Miquel’s theorem. Remaining
within Euclidean geometry we deal with 3D modifications of these theorems. It
turns out that, while the Miquel theorem can be generalized to n-simplices, 3D
versions of the Brocard theorems need some modifications. The 3D Steiner-
Simson-Wallace theorem based on Miquel’s theorem is different from the
standard generalization (see e.g. [4]), but it connects properties of the 2D case
with Brocard’s modifications.

Keywords: Brocard points, Miquel's theorem, three-circle-theorem

1 Introduction

In 1838 Auguste Miquel (* ~1816, 1 1851) published a theorem (c.f. [3] and
[6]), which later on is called after him and got the meaning of an important
axiom in circle geometries, (see e.g. [1]). The elementary geometric version of
Miquel’s theorem concerns a triangle AABC and points R, S, T on its sides, and
it states that the circles OART, OBRS, OCST have a common point M, the
“Miquel point” to these givens, see Fig.1.

()

Fig. 1: Elementary geometric version of Miquel’s theorem.
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For M there exists a two-parametric set of possibilities, such that there is a

one-parameter set of triplets R, S, T to a given point M. The consequences of
this fact will be treated in Chapter 2.
Obviously, when choosing R,S,T dependent (e.g. collinear) resp. at a special
position (e.g. infinitesimally close to the vertices A4, B, C), the corresponding
Miquel point M will get special meanings and connect Miquel’s theorem to e.g.
that of Steiner and Simson-Wallace resp. to Brocard’s theorems. It shows that
even the well-known “beer mat theorem” resp. it's dual, namely the “three
circle theorem”, is a relative of Miquel’s theorem. We dedicate Chapter 3 to
these 2-dimensional cases, even though the topic is rather well-known. Finally,
in Chapter 4, we generalize these theorems to the Euclidean 3-space.

2 “Miquel stars”

To an arbitrarily chosen point M we construct the feet R,S,T on the sides of
AABC . Therewith, as the lines RM,SM,TM are parallel to the altitudes of
AABC, they include angles ZRMT = — a,2RMS =t — 3, £SMT =t — vy,
see Fig.2. Choosing another point R’ € AB leads to Miquel circles OAR'TM,
OBR'M, which intersect BC in S” and CA in T”, see Fig.2.

Fig. 2: The triplets (R,S,T), (R’,S’,T") belonging to a
fixed Miquel point M define congruent ,,Miquel stars*.

For quadrangles inscribed in these circles opposite angles must sum up to r,
and therefore ZRMR' = £SMS' = £TMT' . In the following we call the triplet
of half-lines (MR’, MS’, MT’) a “Miquel star” to point M. Therewith we can
state
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Theorem 1: If R’ runs through AB, then the Miquel star rotates about M. The
Miquel stars to different Miquel points are congruent.

Furthermore, we can state:

If R" runs through AB, the sides of AR'S'T' envelop three parabolas with
common focus M. Their common cords form a complete quadrangle consisting
of the incenter I and the excenters of AR"S"T", see Fig. 3. (R",S",T" are the
images of reflections of M at sides of AABC, and AR"S"T" consists of the
directrix lines of the above mentioned parabolas.)

Fig. 3: The sides of AR'S'T’ envelop three parabolas with common focus M. Their
common cords form a complete quadrangle.

3 Miquel’s theorem and its relatives

When we choose R, S, T infinitely close to A, B, C, - there are two possibilities
for that, due to the two orientations of AABC -, the Miquel circles will touch the
sides of AABC at its vertices and become “Brocard circles”, see Fig. 4. The
Miquel points are then called “first” and “second Brocard point” By, B,, see
e.g. [2]. For these points the Miquel stars pass through all three vertices of
AABC, Fig. 5.

2

A

Fig. 4: Brocard circles and Brocard points of a triangle.
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Fig. 5: Miquel-stars through the three vertices of a triangle.

As a second special case we mention collinearly chosen points R,S,T. In
other words, R,S, T fulfil the “Menelaos condition”. Now the triangle ARST is
degenerated and the, in general, three parabolas (/Fig. 3) coincide in a single
one with the Miguel point M as focus, see Fig. 6. J. Steiner interprets line RS
as the fourth line of a quadrilateral and states that the four circumcircles of its
four partial triangles intersect in one point, namely the focus of the single
parabola p touching all four lines. In the sense of Miquel all Miquel triangles
AR'S'T must be degenerated and M is a point of the circumcircle of AABC. The
pedal points of M at the sides of AABC are therefore collinear with the vertex
tangent of parabola p, which means that the theorem of Simson-Wallace
becomes an obvious consequence.

Fig. 6: Collinearly chosen points R, S, T lead to the theorems
of Steiner and Simson-Wallace.

If R, S, T fulfill the “Ceva condition”, (i.e. RC, SA, and TB meet at a point
P), what is somehow dual to the former case, we get another remarkable case.
Hereby a mapping of P to the Miquel point M is induced, which is algebraic of
5t degree.
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4 3D-generalisations of Miquel’s theorem.

We start with generalizing the classical theorem of Miquel: Six points
P,Q,R,S, T,V on the edges of a tetrahedron ¥ = ABCD define Miquel points
M? within the four face planes of X, as well as four “Miquel spheres”, which
intersect in a Miquel point M3, see Fig. 7. A proof for that can be found e.g. in
[5, p.360]. There is a 6-parametric set of octahedra P,Q,R,S, T,V , while there
is only a 3-parametric set of possibilities for M3, each chosen point M3 is
reached by a 3-parameter set of P,Q,R,S,T,V. For example, if P,Q,R,S,T,V
are chosen as pedal points of M3on the edges of ABCD, then M? are the pedal
points of M3 in the faces of X and give rise to a “Miquel-star” with half-lines
parallel to the (in general skew) altitudes of X. Ther Miquel spheres are then the
Thales spheres over the diameters [M3A4], ..., [M3D].

Fig. 7: Miquel point M3 and Miquel-star of a tetrahedron.

Therewith, based on Thales-hyperspheres, one can conjecture:
Given an n-simplex X and on each of its edges a point M}, then the n+1
hyperspheres through vertices and neighboring points M} have a common
point M, the “Miquel point” to these givens.

Obviously holds
Theorem 2: If Mlare chosen as the midpoints of the edges of an n-simplex X,
then the Miquel point M™ becomes the circumcenter of X.

We add a Mobius-geometric interpretation: The nD-version of the theorem
of Miquel is a proposition concerning configurations and incidences in Mobius
hypersphere spaces. For example, for dimIl = 1, 2,and 3 these configurations
are (34,43), (64,83), and (8g,16,).
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To look for a 3D-version of the theorems of Brocard we can choose the
6-tuplet P,Q,R,S, T,V in limit positions such that the Miquel spheres become
“Brocard spheres” passing through a vertex and touching the opposite face in
another vertex. This is only possible for the three vertices of a face of X, see
Fig. 8. The possible limit positions of P,Q,R,S, T,V for a 3D-version of the
theorems of Brocard, when related to Miquel’s theorem. The 4™ Miquel sphere
then becomes the circumsphere of X, and, indeed, the four spheres have
a common point M® =: B;, see Fig. 9.

D

Fig. 8: Sketch of the possible limit positions of P,Q,R,S, T,V for a
3D-version of the theorems of Brocard, if related to Miquel’s theorem.

Theorem 3: The circumsphere of the tetrahedron X contains 8 outer Brocard
points, which stem from triplets of Brocard spheres. To each face A; of X there
are two triplets of Brocard spheres. The 2" intersections of these triplets are the
Brocard points B? = M]-Z, (i=12;j=1,..,4) tothis face triangle 4.

Adding the faces of £ as Mobius spheres through the absolute point of the
Mobius space, we get the (84, 16,)-configuration of Mdobius spheres. Finally,
the “Brocard-Miquel limit case” can also be seen as “Steiner-Wallace-Simson
case”, as the sextuplet (P,Q,R,S,T,V) coincide with the three vertices of
a face A;, and therefore is coplanar.

Independent of a Miquel-related interpretation we can consider the 12
Brocard spheres to a tetrahedron X, and especially their midpoints, see Fig. 9.
While in the 2D-case the 6 midpoints of Brocard circles form two congruent
triangles, which are similar to the start triangle AABC, there seems to be
nothing known about the 3D-case. One might expect that the 12 points can be
ordered as vertices of a pair of octahedra, but also three tetrahedra could be
possible. For a regular tetrahedron X there are only 6 Brocard spheres. Their
radii are equal to that of the circumsphere X, namely r = v/6/4; (the edge length
of X is 1). Their centers form a regular octahedron with edge length 1. Pairs of
Brocard spheres have planes of intersections through the circumcentre Z of Z.

All Brocard spheres touch spheres concentric with Z and radii r,, = v2(2 +

V3)/4.
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Fig. 9: A symbolic depiction of some centres of Brocard spheres
to a tetrahedron.

We get another special case of 3D-Miquel’s theorem case, when choosing a
coplanar sextuplet (P,Q,R,S,T,V) € &. Therewith we get a “3D-Desargues
figure” T U g, see Fig. 10. In generalising the theorems of Steiner and Wallace-
Simson for quadrilaterals and triangles we get

Theorem 4: The Miquel point M3 to coplanar chosen points P,Q,R,S, T,V € ¢
belongs to the circumsphere of the tetrahedron X. In the sense of Steiner, M3 is
the intersection point of the 5 circumspheres of the partial tetrahedra of X € €.

Fig. 10: Coplanar points P, Q, R, S, T,V result in a Miquel point M3
belonging to 5 circumspheres of partial tetrahedra.

Note that this generalization is different from the one due to P. Pech (see [4]).
The pedal points of M3 are not coplanar! There is still an open question,
whether the three-parametric set of sextuplets (P’, ..., V") consists of spheres
and planes only.

5 Conclusion

The attempts to generalize important elementary geometric statements at least
to the three-dimensional Euclidean space can perhaps open up research on



202 Weiss Gunter

generalizations to higher dimensions and to some Cayley-Klein geometries,
too. But, as mentioned in Chapter 4, there are still many open questions already
in the classical Euclidean 3-space. For example, in this paper, we refrain from
dealing with the “three congruent circles theorem” and its reverse, the
“beermat-theorem”, which also are relatives of Miquel’s theorem. A first
attempt for a 3D-version of these theorems could be based on equifaced
tetrahedra Z. Such a tetrahedron has no Euler line and thus generalizes the
equilateral triangle.

We know that the topic treated in this paper is not mainstream science,
but it might make curious about “Advanced Elementary Geometry” and
this could perhaps justify its treatment.
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Abstract. K. G. Ch. von Staudt described simple geometric construc-
tions of arithmetic operations in his Beitrdge zur Geometrie der Lage.
We discuss a special case of a parabola in particular. Elementary and
derived constructions of addition and multiplication are presented syn-
thetically and analytically, and straightforward algebraic observations
are interconnected with the deeper geometric properties of a parabola.
We focus on constructions of arithmetic, geometric, and harmonic
mean. Von Staudt’s constructions are also discussed in relation to the
Matiyasevich-Stechkin parabola and Mobius’ parabolic nomogram.

Keywords: geometric algebra, von Staudt’s constructions, nomogram,
parabola

1 Introduction

Transferring arithmetic problems into geometry can lead to unexpectedly
strong mathematical connections. In this paper, we discuss a representa-
tion of (extended) real numbers and operations with them on a parabola.
The use of graphical tables or diagrams for solving equations is well de-
scribed in nomography (for further reading, see [1],[7]). For an example,
see a simple multiplication abacue in Fig. 1 from d’Ocagne’s comprehen-
sive work [4].

An interesting result on a graph of a parabola was described by Matiya-
sevich and Stechkin (see [2]). Lines connecting integer values on both sides
of a parabola (for x < —2 and z > 2) intersect the y-axis in the com-
posed numbers, and consequently, it creates a sieve of prime numbers.
A parabolic abacue was also studied much earlier by Mobius (Figure 2,
[3]). We will join the idea of a geometric calculator on a parabola with
von Staudt’s constructions on conics in projective geometry ([6, pp. 166—
1761,[9, pp. 20-23]).

2 Operations on a parabola

The following lines demonstrate a special case of von Staudt’s construc-
tions of addition and multiplication. Let us have a parabola

y =" (1)

in the Cartesian coordinate system. We will denote the points on the
parabola by their 2-coordinates (e.g., 2[2,4], Ala,a?]...). In other words,
we map the real z-axis to a parabola in the stereographic projection from
the improper point of the parabola.
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Fig. 1: A multiplication table by d’Ocagne. Assume, for example, the
lines x = 5,y = 2. Their intersection lies on the hyperbola xy = 10.
Source: gallica.bnf.fr / Bibliotheque nationale de France

2.1 Addition and an arithmetic mean

Let us have two points A and B on the parabola (Figure 3, left). From
von Staudt’s construction, the sum A + B will be created by joining AB.
Then, join the intersection of AB with the tangent in the improper point
oo and the point 0 (the parallel with AB through 0). The intersection
of the parabola with the parallel is the point A + B. We may find the
coordinates of (A + B) to verify if such construction is correct. The
equation of the line AB is

y = (a+b)x — abd. (2)
Then, the parallel through 0 is
y=(a+b)z. (3)
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Fig. 2: Mo6bius’ graphical multiplication on a parabola
Source: gallica.bnf.fr / Bibliothéque nationale de France

The intersection with the parabola (Equation 1) after the substitution
into (Equation 3) has the coordinates z = a + b,y = (a + b)%.

A straightforward consequence of the previous construction is that
each secant of the parabola parallel to AB intersects the parabola in the
points with the same sum A + B (Figure 3, right). In other words, the
direction of the line through A, B is the value of their sum.

Next, let us find the arithmetic mean of two values. The arithmetic

mean of A and B is A‘QB. Since A+B = A"'TB + A;—B, the line intersecting

the parabola in a double point A;B is its tangent in the direction A + B.
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Fig. 3: (left) A construction of the sum of —2 and 4. (right) The
intersections of a parabola with each of the parallel lines have the same
sum. The point of tangency is the arithmetic mean.

Considering the z-coordinates of points and their arithmetic mean, we
can further observe a well-known property of a parabola that midpoints
of chords of a parabola with the same sum lie on a line parallel with its
axis. This line intersects the parabola in the tangent point of the tangent
in the direction of the chords.

2.2 Multiplication and a geometric mean

We will follow with a construction of a product. Again, let us have A, B
on the parabola (Figure 4, left), and we will construct the product A -
B according to von Staudt’s constructions. First, find the intersection
of A, B with the parabola’s axis. Next, construct a line through the
intersection and 1. The second point in which it intersects the parabola is
A - B. To verify the construction, recall the equation of AB (Equation 2.
The axis of the parabola is the y-axis of the coordinate system. Hence
the intersection of AB and y has coordinates z = 0,y = —a - b. Now,
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Fig. 4: (left) A construction of the product of —2 and 3. (right) The
intersections of a parabola with each of the lines in the bundle have the
same product.

observe that this holds for any choice of A, B (even zero and infinity).
Therefore, each secant of a parabola through the point [0, —a-b] intersects
the parabola in the points with the product a - b of their x-coordinates
(Figure 4, right). And so, it also holds for the points 1[1,1] and A - Ba -
b, (a-b)?].

Observe that points on the y-axis are for integers without —1,0,1
composed numbers, and so they create a sieve of prime numbers (the
Matiyasevich-Stechkin property) (see also in [5, pp. 181-183], [8]).

Further on, let us find the geometric mean of two points (Figure 5,
left). First, assume A and B such that A- B > 0. In such cases, the
intersection of AB with the y-axis lies in the negative direction. We are
looking for the value vVA-B. See that +vVA-B-+VvA-B = A - B,
and so (similarly to the arithmetic mean), one tangent through [0, —a - ]
touches the parabola in the double point v/ A - B and the second tangent
in —vA - B. Observe that for A- B < 0, the intersection with the y-axis
is an inner point of the parabola, so it has no real tangents.

THowever, the extension for imaginary elements is possible.
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2.3 Harmonic mean

|

Fig. 5: (left) A construction of the geometric mean of —2 and —3.
(right) A construction of the harmonic mean of 1 and 3.

At last, we will explore the harmonic mean of two points on the
parabola (Figure 5, right). Let us find the intersection of the line AB
with the z-axis (the tangent of the parabola through 0). Substituting
y = 0 into (Equation 2), we have [“*b ] One tangent to the parabola
through this point is z-axis, and the second tangent has the equation

a+b 1

rz——-y=0. 4

5% Y (4)
The tangent point of the second tangent on the parabola has the coordi-
nates [5‘127 (%)2]’ and so it represents the harmonic mean of A and B.

To finalize the extent of our observations, notice that points 0, A, Zﬁ_g ,B
create a harmonic quadruple. This could be verified on the z-coordinates
of these points. Counting the cross-ratio, we have

(AB2ABO> A—%_B—o__1
e =1
A+ B’ B—ﬁ A-0
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3 Conclusion

Representing real numbers on a parabola, we have shown geometric con-
structions leading to elementary arithmetic operations. Moreover, the
arithmetic operations via these constructions works well on the extended
real numbers, supplementing the improper point of the parabola as oco.
Similar constructions can be carried out in projective geometry in more
general settings. We can choose arbitrary regular conic and also the coor-
dinate system (0,1, 00). In the end, let us revisit Mébius’ multiplication
on the table with parabolas from this point of view (Figure 6). See that
his choice of the point 0 is always in the top left corner of the table. The
point oo is in the horizontal direction of the axis of the parabola. The
choice of 1 in the first row is the choice of the parabola. In this setting,
the line through 2 and 3 intersects the line Oco in the point 6. Compared
to our choice y = x2 where Qoo is the y-axis, Mdbius chose 0co as the
top row of the table. Otherwise, all the constructions work in the same
manner.

NN R T .5 T el 4 O I Ie [ | 15 | 10 |
1 |1 |2 |7 ;b}-‘*\il [ [ Tods
2 ) .
L= 2 2 o 2 b 2N " .
3 3 3 |
4 P = e | 3 :
3 & e = 5
—
4T T 1. —1 !
= .‘.... L f" N
7.‘. Py X LR -.---q....hn 7

Fig. 6: Reconstruction of Figure 2. The system (0,1, c0) and
multiplication construction of 2 -3 and 1 -6 is highlighted.
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