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Forewords 

Slovak University of Technology, Institute of Mathematics and Physics at the 

Faculty of Mechanical Engineering in Bratislava, hosted the 11th Slovak-Czech 

Conference on Geometry and Graphics held on September 1 – 4, 2025. 

Conference was the next successful common event of two traditional conferences 

organized by national societies for geometry and graphics, 34th Symposium on 

Computer Geometry SCG´2025 in Slovakia and the 45th Conference on 

Geometry and Graphics in the Czech Republic, and was arranged under the 

leadership of the Slovak Society for Geometry and Graphics.  

42 registered participants from 6 countries – Slovakia, Czech Republic, Austria, 

Hungary, Poland and Italy attended conference and contributed to its quality 

scientific programme. The atmosphere of the meeting was as usually very cordial 

and enjoyable. The rich conference programme included lectures and 

presentations from various fields of geometry and graphics. Four invited plenary 

lectures were presented, with one additional invited presentation.  

Professor Luigi Cocchiarella from Milan Polytechnic in Italy, former president 

of the International Society for Geometry and Graphics ISGG, presented in his 

opening talk “Be it pencil or AI: Informing Geometry in Forming Architecture“ 

many valuable ideas on the role of geometry in technical education, architecture 

in particular.   

Nice plenary talk on “Aesthetic Curve Families in Computer-Aided Design” was 

presented by Péter Salvi from Budapest University of Technology and 

Economics, Hungary. Participants could learn about what we actually mean by 

aesthetic curves, how this question might be explored by revisiting classical 

curves generally regarded as beautiful, and about families of aesthetic curve 

representations, with a deeper look into so-called log-aesthetic curves and their 

variations. There was also presented the intriguing connection to Archimedean 

spirals, offering insights into possible applications.  

Invited lecture “Historical Constructions of Ellipses and Ovals from the 

Perspective of Franz Sales Meyer and Nicolaus Fialkowski“ introduced to 

participants historical methods of constructing ellipses and oval shapes. Věra 

Ferdiánová from University in Ostrava, Czech Republic and Michaela Holešová 

from University in Žilina, Slovakia, presented Franz Sales Meyer constructions 

of ellipses and ellipsoids, which were essential for designing more complex 

forms in architecture and decorative arts, and Nicolaus Fialkowski systematic 

overview of both classical and lesser-known methods for constructing ellipses, 

often based on the practical use of circles and arcs. The lecture not only 

introduced selected methods from the theoretical perspective and through 

practical demonstrations, but emphasised on their application in education of 

geometry with potential integration of digital tools, e.g. GeoGebra.  

Invited speaker Michal Zamboj from the Charles University in Prague, Czech 

Republic, described in his interesting invited lecture “Current Challenges and 
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Perspectives of Descriptive Geometry“ the current problems that descriptive 

geometry encounters in the field of education, applications, and research. He 

identified the original motivations as fixed elements accompanying the subject 

since its foundation. The aim of this lecture was to propose projections of these 

motivations to the current time into two interrelated projection planes: 

descriptive geometry as a part of mathematics and as an application in other 

subjects of not only technical but also general education.  

Jana Chalmovianská from the Comenius University in Bratislava, Slovakia, 

presented her invited lecture as “Report from a meeting between a mathematician 

and descriptive geometry”, bringing reflections of a mathematician on teaching 

descriptive geometry to prospective teachers of the subject, offering thus 

a viewpoint of an outsider, and informing about implementations of the 

observations into the current transformations of the course at the Faculty of 

Mathematics, Physics and Informatics. 

Submitted 19 contributed talks from applied and pure geometry, graphics and 

education of geometry are published in this proceedings.  

Conference was organized by the Slovak Society for Geometry and Graphics at 

its official seat, the Institute of Mathematics and Physics, Mechanical 

Engineering Faculty of the Slovak University of Technology in Bratislava, 

Slovakia. Social programme included the boat trip on Danube River to the nearby 

iconic castle Devín, firmly connected with the history of Slavic peoples in the 

territory of Slovakia. Conference dinner was held in the historic environment of 

the former Monastery of the Merciful Brothers, today popular Bratislava Flag 

Ship restaurant, in a relaxing atmosphere with the traditional Slovak cuisine and 

home-brewed beer.  

We would like to invite all interested parties to attend the next joint event of the 

46th Conference on Geometry and Graphics and the 35th Symposium on 

Computer Geometry SCG´2026. This next conference will be held again 

together in 2026 by representatives of both national societies for geometry and 

graphics as the 12th Czech-Slovak Conference on Geometry and Graphics in the 

South Bohemian city České Budějovice, Czech Republic, under the supervision 

of the Czech Society for Geometry and Graphics.  

Let us keep the good tradition of our common meetings deeply rooted in the 

history. 

October 31, 2025 

  Daniela Velichová Zbyněk Šír 

     chair of SSGG  chair of ČSGG 
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PLENARY TALKS 





Be it pencil or AI: Informing geometry 

in forming architecture 
Luigi Cocchiarella 

Politecnico di Milano, Department of Architecture and Urban Studies (DASTU) 
Milano, Italy  

email: luigi.cocchiarella@polimi.it 

Abstract. IT has increasingly revealed the dual function of Geometry, that 
is, as a meta-language supporting the generative processes in design, and, 
as the structure of that same meta-language.  

Keywords: Geometry, architecture, interdisciplinary cooperation, visualization, 
artificial intelligence 

IT has increasingly revealed the dual function of Geometry, that is, as a meta-
language supporting the generative processes in design, and, as the structure of 
that same meta-language. 
Parametric modelling by visual programming made us familiar with the 
visualization of the logical patterns behind geometric configurations and 
transformations. 
As an evolution of CAD modelling, the level of abstraction remained close to 
that of the pure Geometry anyway. When parameterisation evolved further, new 
sets of information were digitally integrated in the geometric structures, 
increasing the semanticity level of the models, on which in turn, they could 
finally have an impact during the design processes. 
Therefore, geometries could even be generated with no direct geometric inputs, 
or, by operating on other types of data, which was the antechamber of the shape 
generation by ´prompts´ via AI. 
On the one hand, this new mode reflects that long-desired permeability among 
languages that is promising in terms of feeding novel ways of interdisciplinary 
cooperation. 
On the other hand, it raises a question about ‘how’ we are expected to think and 

learn in this new syncretic system of knowledge, independently on the tools used 
to learn. 
Probably, we have to dive more closely, in research, education, and profession, 
into the profound connections of Geometry with the wide range of disciplinary 
fields to which it is linked, in other words, into how its purity is essential to the 
many components of the real realm including architecture, considered in all the 
scalar extensions of its humanized space, which is a significant part of that real 
realm. 
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Historical constructions of ellipses and ovals 

from the perspective of Franz Sales Meyer  

and  

Nicolaus Fialkowski  

Věra Ferdiánová, Michaela Holešová 

Dept. of mathematics, Fac. of Science, Univ. of Ostrava 
Mlýnská 5, 701 03 Ostrava, Czech Republic 

email: vera.ferdianova@osu.cz 

Dept. of Structural Mechanics and Applied Mathematics, Fac. of Civil Engineering,  
Univ. of Žilina, Univerzitná 8215/10, 010 26 Žilina, Slovak Republic 

email: michaela.holesova@uniza.sk 

Abstract. This lecture focuses on historical methods of constructing ellipses
and oval shapes, as documented in the works of Franz Sales Meyer and 
Nicolaus Fialkowski. In his renowned Handbook of Ornament, Franz Sales 
Meyer presents not only ornamental elements but also devotes a section to the 
constructions of ellipses and ellipsoids, which were essential for designing more 
complex forms in architecture and decorative arts. Nicolaus Fialkowski, in his 
comprehensive textbook Die Zeichnende Geometrie, offers a systematic 
overview of both classical and lesser-known methods for constructing ellipses, 
often based on the practical use of circles and arcs. The lecture will introduce 
selected methods from both a theoretical perspective and through practical 
demonstrations, with an emphasis on their application in geometry education 
and the potential integration with digital tools such as GeoGebra. 

Keywords: Nicolaus Fialkowski, Franz Sales Meyer, ellipses, ovals 

1 Introduction 

In technical practice, the terms oval, ellipse, and oval describing an ellipse are 
often used interchangeably. Although an exact mathematical definition of an 
oval in the Euclidean plane is not known, it is usually described as a curve with 
the following properties.  
● differentiable (visually smooth, without sharp breaks),
● simple (does not intersect itself),
● convex (the line segment connecting any two points on the curve lies

within the area it bounds),
● closed,
● and has at least one axis of symmetry.

Unlike the oval, an ellipse has a precise mathematical definition as the locus of 
points whose sum of distances from two fixed foci is constant. Despite their 
visual similarity, the ellipse differs by its continuously changing curvature. 
Therefore, although the terms are often confused in technical fields, it is 
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essential for students—especially in technical disciplines—to understand the 
key differences summarised in Tab. 1. 

 
Criterion Oval (general/technical 

sense) 

Ellipse 

Definition Descriptive term for an egg-
like shape; often composed 
of circular arcs. 

Set of points with a constant 
sum of distances from two 
fixed foci. 

Mathematical 

precision 

"Ambiguous, context-
dependent." 

Precisely defined by an 
analytical equation. 

Curvature Piecewise constant 
(composed of arcs with fixed 
radii). 

Smoothly and continuously 
changing at every point. 

Foci Does not have foci in the 
sense of an ellipse's 
definition. 

Defined by a pair of foci. 

Symmetry Usually has at least one axis 
of symmetry. 

Always has two axes of 
symmetry (major and minor). 

Relationship "In geometry, an oval is often 
defined as a curve similar to 
an ellipse that is not an 
ellipse." 

"A specific, precisely defined 
curve." 

Tab. 1:  Comparison between an oval and an ellipse 
 

We focus on two authors who, in their works, presented many interesting 
constructions of ovals as well as ellipses that were used in technical practice in 
the past and remain of interest even today. These shapes are not just decorative 
— they reflect a time when geometry and aesthetics were deeply intertwined. 
At the heart of this period stood Franz Sales Meyer, who saw ellipses as key 
to ornamental harmony, and Nicolae Fialkowski, who approached them as 
powerful tools for geometric thinking and teaching. 

Their constructions reveal more than methods — they offer insight into how 
geometry shaped space, beauty, and learning. And even today, these historical 
approaches can inspire modern education and design. 

2 Nicolaus Fialkowski (1818-1902) and his works 

Nicolaus Fialkowski was an Austrian educator, architect, and author of 
textbooks on technical drawing and descriptive geometry who worked in 
Vienna during the second half of the 19th century. According to surviving 
records, during his lifetime he served as an assistant at the Department of 
Descriptive Geometry and simultaneously as a substitute teacher for technical 
drawing in the preparatory year at the Imperial and Royal Polytechnic Institute 
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in Vienna. He was also a professor of mathematics at the Gumpendorfer 
Realschule secondary school [8]. 
At the same time, he held the position of full instructor in geometry, 
architectural design, and related drawing, and he acted as the custodian of the 
Geometrical and Architectural Teaching Collection (Kustos der geometrischen 
und architektonischen Lehrmittelsammlung)[7]. 
In official directories he is listed as residing in Mariahilf, Kirchengasse No. 
138, Vienna [7]. He authored more than 30 works, for example (according to 
historical notes [1] and archival sources [10]):  

 Das Dezimalrechnen mit Rangziffern(1863) 
 Zeichnende Geometrie (1879/1880/1882) 
 Praktische Geometrie (1892) 
 Lehrbuch der Geometrie und des Zeichnens oder die geometrische 

Formenlehre (1864/1872/1882) 
 Analyse des Zeichnens nach der Anschauung nebst Angabe einiger 

neuerdachter Modelk (1856)  
 Der Zeichner und Rolorist nebst den dazu gehörigen 

Zeichenrequisiten und Materialien. Praktische Anleitung [...] für 

Real- und Gewerbeschulen, wie auch für den Selbstgebrauche für 

jeden Zeichner, insbesondere für technische Zeichner. Wien: 
Wendelin 1857  

 Lehrbuch der Planimetrie, L Teil (Zweiter Cursus der Geometrie) 
Wien/Leipzig: Klinckardt 1882 (5. Auflage).  

 Lehrbuch der Planimetrie, IL Teil (Dritter Cursus der Geometrie) 
1882 (5. Auflage). 

 
Although he was primarily an educator, some sources also mention him as 

an architect and designer, which is probably related to the fact that after the 
marriage in 1899 of his daughter Adele (1866–1945) to the much older builder 
Josef Prokop (1836–1904), he most likely worked in Prokop’s firm [8]. This 
combination of practical experience and theoretical knowledge is reflected in 
his textbooks, which demonstrate the connection between geometry and 
technical drawing, as well as architectural construction. 
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2.1 Zeichnende Geometrie [2] 

The book Zeichnende Geometrie (3rd edition) is an extensive and meticulously 
elaborated work whose aim is to provide students of secondary and commercial 
schools, as well as technicians and technical draftsmen, with a complete 
collection of feasible and accurate methods for all types of geometric 
constructions. The author emphasises practicality and precision, thus creating 
a handbook that connects the theoretical principles of geometry with the needs 
of technical practice. 

The completeness and scope of the book are evident from its rich visual 
content — on 138 pages of text, it contains approximately 1,800 figures, which 
represents nearly four times as many as comparable works of the time. Such 
a vast collection of illustrations arose because the author included not only 
well-known constructions but also a large number of new ones, based on 
contemporary research and extensions of geometric methods. The book also 
incorporates constructions that rarely appeared in other sources but were of 
great practical importance for technical drawing — for example, the plotting of 
required shapes within given figures, determining centroids, or the geometric 
construction of architectural ornaments. 

A significant contribution of the work lies in approximately one hundred 
new constructions created by the author himself, which supplement previously 
missing areas of geometry. Interestingly, in the second edition from 1872, the 
author introduced sixty new constructions. Among the most remarkable 
innovations, according to Fialkowski, are the general construction of angles in 
degrees and the determination of the magnitude of drawn angles, as well as 
both general and special methods of angle division, the determination of 
diagonal points in the construction of an ellipse, and new constructions of 
ellipses — including the first strictly geometric construction of the so-called 
Eilinie (egg-shaped curve) in two variants. With these new methods, the author 
not only expands existing knowledge but also strives for a systematic 
completion and unification of geometric procedures, thereby making his work 
the richest and most comprehensive of its kind 

Special attention should also be given to the thoughtful layout of the book, 
which demonstrates the author’s careful planning. On one page, the illustrations 
are placed, while on the opposite page, the corresponding text is printed. This 
arrangement brings a number of practical advantages, and the author himself 
highlights this feature in the prologue as a groundbreaking approach. The 
distance between the text and the diagrams or constructions is minimal, which 
facilitates orientation and speeds up the search for the relevant information. 

Interestingly, Fialkowski also considered the reader’s comfort in studying 

and teaching, noting that this layout makes the learning process more 
convenient and clearer than in works using traditional woodcut illustrations. 
Moreover, this arrangement saves space on the working or drawing table, 
which is essential for practical work with drawing instruments. 
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Each exercise follows a similar structure (see Fig. 1): 
● Numbering and title – each task is numbered and linked to a specific 

construction (e.g. Tafel 24, Fig. 381…). If it is an original construction 

by the author, this is indicated with the note (Vom Verfaffer) (see Fig. 
2). 

● Assignment – a clear geometric requirement (e.g. “Divide the angle into 

three equal parts”). 
● Procedure – a step-by-step verbal guide with continuous references to 

the construction. 
● Notes and applications – practical tips, alternatives, and examples of use 

in practice (e.g. in architecture). 
 

 
Fig. 1:  Example of the book’s layout across a double-page spread [2] 
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Fig. 2:  Sample task assignment and description of the construction,  
marked as the author's [2] 

 
Thanks to its systematic structure, clarity, and practical orientation, 

Fialkowski’s Zeichnende Geometrie represents not only a significant milestone 

in the development of geometry education but also a valuable source for all 
those engaged in geometric constructions in technical and architectural 
practice. Owing to the author’s diligence and dedication to his field, the book 

was published in several editions, which he regularly expanded with additional 
constructions and exercises. In its time, it was a highly respected publication 
not only in Europe but also abroad; as early as 1886, it was included among the 
recommended textbooks for instruction in the United States in the Bibliography 
of Education by G. Stanley Hall and John M. Mansfield of Boston, which is 
available in the archives of the Library of the University of California, Los 
Angeles [3]. 

 

3 Franz Sales Meyer (1849 – 1927) 

Franz Sales Meyer was a German professor, author, poet, and painter from 
Karlsruhe. During the 19th century, he did not appear as a revolutionary design 
theorist but rather as a masterly systematiser and educator. His principal 
contribution lay in the creation of a lasting, practical, and comprehensive 
framework for the study and application of historical ornament. 

From 1866 to 1868, he attended a seminary in Meersburg, which indicates a 
classical education, and subsequently continued his studies at the Polytechnic in 
Karlsruhe, where he graduated in 1871 in the field of “industrial art education.” 

In 1873, he joined the faculty of the Grand Ducal School of Applied Arts 
(Großherzogliche Kunstgewerbeschule) in Karlsruhe. In 1878, he was 

appointed a full lecturer and received the title of Professor of Ornamentation. 
His entire professional life was centred in Karlsruhe, where he also passed 
away after a short illness on 6 November 1927 and where he had remained 
active for the rest of his career. Meyer was a multifaceted personality; besides 
his main professional activities, he was also an accomplished painter and poet, 
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attesting to his broad cultural outlook. Nevertheless, his primary and enduring 
legacy was his pedagogical and publishing work in the field of ornament 
theory. 

 
Fig. 3:  Left: Page of the book, Right: Picture of Franz Sales Meyer [6] 
 
His most significant work, Handbuch der Ornamentik, became an 

international standard, whose journey began in Germany. It was first published 
in German in 1888 under the title Systematisch geordnetes Handbuch der 
Ornamentik.  

3.1 Handbook of ornaments [6] 

The structure of the book represents a carefully designed pedagogical system. 
In the first part, Elements of Decoration, Meyer categorises all ornamental 
motifs according to their source: 
● Geometric elements 
● Natural forms (plants, animals, humans) 
● Artificial objects (trophies, symbols, etc.) 
 

 
Fig. 4:  Example from the first part – Elements of Decoration [6] 

 

Historical constructions of ellipses and ovals from the perspective ... 19



In the second part, Ornament Applied to the Elements, Meyer classifies 
ornament based on its structural or compositional purpose: 
● Bands (borders) 
● Free Ornaments (finials) 
● Supports (columns, brackets) 
● Enclosed Ornament (panels, fillings) 
● Repeating Ornament (patterns) 
 

 
Fig. 5:  Example from the second part – Ornament Applied to Elements [6] 

 
The third part, Decorated Objects, contains case studies in which the 

principles from the first two parts are applied to real objects. This section 
demonstrates synthesis in practice and provides students and craftsmen with 
direct examples of how to decorate specific objects in accordance with their 
shape, material, and function. The analysed categories include: 
● Forms of vases and vessels 
● Metal objects (gates, grilles, candlesticks) 
● Furniture (chairs, tables, cabinets) 
● Frames (for pictures and mirrors) 
● Jewellery and personal ornaments 
● Heraldry 
● Lettering, printing, and bookbinding art 

 

 
Fig. 6:  Example from the third part – Decorated Objects [6] 
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The book contained approximately 3,000 illustrations on 300 plates, making 
it one of the most comprehensive visual collections of its time. It was translated 
into several languages and is still sought after as a reference and source of 
inspiration in the field of design and ornament history, today perceived as 
a bridge between art history and modern design. 

The section most relevant to our study, Geometric Elements, begins with 
the most abstract forms created through the rhythmic arrangement of points and 
lines, angle division, and the combination of geometric shapes. It deals with 
constructions of ellipses (Plate 20, pp. 31, nos. 2–6) and constructions of ovals 
(Plate 20, pp. 31, nos. 7–12), which can be suitably used for approximating 
ellipses. Meyer also presents well-known Serlio’s oval constructions (Plate 20, 

pp. 31, nos. 7 and 9), which we have discussed in more detail, for example, in 
[4]. 

 

 
Fig. 7:  Example from the first part – Geometric Shapes [6] 

4 Historical Constructions of Ellipses and Oval 

Both Fialkowski and Meyer understood the ellipse, based on its foci, in the 
standard way — as the set of all points in a plane for which the sum of the 
distances from two fixed points (the foci) is constant. Meyer explicitly states: 

 
“It has the peculiar quality that, if any point on the circumference be joined 

with the two foci, the sum of the two connecting lines is invariable, and always 
equal to the longitudinal axis.” [6] 

 
Although Meyer was primarily an ornamentalist, he recognised and directly 

pointed out that the ellipse has a curvature that changes continuously at every 
point. Fialkowski, in turn, described the fundamental properties of the ellipse, 
which he illustrated with drawings — particularly the relationships among the 
foci, tangents, and radii vectors. He also provided a construction for finding the 
foci when the lengths of the major and minor semi-axes are known. 
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Fig. 8:  Illustration of the properties of an ellipse [2] 

 
Both authors also described the ellipse as a special case of the projection of 

a circle inscribed in a square when projected into a rectangle. Meyer explicitly 
stated that there exists a construction of eight points of an ellipse: “When a 

square with its diagonals and transverse lines is projected as a rectangle, the 
circle within it becomes an ellipse.”[6] 

 

    
 

Fig. 9:  Construction of the ellipse using eight points. 
Left: according to Meyer [6], Right: according to Fialkowski [2] 

 
Since Fialkowski’s book was primarily intended for students of technical 

schools, it contains around thirty different constructions of the ellipse. Meyer, 
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on the other hand, presented six basic constructions in his book — mainly those 
that could be drawn easily and quickly, as he later used ellipses in his 
ornamental designs. 

Regarding the construction of ovals, Meyer explicitly states that calling an 
ellipse an oval is incorrect, as the term derives from ovum, meaning “egg-
shaped curves.” Fialkowski, however, dedicated a separate chapter to 
approximate constructions of ovals, focusing only on curves resembling the 
shape of an egg. 

If we consider an oval to be a closed convex curve composed of smoothly 
connected circular arcs, then even these constructions are labelled by Meyer as 
“Der Korbbogen” [5], which were erroneously translated into English as 
“ellipsoids” [6], while Fialkowski referred to them as “approximate 

constructions of the ellipse” [2]. In both cases, we find constructions 
corresponding to Serlio’s ovals. 

 
Fig. 10:  Examples of ovals Left: according to Meyer [6],  

Right: according to Fialkowski [2] 

4.1 Fialkowski pp. 92, no.787 [2] 

Fialkowski based this construction on the main vertex circle and an auxiliary 
rectangle in which the ellipse is inscribed. His assumption is that the centre of 
the ellipse and all its main and minor vertices, labelled 𝑨, 𝑩, 𝑪, and 𝑫 are 
known. The author then selects an arbitrary point 𝑱 on the main vertex circle 
and constructs a circle centred at the principal vertex 𝑩 passing through point 𝑱. 
The required point of the ellipse then lies on the diagonal of the rectangle 
formed from the originally circumscribed rectangle of the circle and the line 
𝑪𝑳.This is an interesting construction that does not appear in modern textbooks 
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and is not based on the focal definition of the ellipse. In today’s context, with 

tools such as GeoGebra, it is easy to verify that the determined point 𝑴 indeed 
lies on the ellipse. 

 

    
Fig. 11:  Construction according to Fialkowski [2] 

 

 
 

Fig. 12:  Construction of the ellipse according to the instructions  
with verification 

Fialkowski pp. 94, no. 809 [2] 

Fialkowski most likely adopted construction No. 809 from unknown sources, 
but it deals with an approximate construction of an ellipse — in our case, an 
oval — that possesses the property that its eccentricity is equal to the length of 
the minor semi-axis. To find the centres of the circular arcs that approximate 
the neighbourhood of the vertices, he used a 3:4 ratio based on the length of the 
segment 𝐴𝐼, which represents half of the remaining distance from the focus to 
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the vertex. It is a very well-designed construction, as the green circular arcs 
closely follow the red ellipse. From an analytical point of view, Fialkowski 
attempted to approximate the ellipse given by the equation 

𝑥2

2𝑏2 +
𝑦2

𝑏2 = 1, 

whose radius of curvature at the vertices A and C differs slightly from that of 
the constructed circles but comes very close — a similarity that, in the technical 
practice of the time and using contemporary drawing tools, would have 
appeared nearly identical. 
 

 
 

Fig. 13:  Fialkowski’s approximate construction of the ellipse [2] 
  

 
 
Fig. 14:  Construction of an oval using four circular arcs and an ellipse 𝒆 = 𝒃 
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4.2 Meyer Plate 20, pp. 31, no. 8 [6] 

This is a modified version of the well-known Serlio construction (see [9]), in 
which three circles are drawn with radii equal to half the length of the major 
semi-axis of the given ellipse. The second arc of the approximating oval has its 
centre at point 𝐾, as shown in Fig. 16. Meyer placed the centre of the second 
circle so that the triangle 𝑆₁𝑆₂𝑃 is equilateral. Therefore, this construction is 
suitable for ellipses whose ratio of the major to minor axis is 

𝑎/𝑏 =  (√3 + 3)/3, 

and the ratio of the radii of the circles defining the oval is 1:3. 
 

 
Fig.15:  Description of the construction from the book [6] 

 
 

Fig. 16:  Left: Meyer´s construction in the book [6], Right: Meyer´s 

construction (green colour), Serlio´s construction (c) (red colour) 

4.3 Meyer Plate 20, pp. 31, no. 10 [6] 

We construct a line segment 𝐴𝐶 and apply the length a-b from the point 𝐶 to 
this line segment and we get a point 𝑄. We mark the center of the line segment 
𝐴𝑄 as a point 𝐿. We draw the perpendicular to the line 𝐴𝐶 through the point 𝐿. 
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This line intersects the major axis at a point 𝑆1 and the minor axis at a point 𝑆2. 
See Fig. 18. 

 

Fig. 17:  Description of the construction from the book [5] 

  

Fig.18:  Left: Meyer´s construction in the book [6],  
Right: Meyer´s construction (blue colour), ellipse (red colour) [4] 

4.4 Meyer Plate 20, pp. 31, no. 11 [6] 

We take half the difference between the semi-major axis and the semi-minor 
axis of the ellipse. From the center 𝑆 we apply this distance three times to the 
major axis and four times to the minor axis. 

 
 

Fig. 19:  Description of the construction from the book [5] 
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Fig. 20:  Left: Meyer´s construction in the book [6],  
Right: Meyer´s construction (blue colour), ellipse (red colour) 

4.5 Meyer Plate 20, pp. 31, no. 12 

Let us consider an ellipse with a given major and minor axis. We construct its 

osculating circles with radii 𝑟1  =  |𝐴𝑆1|   =  
𝑏2

𝑎
, 𝑟2  =  |𝐶𝑆2|   =  

𝑎2

𝑏
. Their 

centres are 𝑆1, 𝑆2, as shown in the Fig. 22. Next, we draw circles centred at 
points 𝑆1, 𝑆2 with a radius of (r2 – r1)/2. The intersection of these circles 
determines point O1. The third circle, which smoothly connects the 
hyperosculating circles, is the one shown in green in the Fig. 22 and has its 
centre at point O1. 

 

 
 

Fig. 21:  Description of the construction from the book [6] 
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Fig. 22:  Left: Meyer´s construction in the book [6], Right: Meyer´s 

construction (green colour), ellipse (red colour) 

5 Conclusion 

The comparative study of Fialkowski’s Zeichnende Geometrie and Meyer’s 

Handbuch der Ornamentik demonstrates that historical geometric constructions 
are far more than technical exercises — they represent a bridge between 
mathematical precision, artistic creativity, and cultural heritage. Both authors 
used ellipses and ovals not only as abstract curves but as instruments for 
understanding spatial harmony and proportion.  

Fialkowski’s systematically organised methods, focused on accuracy and 

pedagogical clarity, provide a foundation for modern approaches to teaching 
descriptive geometry. His emphasis on visualisation and constructive reasoning 
aligns with today’s goals of fostering spatial imagination and problem-solving 
skills through dynamic geometry software such as GeoGebra.  

Meyer’s contribution, rooted in the synthesis of geometry and 

ornamentation, shows that mathematical forms have enduring aesthetic and 
functional value. His geometrically structured design system can inspire 
contemporary STEAM education, bridging art, mathematics, and digital design. 
The study of ellipses and ovals thus becomes not only a mathematical challenge 
but also an exploration of pattern, structure, and proportion in visual culture.  

From an interdisciplinary perspective, these constructions find practical 
applications in architecture, optics, acoustics, and industrial design — from the 
reflective properties of ellipses used in telescopes and medical devices, to the 
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oval ground plans of amphitheatres, galleries, and urban spaces that enhance 
visibility and acoustics.  

Revisiting these 19th-century sources through modern tools demonstrates 
how historical geometry can be revitalised in the context of contemporary 
education, digital modelling, and artistic practice. By reconnecting with the 
intellectual legacy of Meyer and Fialkowski, we reaffirm that geometry is not a 
closed historical chapter but a living language linking science, art, and 
technology. 
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will inform about implementations of the observations into the current
transformations of the course at our faculty.
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1 Úvod
Vedomosti a zručnosti, ktoré sú predmetom deskript́ıvnej geometrie, sú na
trhu práce žiadané. Napriek bezproblémovému uplatneniu počet študentov
deskript́ıvnej geometrie na vysokých školách dlhodobo a vytrvalo klesá.

Problémy s geometriou na školách sa ale zač́ınajú omnoho skôr než
pri výuke deskript́ıvnej geometrie na univerzitách. Od študentov vieme,
že geometriu už na strednej škole nemajú pŕılǐs v láske, a to aj t́ı, ktoŕı
majú matematiku inak radi. Ako dôvody okrem problémov s priestorovým
videńım uvádzajú aj, že geometria je málo algoritmická: nestač́ı naučit’ sa
vzorec (ako napŕıklad pre poč́ıtanie koreňov kvadratickej rovnice) či po-
stup výpočtu (rátanie s percentami). Pri skúmańı problémov v geometrii
musia nahliadat’ na útvary a ich vzt’ahy a snažit’ sa medzi nimi nájst’ tie,
ktoré ich dovedú k riešeniu.

Okrem toho nás študenti, ktoŕı sa venujú stredoškolákom zúčastňujú-
cim sa matematických sút’až́ı, upozornili, že z výsledkov medzinárodnej
matematickej olympiády je zjavné, že slovensḱı študenti majú oproti os-
tatným účastńıkom výrazne väčšie problémy práve s pŕıkladmi z geomet-
rie. Teda fakt, že absolventi stredných škôl od geometrie bočia, nie je
spôsobený len samotnou povahou discipĺıny. Niečo nie je v poriadku s výu-
kou geometrie už na slovenských stredných školách.

11th Slovak-Czech Conference on Geometry and Graphics 2025 31



2 Geometria pre budúcich učitel’ov matematiky
Chcela by som sa preto najprv stručne venovat’ pŕıprave budúcich učitel’ov
matematiky z geometrie.

Kvôli trendu redukcie odborných predmetov v prospech pedagogických
a didaktických ostali z pôvodne piatich semestrov geometrie dnes iba tri, aj
z nich iba dva povinné, tret́ı povinne volitel’ný. Pred časom som postupne
prevzala výuku celého tohto kurzu geometrie a vd’aka tomu som źıskala
vhl’ad, čo sa v ňom deje. Stručne by som situáciu zhrnula tak, že kurz
sa rozhodne nest́ıhal prispôsobovat’ postupnému kráteniu časovej dotácie.
Stručne načrtnem, ako som výuku geometrie nastavila.

2.1 Analytická geometria

Celá analytická geometria je pokrytá jediným semestrom. Našt’astie ne-
jakú lineárnu algebru študenti už za sebou majú, takže netreba zač́ınat’

úplne od nuly. Obsahovo semester pokrýva afinné priestory a ich podpries-
tory (lineárne variety), vzájomné polohy, metrické úlohy, afinné zobraze-
nia, vlastné č́ısla a vektory, samodružné body, priamky a roviny (posledné
len na úrovni defińıcie), na záver zhodnosti roviny a ortogonálne matice.

Kvôli krátkosti času sa obmedzujeme na výpočty v dvoj- a trojrozmer-
nom priestore, viacrozmerné situácie sa uvedú len pre ilustráciu. Ciel’om
je, aby sa študenti naučili použ́ıvat’ metódy analytickej geometrie, trans-
formovat’ geometrický problém do súradńıc a nájdeńım riešenia rovńıc
nájst’ odpoved’ na otázku.

2.2 Axiómy rovinnej geometrie

Druhý semester je venovaný konštrukčnej geometrii.
Pri jeho navrhovańı som zvažovala, či sa zamerat’ na axiomatickú

výstavbu planimetrie, alebo sa so znalost’ami stredoškolskej geometrie ve-
novat’ štúdiu zauj́ımaveǰśıch a pokročileǰśıch tém ako Feuerbachova kruž-
nica, kružnicová inverzia, Apollóniove úlohy a podobne, ked’že obidvoje sa
rozumne stihnút’ nedalo. Po diskusiách s niekol’kými učitel’mi na stredných
školách a po zist’ovańı, ako vyzerá geometria na stredných školách v za-
hranič́ı, som sa rozhodla pre axiomatiku, pričom sa jej študenti venujú
aj na cvičeniach. Ciel’om je, aby sa študenti zdokonalili v dokazovańı ma-
tematických tvrdeńı, aby sa naučili korektne argumentovat’ a svoje argu-
menty zapisovat’.

Podl’a niektorých vyjadreńı študentov sa zrejme daŕı vytýčený ciel’

aspoň ako-tak dosahovat’: viaceŕı študenti s nadšeńım konštatujú, ako sami
našli dôkaz nejakého tvrdenia. Niektoŕı tiež nahliadli, že śıce samotný ob-
sah predmetu vo svojej učitel’skej praxi nepotrebujú, no schopnost’ doka-
zovat’, ktorú źıskali, oceňujú. Veŕım teda, že rozhodnutie zamerat’ sa na
axiomatiku na úkor pokročileǰśıch tém planimetrie bolo v danej situácii
dobré.
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Obr. 1: Hl’adanie uhla väzieb molekuly metánu.

2.3 Stereometria

Aby som pokračovala v trad́ıcii, že každý semester je zameraný na nejakú
zručnost’, ktorú zdokonal’uje, celkom prirodzene tu vyvstalo priestorové
videnie. Naozaj ho považujem sa zručnost’, ktorá sa pestuje a zdokonal’uje
trénovańım. Určite, že niekomu sa daŕı viac a inému menej, ale tak je to
predsa s každou zručnost’ou.

Ak by som mala stručne poṕısat’ obsah tohto predmetu, snažila som sa
nájst’ také témy, ktoré študenti vidia ako relevantné pre svoju skúsenost’.
Tak grupy symetríı majú vel’mi pozit́ıvny ohlas u tých študentov, ktoŕı
riešili matematické olympiády a nebočia od abstraktných pojmov. Tvary
a geometria chemických molekúl (stereochémia) oslovujú budúcich učitel’ov
chémie. Konštrukcia scény renesančných obrazov pomocou lineárnej per-
spekt́ıvy snád’ je zauj́ımavou pre milovńıkov výtvarného umenia. Budúci
učitelia geografie vždy ocenia geometriu sféry a vlastnosti kartografických
zobrazeńı.

Uvedomujem si, že pestrost’ a pŕıt’ažlivost’ predmetu ide trochu na
úkor h́lbky a dôslednosti: než by sa naozaj naučili niečo soĺıdne poč́ıtat’

sa študenti skôr dozvedia, kde všade sa geometria nachádza, a źıskajú
tušenie, že existujú metódy (včetne tých analytických!), ktorými sa tie-
ktoré problémy dajú vyriešit’. A to bol v podstate môj ciel’: chcem, aby si
podl’a možnost́ı každý študent našiel v stereometrii niečo, čo mu je bĺızke,
a odniesol si tak z tejto školy ku geometrii pozit́ıvny vzt’ah, lebo len tak
ho môže posunút’ d’alej svojim žiakom.

3 Deskript́ıvna geometria
Predchádzajúca kapitola mysĺım dostatočne ilustrovala, ako som pristu-
povala k prepracovávaniu kurzu geometrie: najprv sa pozriet’ na materiál,
ktorý je kurzom pokrytý, a následne sa zamysliet’ nielen nad obsahom
vedomost́ı, ktoré má kurz priniest’, ale aj nad zručnost’ami, ktoré si kladie
za ciel’ rozv́ıjat’.
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3.1 Úvodné úvahy po pohl’ade na kurz

Jadrom discipĺıny, ktorá sa nazýva
”
deskript́ıvna geometria“, sa javia

byt’ zobrazovacie metódy. Na našej škole sú v pŕıprave budúcich učitel’ov
deskript́ıvnej geometrie zobrazovaćım metódam venované štyri semestre
s výdatnou časovou dotáciou štyroch, pŕıpadne až piatich hod́ın za semes-
ter.

Prvý pohl’ad do obsahu predmetu ma vel’mi rýchlo priviedol k pre-
svedčeniu, že deskript́ıvna geometria je terminologicky pret’ažená discip-
ĺına a navyše ju jej terminologická zát’až značne izoluje od ostatnej ma-
tematiky. Mohutný terminologický aparát tvoŕı stenu, ktorá odrádza pŕı-
padných záujemcov z pŕıbuzných odborov. Ako pŕıklad by som spome-
nula

”
súmiestne a nesúmiestne rovinné polia“. Rozumiem tomu tak, že

pojmom
”
rovinné pole“ (namiesto jednoduchého a známeho

”
rovina“)

sa zrejme nemysĺı len množina bodov roviny, ale aj všetky objekty ro-
viny, s ktorými pracujeme (priamky, trojuholńıky, ...). Avšak je otázne, či
kvôli tomuto faktu zavádzat’ nový pojem. Ja tiež pod

”
rovinou“ chápem

nielen jej body, ale celú bodovo-vektorovú štruktúru, ktorú v nej viem
v záujme svojej pohodlnej práce vybudovat’. Dokonca je v matematike
zvykom reálnu afinnú rovinu označovat’ R2, teda presne tak isto ako vek-
torový priestor nad reálnymi č́ıslami. Podobne pojem

”
homológia“ ma

chv́ıl’ku miatol, kým som zistila, že neodkazuje na postupnost’ ábelovských
grúp priradených komplexu, ale na osovú kolineáciu roviny (ktorá má
v deskript́ıvnej geometrii ešte aspoň d’aľsie dve mená: stredová kolineácia
a perspekt́ıvna kolineácia).

Pripúšt’am, že ide o nedorozumenia, ktoré sa rýchlo vyjasnia, avšak
ak je takýchto zakopnut́ı pri vstupe k deskript́ıvnej geometrii vel’a, po-
tenciálneho adepta to skôr odrad́ı namiesto toho, aby sa ćıtil v́ıtaný a po-
vzbudzovaný vstúpit’.

Viem o d’aľsej matematickej discipĺıne, ktorá má mohutný a odstrašu-
júci jazyk: algebraická geometria. Adept potrebuje kvalitné doktorandské
štúdium, aby začal jej jazyku aspoň trochu rozumiet’. Avšak algebraická
geometria si môže tento luxus dovolit’, sú v nej totiž výzvy a zauj́ımavé
otvorené problémy, ktorými k sebe ako magnet prit’ahuje impreśıvne ma-
tematické mozgy.

Deskript́ıvna geometria však paletu otvorených problémov neponúka.
Odráža sa to aj na fakte, že deskript́ıvnu geometriu (na rozdiel od fy-
ziky, informatiky, chémie, biológie, ...) nie je možné študovat’ ako vedeckú
discipĺınu. Naozaj, učitel’ské štúdium deskript́ıvnej geometrie je to najob-
siahleǰsie štúdium tohto odboru, aké univerzity ponúkajú. Takže ako sa
odbor (napŕıklad matematika) pestuje a posúva dopredu so študentami
odborného štúdia, tak sa deskript́ıvna geometria pestuje so študentami
učitel’stva tohto predmetu.
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Ked’ sa ale pozriem bližšie, čo na našej škole znamená
”
pestovat’ des-

kript́ıvnu geometriu“, pozorujem, že aj tu discipĺına výrazne trṕı tým,
že je uzavretou vednou discipĺınou: stretávam sa s pomerne kompliko-
vanými defińıciami elementárnych pojmov (vnútorný či vonkaǰśı bod plo-
chy sa opiera o mohutný terminologický aparát, dotyčnica kužel’osečky
sa pre každý typ definuje zvlášt’ pomocou jej špeciálnych vlastnost́ı v
každom z pŕıpadov) a následne sa vyslovia a vyčerpávajúco dokazujú ich
často pomerne evidentné vlastnosti. Akoby sa discipĺına po tom, ako pre-
stala expandovat’ a generovat’ nové poznatky, obrátila dovnútra seba samej
a svoju aktivitu nasmerovala na dôkladné dokazovanie v podstate až na
úroveň axióm. Zdá sa mi nepatričné, aby sa s takýmto systematickým
a únavným dokazovańım stretali študenti v prvom ročńıku.

Na druhej strane, v opačnom extréme, by som spomenula môj obl’́ubený
pŕıklad: konštrukcia obrazu kružnice v osovej afinite v sebe de facto ukrýva
krásny geometrický dôkaz o singulárnom rozklade matice pre dvojroz-
merný pŕıpad, čo je zauj́ımavé tvrdenie v lineárnej algebre. Deskript́ıvna
geometria ale v zamerańı sa na drobné detaily akoby stratila takýto glo-
bálneǰśı náhl’ad a prezentuje tento fakt len ako návod na konštrukciu.
Tým chcem ilustrovat’, že je śıce pravda, že deskript́ıvna geometria je do
istej miery viac remeslom než vednou discipĺınou, niekedy je však týmto
smerom zatisnutá hlbšie, než je primerané.

3.2 Ako učit’ zobrazovacie metódy inak?

Bohužial’ v tomto smere som len na začiatku a vel’a odpoved́ı nemám.
Mám ale mnoho otázok a pozorovańı, ktoré sa mi zdajú byt’ vhodné do
diskusie a som vel’mi vd’ačná, že som dostala možnost’ ich na tomto fóre
predniest’ a hned’ som źıskala aj mnoho postrehov, názorov a skúsenost́ı.

Riešit’ teda chcem dve stránky:
• obsah, ktorý kurz prináša,

• zručnost’, ktorú má kurz trénovat’.

3.3 Obsah úvodu kurzu

Isté zmeny v štruktúre materiálu som už urobila, avšak domnievam sa, že
to boli len prvé a pomerne jednoduché úpravy.

Pomedzi zobrazovacie metódy sa študenti zoznamovali s osovými afi-
nitami a kolineáciami, no vńımané boli (použijem rečńıcku hyperbolu)
hlavne ako

”
niečo, s č́ım sa pracuje takto“ a strácal sa matematický

význam týchto tried transformácíı. To mi prǐsla byt’ škoda, preto prvá
úprava spoč́ıvala v tom, že študenti sa v úvode systematickeǰsie zoznámia
s transformáciami roviny.

Najprv preštudujeme zhodnosti roviny. Ukážeme, ako osová súmernost’

generuje celú grupu izometríı, a je pŕıležitost’ stretnút’ sa aj s posunutou
súmernost’ou. Pridańım rovnol’ahlosti grupu zväčš́ıme na podobnosti.
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Obr. 2: Osová kolineácia je rovnobežným priemetom stredového premie-
tania medzi rovinami.

Následne sa pomerne dôkladne venujeme afinitám roviny. Pri tomto
pŕıstupe sa osové afinity ukážu ako významné nielen pre deskript́ıvnu
geometriu ale aj pre jej teoretický základ ako generátory celej grupy afińıt.
Za dôležité pre neskoršie konštrukcie považujem chápanie osovej afinity
ako rovnobežného priemetu rovnobežného premietania medzi dvoma ro-
vinami. Značnú pozornost’ venujeme elipse. Ukážeme, že obrazom kružnice
v akejkol’vek afinite je elipsa (spomı́naný singulárny rozklad matice).

Nakoniec pristúpime ku kolineáciám. Tu sa už zameriavame špeciálne
na osové kolineácie, všeobecneǰsia teória je pokrytá predmetom Projek-
t́ıvna geometria. Podobne ako pri afinitách, dôležitým je nahliadanie na
osovú kolineáciu ako na rovnobežný priemet stredového premietania medzi
rovinami.

Prirodzene tak prechádzame k teórii kužel’osečiek. Táto téma sa mi
zdala v tomto kurze vzhl’adom na jej dôležitost’ značne zanedbaná.

U všetkých typov kužel’osečiek sa študenti oboznámia s metrickou de-
fińıciou kužel’osečky, odvod́ıme rovnicu v kanonickom tvare – kanonický
tvar je v tejto fáze bohate postačujúci. Pomocou QD-viet sa študenti pre-
svedčia, že kužel’osečky definované metricky sú skutočne rezmi kužel’ovej
plochy. A asi za najdôležiteǰsie považujem chápanie kužel’osečiek ako obra-
zov kružnice v kolineácii. Toto vńımanie je totiž bezkonkurenčne užitočné
pre zavedenie základných pojmov ako vnútorný a vonkaǰśı bod, dotyčnica
a pre zdôvodnenie ich základných vlastnost́ı.

Tu máme za sebou takmer jeden a pol semestra. Náročná čast’ trans-
formácie kurzu je ale stále pred nami. Až teraz prichádzajú na rad samotné
zobrazovacie metódy. Aby som sa s témou vedela zmysluplne popasovat’,
potrebujem stále zvažovat’, o čom zobrazovacie metódy vlastne sú.
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Obr. 3: Hyperbola ako obálka svojich dotyčńıc.

3.4 Význam zobrazovaćıch metód

Predpokladám, že zobrazovacie metódy sa vyvinuli, pretože bolo potrebné:
• reprezentovat’ a uložit’/archivovat’ modely priestorových objektov

(zastaraný, dnes už neaktuálny dôvod),

• komunikovat’ dizajn modelu (stále aktuálna motivácia).
Evidentnou zručnost’ou, ktorá sa v minulosti pestovala zobrazovaćımi

metódami, bolo klasické rysovanie kružidlom a prav́ıtkom. Pochopitel’ne
je to zručnost’, ktorú, chceme či nechceme, muśıme ak nie nahradit’, tak
aspoň doplnit’ použ́ıvańım CAD-systémov.

Prirodzene sa môžme pýtat’, či vôbec nielen rysovanie, ale dokonca
klasické zobrazovacie metódy potrebujeme. Nebudeme objekty pomocou
poč́ıtačov modelovat’ priamo v troch rozmeroch? A vtedy aj ak pre aké-
kol’vek dôvody potrebujeme jeho rovinné zobrazenie, ide o jasné zadanie
pre poč́ıtač, v ktorom je objekt vymodelovaný.

Avšak ak sa prizriem pozorneǰsie, vid́ım, že
”
zastarané umenie“ ryso-

vania zobrazeńı modelov je vel’mi úzko prepojené s d’aľśımi zručnost’ami,
ktoré, predpokladám, považujeme za dôležité aj dnes, konkrétne:

• znázornenie objektu pomocou zobrazovacej metódy pomáha men-
tálne uchopit’ trojrozmernú situáciu z jej rovinných obrazov,

• riešenie incidenčných a metrických úloh posilňuje schopnost’ zručne
manipulovat’ s priestorovými útvarmi.

Ide tak o excelentný
”
learning by doing“ pŕıstup pre 3D kompetenciu.

3.5 Zobrazovacie metódy v deskript́ıvnej geometrii

Zobrazovacie metódy sú z pohl’adu matematiky vybavené defińıciou a zá-
kladnými vlastnost’ami rovnobežného a stredového premietania. V pro-
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jekt́ıvnom priestore dokonca aj tieto dva typy premietania splynú do
jedného. Mnohé následné úsilie deskript́ıvnej geometrie sa dotýka vzt’ahu
súradnicových sústav priestoru na jednej strane a priemetne na druhej.

Obsahom kurzu zobrazovaćıch metód u nás sú [3]

• kótované premietanie,

• Mongeova projekcia,

• kolmá axonometria,

• šikmé premietanie, 1

• kosouhlá axonometria,

• stredové premietanie.

Každá z metód sa študuje ako samostatný celok. V každej sa najprv
rieši obraz základných útvarov, potom incidenčné a následne metrické
úlohy.

Stredové premietanie z nasledujúcich úvah vynechám a budem sa veno-
vat’ rovnobežným premietaniam. Z nich špeciálnu poźıciu by som prisúdila
Mongeovej projekcii. Chcela by som tu spomenút’, že ked’ som sa študentov
učitel’stva matematiky po absolvovańı kurzu geometrie pýtala, čo im po-
mohlo v precvičovańı si priestorového videnia, odpovedali mi, že užitočné
bolo konštruovanie rezov telies, ale najviac im pomohla práca s Monge-
ovou projekciou. Už toto samé je pre mňa dostatočný dôvod na to, aby sa
Mongeovej projekcii venovala zvláštna pozornost’, ani nehovoriac o tom,
že pre technické účely ide o zvlášt’ dôležité zobrazenie.

Kótované premietanie sa mi jav́ı ako modifikácia Mongeovej projekcie,
ktorá je vhodná pre viaceré aplikácie. Avšak venovat’ sa jej zvlášt’ a s rov-
nakou prećıznost’ou vid́ım ako nehospodárne nakladanie s časom, ked’že
všetky postupy, s ktorými sa študenti v súvislosti s kótovaným premie-
tańım stretnú, sú de facto len kópiami metód Mongeovej projekcie.

Ostatné metódy rovnobežného premietania by som v záujme lepšieho
nadhl’adu predstavovala súhrnne ako

”
axonometriu“. Pohlkeho veta sa

vzt’ahuje na všetky z nich, ba dokonca zahŕňa aj situácie, ktoré šikmé
premietanie, kosouhlá ani kolmá axonometria nepokrývajú. Navyše inci-
denčné úlohy sa riešia vo všetkých týchto zobrazeniach rovnako. Preto až
po zvládnut́ı incidenčných problémov by som predstavila šikmé premie-
tanie a kolmú axonometriu ako špeciálne pŕıpady, ktoré prinášajú každá
svoje efekt́ıvne metódy pre riešenie metrických úloh – rozumiem tomu

1Mimochodom, zas oproti štandardnej terminológii v matematike dochádza k po-
sunu. Napŕıklad

”
šikmé premietanie“ v deskript́ıvnej geometrii neznamená len to, že

smer rovnobežného premietania nie je kolmý na priemetňu, ale aj fakt, že súradnicové
osi priemetne splývajú s dvoma zo súradnicových ośı priestoru. Pojem

”
izometria“

v deskript́ıvnej geometrii sa nevzt’ahuje na vlastnost’ zobrazenia, ale vypovedá niečo
o vzt’ahu premietania a súradnicovej sústavy priestoru.
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tak, že presne toto je dôvodom pre aktuálny výrazný dôraz na rozĺı̌senie
týchto metód.

Omnoho zásadneǰsia otázka, ktorú si však kladiem, je: potrebujeme
vôbec riešit’ metrické úlohy priamo povedzme v kosouhlej axonometrii?
Ked’ si zalistujem aj v starš́ıch učebniciach deskript́ıvnej geometrie [4], tak
vid́ım, že už pred desiatkami rokov boli študenti povzbudzovańı k tomu,
aby vzdialenost’ bodov zobrazených v Mongeovej projekcii zist’ovali radšej
výpočtom než konštrukčne! Prečo teda dnes tak vel’mi trváme na kon-
štrukčných metódach pri riešeńı metrických úloh?

Navrhla by som namiesto elementárnych úloh s komplikovanými rie-
šeniami (napŕıklad vzdialenost’ bodov zobrazených v spomı́nanej kosouh-
lej axonometrii) viac času venovat’ rovnobežnému premietaniu všeobecne.
Študenti nech dôkladneǰsie porozumejú vzt’ahu medzi súradnicovými sús-
tavami priestoru a priemetne. Nech vedia manipulovat’ s premietańım viac
spôsobom, ako sa to rob́ı v poč́ıtačovej grafike, a nie sú limitovańı tým,
že vedia pracovat’ až vtedy, ked’ majú zadané priemety súradnicových ośı
priestoru. Ciel’om je naozaj dat’ študentom čo najväčš́ı nadhl’ad, aby boli
aj v budúcnosti čo najflexibilneǰśı.

Týmto by študenti mohli byt’ pripraveńı na to, aby vedeli pracovat’

s axonometriou všeobecne. Šikmé premietanie vedia potom nahliadnut’

ako jeden z pŕıpadov axonometrie. A v neposlednom rade kolmá axono-
metria by źıskala výrazné postavenie vd’aka svoj́ım z viacerých aspektov
výhodným vlastnostiam.

3.6 Zručnost’ trénovaná zobrazovaćımi metódami

Prejdem naspät’ k zručnostiam, ktoré chceme u študentov posilnit’. Ako sa
postavit’ k rysovaniu s kružidlom a prav́ıtkom? Je to zastaralá zručnost’,
ktorú treba ju nahradit’ modernými nástrojmi? Každý z protichodných
postojov má svoje opodstatnené dôvody:

• prečo by študenti mali rysovat’:

(i) vd’aka dôkladne precvičenému rysovaniu si študenti trúfnu pred
triedou na tabul’u črtat’ (budúci učitelia deskript́ıvnej geomet-
rie),

(ii) aby študenti zvládli prácu s CAD systémami, musia toho mat’

najprv dost’ odrysovaného (budúci inžinieri),

(iii) rysovanie predstavuje fyzický kontakt s predmetom štúdia a je
možné, že tento kontakt je pre človeka dôležitý.

• prečo by sme nemali na rysovańı trvat’:

(iv) máme tu éru CAD a dokonca aj generat́ıvnej AI; v tejto situácii
je dôležité rysom rozumiet’ a nie ich ručne vytvárat’,
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(v) je pochopitel’né, že kultúra rysovania u študentov upadá: ved’

prečo by študenti mali rysovat’, ked’ ani ich učitelia už tol’ko
nerysujú?

K bodu (v): ked’ tvoŕıme učebné materiály či rozdávame študentom pra-
covné listy, zriedka obrázky ručne narysujeme, spravidla siahame po digi-
tálnych nástrojoch. Študenti (nielen deskript́ıvnej geometrie) tiež obrázky
pre svoje záverečné práce nerysujú, ale ich vytvárajú elektronicky, zvy-
čajne (takmer výlučne) pomocou GeoGebry.

Kým GeoGebra má svoje neodškriepitel’né výhody (názornost’, dyna-
mické konštrukcie), pri náročneǰśıch konštrukciách, ked’ ciel’om je presne
zobrazit’ modelovaný objekt, narážame na jej hranice (nepresnost’, nesta-

bilita, zd́lhavost’). Ja osobne na druhej strane svoje obrázky vytváram
pomocou asymptote. Študentov mám však problém na asymptote naho-
vorit’, pre jeho použitie totiž potrebujú dve netriviálne zručnosti:

• vyjadrovat’ sa jazykom analytickej geometrie,

• programovat’.
Analytickú geometriu vrámci štúdia zvládnu na dostatočnej úrovni, s prog-
ramovańım sa viaceŕı počas štúdia nestretnú. Ińı sa aj stretnú, no rýchlo
to zabudnú a neskôr od programovania bočia. Potrebujeme túto zručnost’

promptne podchytit’ a d’alej rozv́ıjat’.
K bodu (ii): bez ohl’adu na to, čo si mysĺıme na tému

”
rysovat’ alebo

nerysovat’“, na štúdiu učitel’stva deskript́ıvnej geometrie u nás je práca
s CAD-systémami výrazne zanedbaná. Neskôr v štúdiu sa śıce študenti na
niektorých predmetoch s týmito systémami stretnú, no je to pŕılǐs neskoro.
Mysĺım si, že by sa tieto systémy mali využ́ıvat’ hned’, ako sa študenti
začnú so zobrazovaćımi metódami zoznamovat’. Práve CAD-systémy z
môjho pohl’adu v sebe spájajú aj názornost’ GeoGebry (jednoduchý ob-
rázok sa dá proste

”
naklikat’“), aj presnost’, akú dosiahneme pri prog-

ramovańı. Kurz zobrazovaćıch metód na začiatku štúdia je vynikajúcou
pŕıležitost’ou zoznámit’ sa s jednoduchš́ımi, 2D CAD systémami. Pre kva-
litné zvládnutie systému potrebujeme následne učit’ študentov v CAD-e
programovat’ skripty a tým ich viest’ k pozit́ıvnemu vzt’ahu k programo-
vaniu.

K bodu (iv): Vid́ım to ako vel’kú otázku pre didaktiku deskript́ıvnej
geometrie: ako učit’ študentov rozumiet’ rysom? Mysĺım, že to nebude cel-
kom možné bez toho, aby študenti aspoň niečo nerysovali ručne. Treba
zrejme nájst’ rozumnú hranicu: aké množstvo ručného rysovania je po-
trebné a kedy je to už len neužitočná a pracná robota?

V tejto súvislosti by sme mohli diskutovat’ už o tom, či aj na stredných
školách rysovanie v záujme modernizácie nenahradit’ prácou napŕıklad
v GeoGebre, ktorá je pre tieto školy určená. Čo je vlastne účelom kon-
štrukčných úloh na stredných školách? Je ciel’om
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• trénovat’ prácu s prav́ıtkom a kružidlom? V tom pŕıpade najpod-
statneǰsou čast’ou riešenia je vykonanie konštrukcie.

• učit’ sa hl’adat’ riešenie problému? Vtedy by najpodstatneǰsou čast’ou
riešenia bol rozbor konštrukčnej úlohy.

Priznám sa, že sama sa zdráham namiesto kružidla a prav́ıtka dat’ žiakom
GeoGebru. Aby som samu seba presvedčila k moderneǰsiemu pŕıstupu, od-
hodlala som sa viest’ na túto tému bakalársku prácu [1]. Moje pochybnosti
v tomto smere bohužial’ nerozptýlila.

Tú istú otázku ako pre školské konštrukčné úlohy si môžme položit’

aj pre konštrukčné úlohy v stereometrii, s ktorými sa stretávame v des-
kript́ıvnej geometrii. Tiež vid́ım dva ciele, na ktoré tieto úlohy mieria:

• cvičit’ sa v riešeńı problémov,

• posilňovat’ svoju 3D kompetenciu.

Obidva ciele sú dôležité. Mohli by sme skúsit’ diskutovat’ o tom, ako naj-
lepšie naplnit’ ciel’ trénovat’ priestorové videnie. Aj priamo na konferencii
som sa nie len raz stretla s vyjadreńım, že úlohy v stereometrii treba
riešit’ v Mongeovej projekcii, a s týmto názorom súhlaśım: riešitel’ovi to
dá v tomto smere podstatne viac než ked’ zaňho urob́ı vel’kú čast’ práce
3D modelovaćı software.

To však neznamená, že študenta nebudeme oboznamovat’ s tým, aké
metódy modelovaćı software použ́ıva!

4 Záver

Deskript́ıvnu geometriu ako outsider vid́ım ako discipĺınu, ktorá sa kvôli
svojej vedeckej uzavretosti a tiež izolovanosti začala akoby rútit’ sama
do seba. Ak sa chceme vyhnút’ tomu, aby sa týmto zrútila aj do minu-
losti a zabudnutia, muśı sa z môjho pohl’adu otvorit’ d’aľśım discipĺınam.
Sami vid́ıme, že by bolo pŕınosné, keby sa študenti stali digitálne gra-
motneǰśımi, otvoreneǰsie sa stavali k programovaniu a nielen formálne ale
reálne použ́ıvali analytickú geometriu. Mali by mat’ väčš́ı nadhl’ad nad
svoj́ım predmetom a ten im vedia poskytnút’ iné geometrické discipĺıny.

Uvažujem, či by bolo možné, aby deskript́ıvna geometria samu seba
poňala ako multidisciplinárnu oblast’. Ako napŕıklad kognit́ıvna veda, ktorá
je dialógom vel’mi pestrej zbierky discipĺın (filozofia, psychológia, neuro-
veda, informatika a umelá inteligencia). Pŕıpadne ako sme aj na tejto kon-
ferencii počuli, že architektúra v sebe kombinuje geometriu, výtvarné ume-
nie, psychológiu, sociológiu aj ekonómiu [2] a presne to rob́ı architektúru
živou a pŕıt’ažlivou. Vedela by deskript́ıvna geometria nájst’ a akt́ıvne
vyživovat’ kontakty s inými vedami?

Obávam sa, že ak deskript́ıvna geometria ostane uzavretou a izolova-
nou, bude sa musiet’ zmierit’ s tým, že dlhodobo neprežije.
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Na záver by som uviedla slová, ktoré boli śıce vyslovené v úplne inom
kontexte, ale neviem si predstavit’ výstižneǰsiu charakterizáciu aktuálneho
stavu deskript́ıvnej geometrie:

”
Uzavretý systém speje k entropii. Len otvorený systém môže rást’

a vyv́ıjat’ sa.“ (Ilia Delio)
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Aesthetic curve families in computer - aided design
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Abstract. The beauty or "fairness" of geometric models is of central
importance in computer-aided design, especially in areas such as the 
design of car body panels. In the usual workflow, models are created 
based on 2D sketches containing feature curves of the object. The quality 
of these curves exert consequently a large influence on the overall shape, 
so we need them to be "aesthetic".  
But what do we mean by aesthetic curves? In this talk, we will explore 
this question by revisiting classical curves generally regarded as 
beautiful. This will lead us to families of aesthetic curve representations, 
with a deeper look into so-called log-aesthetic curves and their variations. 
We will also examine their intriguing connection to Archimedean spirals, 
offering insights into possible applications 
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Full extended text of this article has been published recently in the scientific 
journal G - Slovak Journal for Geometry and Graphics, No. 43, Volume 22, 2025, 
pp. 5 - 24, and it is available on-line at the address:  
www.ssgg.sk/G/Abstrakty/indexa.html 
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Current challenges and perspectives of
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Abstract. This contribution is a response to the discussion on the
current state of descriptive geometry in the Czech and Slovak Re-
publics. We will draft the current problems that descriptive geometry
encounters in the field of education, applications, and research. We
will identify the original motivations as fixed elements accompanying
the subject since its foundation. The aim of the lecture is to propose
projections of these motivations to the current time into two interre-
lated projection planes: descriptive geometry as a part of mathematics
and as an application in other subjects of not only technical but also
general education.

Keywords: descriptive geometry, education, curriculum

1 Introduction
“Enough! Just enough of this cold,” Étienne muttered to himself as he
finally approached his drafting desk in Mézières. The pain in his frozen,
cramping fingers was inhuman as he spread out the nearly finished plan of
the Cherbourg fortification on his drafting table. “Just a few more lines
to keep the Godons in their soup,” he urged himself on, while the heat in
his forehead spread across his chilled face.

“Really? Not again!” exhaled Maria desperately when her home Wi-Fi
was interrupted by provider maintenance. Now I’ll spend half the day
blueprinting these matrices myself, she muttered, pressing the button on
the espresso machine. “Okay, okay, focus — this is important,” she said,
calming herself as she sat back down at her laptop with a fresh coffee.
She began to type, self-confident and a little impressed by her progress,
determined to present the software refinements for graphical cancer diag-
nostics at the consortium tomorrow.

Both Étienne — a military engineer working on the project in 1782
— and Maria — a postdoc at a medical visualization company in 2025
— work on important tasks involving geometric visualization. They both
need to visually imagine the results of their work, understand geometric
properties and transformations, and use appropriate representations to
present their projects. However, their tools and representations differ
significantly.
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The parallel above illustrates the changing perspective on descriptive
geometry. On one hand, the competencies that must be developed remain
invariant; on the other hand, the specific content, tools, and applications
change dramatically over time. Yet, the teaching of school geometry and
descriptive geometry has remained largely untouched—from elementary
school to the university level. Consequently, descriptive geometry with
obsolete content becomes obsolete itself. We will further develop these
thoughts and attempt to outline some conclusions in the following lines.

2 Initial motivations
As descriptive geometry spread in the 19th century, it naturally absorbed
various motivations, aims, and methods. We hypothesize that these shifts,
when not re-evaluated, led to the obsolescence and disappearance of de-
scriptive geometry in most countries. Hence, for our reflection, it is essen-
tial to revisit the initial conditions and goals stated by Gaspard Monge [?].
We encourage the reader to examine Monge’s motivations and first steps
in his Programme through the eyes of a 21st-century student, teacher,
engineer, or researcher.

� to direct national education toward the knowledge of objects that
demand exactitude —something which has been entirely neglected
until today—and to accustom the hands of our artisans to the use of
instruments of every kind which serve to bring precision into works
and to measure its various degrees. . . .

� to make popular the knowledge of a great number of natural phe-
nomena, indispensable to the progress of industry . . .

� to spread among our artisans the knowledge of artistic processes,
and of machines whose object is either to reduce manual labour, or
to give the results of work greater uniformity and greater precision
. . .

Later in the text, Monge stated the objectives of descriptive geometry
as follows:

� to represent with exactness, upon drawings which have only two
dimensions, objects which have three, and which are susceptible
of rigorous definition. From this point of view, it is a language
necessary to the man of genius who conceives a project, to those
who must direct its execution, and finally to the artisans who must
themselves execute its different parts.

� to deduce, from the exact description of bodies, everything that
necessarily follows from their forms and their relative positions. In
this sense, it is a means of seeking truth: it offers perpetual examples
of the passage from the known to the unknown; and because it is
always applied to objects susceptible of the greatest evidence, it
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must be included in the plan of national education. It is not only
suited to exercising the intellectual faculties of a great people, and
thereby contributing to the improvement of the human species, but
it is also indispensable to all workers whose aim is to give bodies
certain determined forms.

From the previous lines, we can identify three interconnected essences
of descriptive geometry: the theoretical framework and language based on
the exact mathematical representation of objects and methods; the use of
suitable available tools to obtain the best results; and the application of
constructive methods and visualizations to contemporary problems.

It is important to note that Monge did not intend to separate synthetic
and analytic geometry; on the contrary, he emphasized their interrelation:
It is not without purpose that we compare descriptive geometry to alge-
bra here; these two sciences have the most intimate relations. There is no
construction in descriptive geometry that cannot be translated into anal-
ysis; and when the questions do not involve more than three unknowns,
each analytic operation may be regarded as the written transcription of
a spectacle in geometry. It would be desirable that these two sciences
be cultivated together: descriptive geometry would bring to the most
complicated analytic operations the clarity and evidentness which are its
hallmark, and analysis, in turn, would bring to geometry the generality
which is its own.

Although the subject of descriptive geometry is built on solid aims and
motivations, it is losing its struggle with time. A good overview of the
decline of descriptive geometry in various countries is given in [?]. We will
briefly describe the two most common ways in which descriptive geometry
has disappeared.

First, descriptive geometry became purely mathematical and theoret-
ical. One of the positive outcomes of this shift was its evolution into
projective geometry. Let us recall the words of Cayley [?, p. 90], where
“descriptive” is used in the sense of “projective”: Metrical geometry is
thus a part of descriptive geometry, and descriptive geometry is all ge-
ometry. Consequently, projective geometry began to be treated through
algebraic representations, disconnecting itself from the cumbersome lan-
guage of descriptive geometry. The strength of analytic representation
overruled the intuitiveness of visual constructive methods. The language
of descriptive geometry became obsolete and useless for further mathe-
matical exploration.

On the other hand, descriptive geometry became a purely technical
subject focused on applications. In other words, it transformed into tech-
nical drawing. However, such a subject can remain relevant only if its
content adapts to new tools and applications. In most cases, the curricu-
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lum of descriptive geometry failed to do so, continuing to rely on outdated
examples, tools, and methods.

Returning to Monge’s initial ideas, we conclude that descriptive ge-
ometry can be successful only if it keeps pace with current applications
and tools while employing appropriate mathematical representations.

3 Reflection on the current state of descriptive geom-
etry education in the Czech Republic

Descriptive geometry in the Czech Republic is built upon a strong tra-
dition developed primarily by technical universities. For many years, it
combined drafting precision with a solid theoretical framework derived
from mathematics and projective geometry. However, it did not adapt
to the technological progress of the late 20th century. The content and
methods of descriptive geometry at high schools have changed very little
since its beginnings in the second half of the 19th century. The main
focus remains on methods of projection and the goal of creating precise
hand drawings. At some point, descriptive geometry became a subject
relying exclusively on synthetic constructions while avoiding analytic rep-
resentations. This approach is illustrated by Sobotka [?]: Deduction in
descriptive geometry is based mainly on methods of projection and in a
purely geometrical way . . . . The emphasis on precision also became an
educational goal—sometimes taken to extremes, as seen in [?]: Descrip-
tive geometry leads pupils by its nature to precision, clarity, order, and
discipline.

We take the liberty of outlining several critical points regarding the
regression of descriptive geometry education:

� The content based purely on methods of visualization is obsolete for
both mathematical and technical purposes. If visualization methods
once served as the primary medium for producing precise represen-
tations in practice, they have now been surpassed by 3-D computer-
aided modeling and continuous technological development. There-
fore, the curriculum must be adapted to reflect this shift. The theo-
retical aspects of projection remain essential for understanding, but
their applications vary depending on the tools used.

� The applications used in descriptive geometry must reflect current
tools and topics and be regularly re-evaluated.

� The emphasis on purely synthetic methods and manual drawings
disconnects the subject from real-world applications. Instead, ana-
lytic and synthetic representations should complement one another,
with attention given to their appropriate and effective implementa-
tion.
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� Descriptive geometry is not an exclusively technical subject. While
technical universities employ its instrumental side for engineering
applications, the competencies developed through descriptive geom-
etry are highly relevant to many other fields— from mathematics,
physics, and computer science to art, medicine, etc. . Therefore,
secondary school education in descriptive geometry should be more
broadly oriented and not viewed merely as preparation for techni-
cal universities. This consideration also applies to teacher training,
where the number of graduates is extremely low. Clearly, if most
high school graduates of descriptive geometry proceed directly to
technical universities, who will study to become teachers of descrip-
tive geometry?

4 Conclusion
The muse of descriptive geometry (Figure ??) is sinking deeply into the
mud. Having been preserved for decades, she has become fragile. We
have attempted to show that she is worth saving and the aims and com-
petencies developed through descriptive geometry are universally valu-
able—regardless of time.

Fig. 1: The muse of descriptive geometry.
Source: AI generated in ChatGPT.

An example of a successful transition can be found in the Austrian
curriculum. It reflects not only technological advancement in its content
but also the reformed educational system based on competence-oriented
teaching [?]. Of course, such a document would remain merely a piece
of paper for teachers if it were not supported by other interconnected
activities, including workshops, journals [?], and textbooks [?]. Let this
serve as inspiration for our further steps.
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It is important to note that the discussion about the innovation of
descriptive geometry in the Czech Republic has already begun. There
are specific tasks to be undertaken in the near future. First, we must re-
evaluate the content—from the perspective of technical universities and
their modern applications and tools; from the perspective of teacher train-
ing, to ensure it develops the necessary competencies; and from the per-
spective of high school teaching, both at general gymnasiums and special-
ized technical schools, to make the subject useful, modern, and attractive
for contemporary needs. We must rebuild communication channels among
all these levels, especially ensuring the transfer of current applications and
modern tools from universities to high schools. Curricular changes must
also be supported by a solid didactic framework.

Hand in hand— theory and application, visual and symbolic, hand-
drafted and computer-modeled—descriptive geometry encompasses it all.
Therefore, we hope that this is not the conclusion of our contribution, but
rather a continuation of our work.
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males, l’an 3 de la République. Paris, Baudouin, 1799.
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Nákladem Jednota českých matematik̊u a fyzik̊u a Česká matice tech-
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Abstract. In this article, we present a comprehensive view of the
Feuerbach hyperbola through a historical overview, geometric charac-
terization and visualization of its fundamental properties. The material
may serve as an introduction to the rich field of triangle geometry. The
language of the article is intentionally kept accessible, aiming to engage
and inspire interest in the topic among secondary school students.
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1 Predslov

Trojuholńıková geometria zaž́ıvala svoju prvú ”zlatú éru”v druhej po-
lovici 19. storočia, ked’ matematici ako Émile Lemoine, Henri Brocard
či Joseph Neuberg objavovali a skúmali množstvo nových bodov, pria-
mok a kužel’osečiek spojených s trojuholńıkom. Záujem o trojuholńıkovú
geometriu však časom postupne klesol, čiastočne kvôli vńımaniu pred-
metu ako elementárneho a vizuálne náročného, ako aj pre konkurenciu s
inými atrakt́ıvnymi témami geometrie. Po obdob́ı útlmu v priebehu 20.
storočia nastal koncom storočia nový rozmach záujmu, výrazne podporený
rozvojom poč́ıtačovej geometrie. V jeho popred́ı stoj́ı najmä Clark Kim-
berling, autor rozsiahlej Encyclopedia of Triangle Centers (d’alej označený
skratkou ETC [1]), ktorá systematizuje a spŕıstupňuje výsledky súčasného
výskumu a prispieva k renesancii tejto oblasti geometrie.

Medzi najznámeǰsie trojuholńıku oṕısané hyperboly (teda hyperboly,
ktoré prechádzajú vrcholmi trojuholńıka) patria Kiepertova, Feuerbachova
a Jeřábekova hyperbola. V našom pŕıspevku sa zameriavame na bohatú
históriu Feuerbachovej hyperboly a jej geometrické vlastnosti. Ukážky
rôznych konštrukcíı a vlastnost́ı sú dostupné v interakt́ıvnej Geogebra
knihe: https://www.geogebra.org/m/ahbug4j5
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2 Stručný prehl’ad trilineárnych súradńıc
Na analýzu stredov a kuželosečiek spojených s trojuholńıkom je možné
využit’ viacero súradnicových systémov, medzi ktoré patria trilinárne, ba-
rycentrické a polárne. V rámci tejto kapitoly sa zameriavame na tri-
linárne (normálové) súradnice a poskytujeme ich stručný prehl’ad.
V d’aľsej časti pŕıspevku pod súradnicami budeme rozumiet’ trilineárne
súradnice. Elegantnost’ tejto súradnicovej sústavy spoč́ıva v proporciona-
lite, vd’aka ktorej sa zjednodušuje poč́ıtanie so súradnicami. Pri riešeńı
problémov sa źıdu známe vzt’ahy, ako śınusova veta, kośınusova veta, Pyta-
gorova veta a trigonometrické vzorce. Pri opise sme sa inšpirovali článkom
o Kiepertovej hyperbole, naṕısaný matematikmi Eddy a Fritsch [2] a kni-
hou od Sommerville [3].

Nech máme daný všeobecný referenčný trojuholńık ABC s d́lžkou
strán |BC| = a, |CA| = b, |AB| = c a vel’kost’ou uhlov |̸ BAC| = A,
|̸ ABC| = B, |̸ BCA| = C. Na označenie polomeru vṕısanej kružnice bu-
deme v d’aľsom použ́ıvat’ znak r a polomer oṕısanej kružnice je označený
ako R.

Obr. 1: Orientovanost’ trilineárnych súradńıc.

L’ubovol’ný bod P má (trilineárne) súradnice (x, y, z) vzhl’adom na re-
ferenčný trojuholńık, ak plat́ı

x : y : z = da : db : dc,

kde da je orientovaná vzdialenost’ bodu P od strany BC. Orientovanost’

znamená, že vzdialenost’ je kladná, ak bod P lež́ı v tej istej polrovine
od strany BC ako stred vṕısanej kružnice a vzdialenost’ je záporná, ak
lež́ı v opačnej polrovine. Analogickým spôsobom urč́ıme vzdialenosti db
od strany AC a dc od strany AB (obr. 1.). Vrcholy trojuholńıka majú
súradnice A = (1, 0, 0), B = (0, 1, 0) a C = (0, 0, 1). Skutočné vzdialenosti
bodu A od strán je da = c · sinB, db = 0, dc = 0, odkial’ vzniká pomer
x : y : z = da : db : dc = 1 : 0 : 0. Súvis medzi trilineárnymi súradnicami
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bodu P a skutočnými vzdialenost’ami tohto bodu od strán referenčného
trojuholńıka je daný rovnicou

da
x

=
db
y

=
dc
z

=
r(a+ b+ c)

ax+ by + cz
.

Stred vṕısanej kružnice má triviálne súradnice X(1) = (r, r, r) =
(1, 1, 1).

Súradnice ortocentra trojuholńıka súX(4) = ( 1
cosA , 1

cosB , 1
cosC ). Vzdia-

lenost’ ortocentra od strany a je da = |AhX(4)| a dostaneme ju z po-
dobných trojuholńıkov X(4)BAh a CAAh (Obr. 2.), teda z pomerov

da
c · cosB

=
b · cosC
b · sinC

,

analogicky pre vzdialenosti db a dc. Pomer vzdialenost́ı bodu X(4) od
strán referenčného trojuholńıka je teda

x : y : z =
c

sinC
cosBcosC :

a

sinA
cosAcosC :

b

sinB
cosAcosB =

=
1

cosA
:

1

cosB
:

1

cosC
.

Obr. 2: Výška trojuholńıka.

Trilineárnu súradnicu ortocentra môžeme naṕısat’ aj v stručnom tvare

X(4) =
(

1
cosA , . . . , . . .

)
, ked’že súradnice vyhovujú reprezentácii f(A,B,C) :

f(B,C,A) : f(C,A,B). Ortocentrum je teda stredom trojuholńıka (pod-
robneǰsie v [4]).
Súradnice d’aľśıch stredov trojuholńıka sa nachádzajú už v spomenutej
ETC, je ich už vyše 70000.
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Pri práci so súradnicami v tomto pŕıspevku využijeme aj kollinearitu
bodov. Tri rôzne body s trilineárnymi súradnicami (x1, y1, z1), (x2, y2, z2)
a (x3, y3, z3) sú kollineárne, ak plat́ı∣∣∣∣∣∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ = 0.

3 Feuerbachova hyperbola - historický prehl’ad
Po vel’mi stručnom zavedeńı trilineárnych súradńıc sa zameriavame na
historický vývoj Feuerbachovej hyperboly a prostredńıctvom geometrickej
charakterizácie predstav́ıme spôsob práce s trilineárnymi súradnicami.

3.1 Lemoinov opis

Vôbec prvý článok o tejto hyperbole nájdeme v pŕıspevku Contributions
a la géométrie du triangle z roku 1889 naṕısaný matematikom Émile
Lemoine [5]. Lemoine sformuloval vetu:

Nech sú dané štyri body M1, A, B, C rovnoosej hyperboly E. Päty
kolmı́c z bodu M1 na strany BC, CA, AB sú A1, B1, C1. Nech A2, B2,
C2 sú opačne orientované inverzie bodov A1, B1, C1, kde M1 je stred a ρ je
polomer. Potom trojuholńıky ABC a A2B2C2 sú v perspekt́ıvnej kolineácii
so stredom na hyperbole E pre všetky hodnoty ρ. (obr. 3.) (Poznámka:
opačne orientovaná inverzia je v pôvodnom článku označená ako trans-
formácia recipročných lúčov a perspekt́ıvna kolineácia ako homológia.)

Obr. 3: Trojuholńıky v perspekt́ıvnej kolineácii.

Ak M1 je t’ažisko, E je zhodná s Kiepertovou hyperbolou. Ked’ M1 je
stredom vṕısanej kružnice, rovnica hyperboly je

cosB − cosC

x
+

cosC − cosA

y
+

cosA− cosB

z
= 0, (1)

ktorá je dnes už známa ako Feuerbachova hyperbola. Stredom hyperboly je
bod dotyku vṕısanej kružnice s kružnicou deviatich bodov, a má súradnice
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sin2(B−C
2 ) : · · · : · · · . (Pozn.: Kružnica deviatich bodov je Feuerbachova

kružnica.) Ak M1 je stred jednej z vonkaǰśıch dotykových kružńıc, rovnica
hyperboly je

cosB − cosC

x
− cosA+ cosC

y
+

cosA+ cosB

z
= 0 (2)

a stredom hyperboly je bod dotyku tejto kružnice s kružnicou deviatich
bodov. Pre d’aľsie stredy vonkaǰśıch dotykových kružńıc sú rovnice analo-
gické. V pŕıpade, že M1 je ortocentrum, hyperbola sa redukuje na tento
bod.

3.2 Boutinov opis

Podrobneǰśı opis sa nachádza v článku Sur un groupe de quatre coniques
remarquables du plan d´un triangle z roku 1890 naṕısaný matematikom
Auguste Boutin [6].

Nech sú O, I, I1, I2, I3 stredom oṕısanej kružnice, stredom vṕısanej kruž-
nice a stredmi vonkaǰśıch dotykových kružńıc referenčného trojuholńıka.
Izogonálnou transformáciou priamok OI, OI1, OI2, OI3 dostaneme štyri
pozoruhodné kužel’osečky, označ́ıme ich BI , BI1 , BI2 , BI3 . Tieto kužel’oseč-
ky sú oṕısané referenčnému trojuholńıku, prechádzajú ortocentrom H, sú
to teda štyri rovnostranné hyperboly.

Rovnica hyperboly BI je v predchádzajúcej časti naṕısaná rovnica (1),
hyperboly BI1 je (2), a analogicky pre BI2 a BI3 . Priamky OI, OI1, OI2 a
OI3 sú dotyčnice k pŕıslušným kužel’osečkám. Boutin uvádza aj súradnice
stredov hyperbol CI , CI1 , CI2 , CI3 . Tieti štyri stredy sa nachádzajú na
obvode Feuerbachovej kružnice trojuholńıka ABC, aj na priamkach O9I,
O9I1, O9I2, O9I3, kde O9 je stredom Feuerbachovej kružnice.

Boutin našiel aj d’aľsiu konštrukciu kužel’osečky BI :
Nech sú body A1, B1, C1 bodmi dotyku vṕısanej kružnice so stranami troj-
uholńıka ABC. Ak na IA1, IB1, IC1 prenesieme v rovnakom smere dĺ̌zky
IA2 = IB2 = IC2 = d, tak priamky AA2, BB2 a CC2 sa pret́ınajú v jed-
nom bode Qd. Množina bodov Qd s meniacou sa hodnotou d je kužel’osečka
BI . Pre stredy vonkaǰśıch dotykových kružńıc je konštrukcia analogická.
Trilineárne súradnice bodov A2, B2 a C2 sú

A2 = (d− r , d · cosC + r , d · cosB + r),

B2 = ( d · cosC + r , d− r , d · cosA+ r),

C2 = ( d · cosB + r , d · cosA+ r , d− r).

Z predpokladu kollinearity bodov A,Qd, A2∣∣∣∣∣∣
1 0 0
x y z

d− r d · cosC + r d · cosB + r

∣∣∣∣∣∣ = 0,
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a podobne z kollinearity bodov B,Qd, B2 a bodov C,Qd, C2 dostaneme
trilineáre súradnice bodu Qd

Qd = (
1

d · cosA+ r
, . . . , . . . ).

Elimináciou parametra d dostaneme rovnicu hyperboly (1).
Hyperbola BI prechádza aj bodmi v pôvodnom článku označených ako

υ,Γ, I, J2. Boutin uvádza hodnoty parametra d, ktoré zodpovedajú týmto
bodom, ich označenie predstavujeme aj v podobe, ako ich môžeme nájst’

v ETC (obr. 4.):
• pre A,B,C je d = − r

cosA ,− r
cosB ,− r

cosC ;

• pre I = X(1), stred vṕısanej kružnice, je d = 0;

• pre Γ = X(7), Gergonne-ov bod, je d = r;

• pre H = X(4), ortocentrum, je d = ∞;

• pre υ = X(8), Nagelov bod, je d = −r;

• pre J2 = X(9), Mittenpunkt, plat́ı 1
d + 1

2R + 1
r = 0;

• pre Ψ = X(21), Schifflerov bod, plat́ı 1
d + 1

r + 1
R = 0.

Obr. 4: Niektoré stredy nachádzajúce sa na Feuerbachovej hyperbole.

3.3 Mandartov opis

V časopise Mathesis z roku 1893 je d’aľśı hlavný článok o tejto hyper-
bole a bol naṕısaný z ručne ṕısanej poznámky pána H. Mandart [7].
V poznámkach je uvedený, že Feuerbachovu hyperbolu si všimol pán Le-
moine a pán Boutin. V článku hyperbola už nesie meno Feuerbachova
hyperbola a je uvedená jej d’aľsia konštrukcia:

Nech máme body TA, TB a TC také, že TA sa nachádza na osi strany
BC, TB na osi strany CA a TC na osi strany AB, nech vzdialenost’ týchto
bodov od pŕıslušných strán je t a nech sú orientované rovnakým smerom
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vzhl’adom na trojuholńık. Kolmice z bodov A, B, a C na zodpovedajúce
strany TBTC , TCTA a TATB majú práve jeden spoločný bod, označme Qt.
S meniacou sa hodnotou t je množina týchto bodov Feuerbachova hyper-
bola.

Obr. 5: Znázornenie súvislost́ı pri hl’adańı súradńıc bodu Qt.

Pri hl’adańı trilineárnych súradńıc bodu Qt (obr. 5.) využijeme, že vzdia-
lenost’ bodu Qt od strany AC je |AQt| · sin̸ QtAC, od strany AB je
|AQt| · sin ̸ QtAB. Uhly QtAC a QtAB sú kolmé na zodpovedajúce uhly
OTBTC a OTCTB , z toho vyplýva pomer

db
dc

=
y

z
=

sin̸ QtAC

sin̸ QtAB
=

sin̸ OTBTC

sin̸ OTCTB
=

OTC

OTB
=

RcosC + t

RcosB + t
.

Parameter tmá kladné znamienko, pretože body TA, TB a TC sú namerané
od stredu oṕısanej kružnice smerom von z trojuholńıka. Z týchto pomerov
źıskame trilineárne súradnice bodu Qt

x : y : z =
1

RcosA+ t
:

1

RcosB + t
:

1

RcosC + t
. (3)

Elimináciou parametra t z rovnice (3) dostaneme rovnicu hyperboly (1).
Mandart si všimol, že medzi parametrami t a d je nepriama úmera.

Vzt’ah medzi parametrami źıskame z predpokladu Qd = Qt a kollinearity
bodov A,A2 a Qt, teda∣∣∣∣∣∣

1 0 0
d− r dcosC + r dcosB + r

1
RcosA+t

1
RcosB+t

1
RcosC+t

∣∣∣∣∣∣ = 0,

z čoho dostaneme

d =
rR

t
.
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Z konštrukcie trojuholńıka TATBTC je hned’ zrejmé, že smery asymptôt
hyperboly sú dané predpokladom, ked’ sú body TA, TB a TC kollineárne.
Kollinearita nastane pre hodnotu parametra

t =
−R±

√
R2 − 2Rr

2
.

3.4 Gibertove zovšeobecnenie Feuerbachovej hyperboly

V roku 2004 pán Gibert [8] analyzoval t-Mandartove trojuholńıky TATBTC

a Feuerbachovu hyperbolu charakterizoval na základe Mandartových výs-
ledkov. Zovšeobecnil Mandartovu konštrukciu - pri konštrukcíı bodov TA,
TB a TC nahradil stred oṕısanej kružnice všeobecným bodom P = (u, v, w)
(obr. 6.):

Nech je daný trojuholńık ABC a l’ubovol’ný bod P . Na kolmice z bodu P
na strany trojuholńıka ABC zostrojme v rovnakom orientovańı body TA,
TB a TC tak, že vzdialenosti bodov TA od strany BC, TB od strany AC a
TC od strany AB sú t. Kolmice z vrcholov A, B a C na pŕıslušné strany

trojuholńıka TATBTC sa pret́ınajú v jednom bode Q =
(

a
at+2∆u , . . . , . . .

)
,

kde ∆ je obsah trojuholńıka. S meniacou sa hodnotou t množina bodov
Q je trojuholńıku oṕısaná hyperbola, ktorá je izogonálnou transformáciou
priamky IP . Rovnica hyperboly je

a(cv − bw)

x
+

b(aw − cu)

y
+

c(bu− av)

z
= 0.

Obr. 6: Zovšeobecnená Mandartova hyperbola.
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3.5 Kouřilová a Röschel

V roku 2013 pani Kouřilová a pán Röschel [9] naṕısali d’aľsiu konštrukciu
Feuerbachovej hyperboly:

Na jednej strane trojuholńıka ABC zvol’me bod U0, nech je na strane
BC a vo vzdialenosti m od vrcholu B. Stredovou súmernost’ou bodu U0 cez
stred tejto strany dostaneme bod U1. Osovou súmernost’ou bodu U1 cez os
uhla C dostaneme bod U2. Stredovou súmernost’ou bodu U2 cez stred strany
AC dostaneme bod U3, atd’. Cyklicky sa dostaneme k pôvodnému bodu
U0. Priamky U1U2, U3U4 a U5U0 definujú trojuholńık A1B1C1. Priamky
AA1, BB1 a CC1 sa pret́ınajú v jednom bode, a s meniacou sa hodnotou
m množina týchto bodov je Feuerbachova hyperbola (7. obr.).

Obr. 7: Konštrukcia cez stredové a osové súmernosti.

Autori skúmali aj analógiu tejto hyperboly na sférickom trojuholńıku, jej
opis však presahuje rozsah tohto pŕıspevku.

4 Záver
Koncom 19. storočia bola trojuholńıková geometria vńımaná ako ele-
mentárna a vizuálne náročná. Bariéra vizuálnej náročnosti dnes l’ahko pre-
konáme s vol’ne dostupnými grafickými softvérami a kvôli elementárnosti
riešenie problémov môžu byt’ zvládnutel’né aj stredoškolákmi. Feuerba-
chova hyperbola sa ukázala byt’ všestranným objektom trojuholńıkovej
geometrie s viacerými rôznymi konštrukciami, preto je vhodným pŕıkladom
na demonštráciu práce s trilineárnymi súradnicami.
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Abstract. The work focuses on creating a virtual environment, in which we 
demonstrate the use of various types of geometric surfaces in architecture. A key 
output is an interactive application. It allows users to view the 3D form of 
architectural concepts that are often perceived only in 2D. This 3D visualization 
contributes to more efficient learning and a better understanding of the spatial 
properties of the studied surfaces. The work also includes a description of the 
development processes and optimization of VR applications in the Unity 
environment. Although we primarily focus on the Meta Quest 2, the described 
principles are also applicable to other modern VR headsets. Given the rapid 
development and wide use of virtual reality, it is important to become familiar 
with the specifics of development for this platform. 

Keywords: Unity, virtual reality, Meta Quest 

1 Virtual reality 

Virtual reality (VR) is a computer-generated, simulated experience that creates 
an immersive, three-dimensional (3D) environment. Using specialized hardware, 
like a head-mounted display (HMD) and motion controllers, it replaces your real-
world view with a digital one. The goal is to trick your brain into believing you're 
physically present in the virtual world.  

VR systems work by stimulating a user's senses to create the illusion of being 
in a different environment. This is achieved through a combination of hardware 
and software. 

1.1 Components of VR headset 

Today's widely available VR headsets (or VR goggles) consist of a head-
mounted display (HMD) and a pair of controllers. Inside the HMD, there are one 
or more often two screens that project stereoscopic images. Another essential 
component of the headset is a series of lenses, as the display is located too close 
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for a person to focus on it. The headset contains various sensors to determine the 
user's head position and tilt. This typically includes gyroscopes (to detect 
orientation and tilt), accelerometers (to detect displacement), and cameras. The 
headsets include built-in speakers near the ears or headphones with stereophonic 
playback, also known as spatial audio, to simulate various real-world sounds. 
Adjustable straps, soft padding, and good weight distribution of the device. 
Controllers or gloves for tracking hand movements and capturing user input. 

 

 
Fig. 1:  VR headset 

From the perspective of their connection to another device, we can divide them 
into two main types: 

• Headsets that require a connection to a computer or a game console.  
• The second category consists of standalone headsets.  

1.2 Use of Virtual Reality and XR 

The most common applications of virtual reality (VR) and XR  are in video 
games, in medicine - offering surgery simulations for surgeons, in real estate 
sales, architecture, and interior design - allowing for a realistic preview of a room 
or building, in the training of police officers and soldiers - using simulations of 
crisis situations, allowing them to try them out "in real life" without risking 
health, life, or property [1], in aviation - advanced augmented reality systems are 
used when piloting fighter jets to simplify machine control. During the Covid-19 
pandemic, "virtual tourism" expanded, meaning visiting various places and 
monuments without leaving one's residence. These technologies already have 
their place in many industries today, and this list continues to expand. [1] 

1.3 The history of VR headsets 

The absolute beginning can be considered the invention of the stereoscope by 
Charles Wheatstone. This device placed a slightly different two-dimensional 
image in front of each eye. The brain processed them into a single three-
dimensional sensation, creating the illusion of depth. While not virtual reality in 
the modern sense, it was the first step toward tricking the senses to create a 3D 
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experience. The American cinematographer Morton Heilig designed and later 
built in 1957 a device called the Sensorama. This machine was designed to 
stimulate multiple senses at once—sight, sound, smell, and even touch through 
a vibrating chair. Although it wasn't a headset, it was an important concept 
focused on fully immersing the user in an experience. The Sword of Damocles 
by Ivan Sutherland in 1968 is considered the first true VR headset. The device 
was so heavy that it had to be suspended from the ceiling and hung in front of 
the user (hence the name "Sword of Damocles"). Although it only displayed 
simple wireframe models, it tracked head movement and changed the view, 
creating the first interactive 3D experience. In the 80s, NASA was developing 
the Virtual Interactive Environment Workstation (VIEW), which was intended 
for training astronauts. It included a headset and a pair of gloves used for 
interacting with the environment, and it applied the LEEP system with some 
modifications. 

2 Unity 

There are multiple environments available for developers of VR applications. 
One of the best-known and frequently used is Unity, which is used for developing 
games for various platforms. It offers tools for creating 2D/3D environments as 
well as XR environments, along with many existing models freely available for 
download in the Unity Asset Store. 

2.1 Unity User Interface 

When we open a new project in Unity, we are presented with the user interface,  
as shown in Figure 2.  

 
Fig. 2:  Unity 

The interface consists of 4 main windows: Scene  -  this  is the main 
workspace where the game content is displayed and edited. Hierarchy - here, 
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we can see the objects that are currently in the scene. This refers to the 
Hierarchy window in Unity. Inspector - when you click on an object, its 
details are displayed here. You can then edit its properties or add the 
components mentioned previously. Project – it is used to browse all the files 
that are currently in the project. Here we will get to the models, materials, 
scripts and everything else that we have downloaded, created or was 
provided by Unity to build the game.  

Then, proceed as follows: 

1. Open a new project using New project and select the 3D core 
template.  

2. In this project, in the Edit tab, select Project Settings and then choose 
XR Plugin Management, where you will click Install Plugin 
Management. 

3. In the XR Plugin Management window, select the computer icon and 
check OpenXR. Do the same for the Android icon. In the newly opened 
OpenXR window, you need to add Oculus Interaction Profile under 
Enabled Interaction Profiles. 

4. Finally, when you want to build the application, in File > Build Profiles 
under the Android section, click Switch platform and then select Quest 
2 under Build Device. This step can be skipped if you want to run the 
result from your computer. 

Clicking Build and run will compile the project (compilation, scene assembly, 
generation of the executable package, e.g., .apk or .exe etc.), save it to the 
selected location, and run. 
 

3 Blender 

Blender is open-source software used for modeling and animating 3D objects and 
environments. It is available for free, and its mission was to make 3D modeling 
accessible to everyone. Using the Python programming language, it is possible 
to create custom scripts within it to automate tasks or create objects. 
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3.1 Import models  from Blender 

1. We can download the models from Blender in formats such as .fbx or .obj. 

2. This file can then be inserted into the Project window in Unity, and from there 
we can place it into the scene.   

3.   When we place the building into the environment: We delete unused elements 
(especially lights and cameras) and adjust its position by 
scaling/rotating/moving. Then we assign a Box Collider or Capsule Collider 
component in the Inspector and check the Provide Contact box, so that the player 
cannot pass through the walls.  In the case of more complex geometry, we 
directly select the object that should have contact and assign it a Mesh Collider.  
For the object, it is worthwhile to select Extract Materials in the Inspector 
section, which will allow us to manipulate its materials directly in Unity.  

 
Fig. 3:  Unity with objects from Blender 

 

4 Conclusion 

In this work, we focused on creating a standalone application that can be run on 
VR headsets. The resulting application offers a virtual tour of several buildings 
from around the world, showcasing the use of geometric surfaces in architecture. 
This work contributes to a better understanding of geometric surfaces in 
architecture through an interactive VR visualization. It allows for a more intuitive 

Modeling 3D environments for virtual reality 67



 
perception of the spatial properties of these surfaces, which is often limited in 
traditional 2D sketches. 
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Složenka 
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Abstract. We present a web-based application designed to develop students’ 

spatial reasoning skills. In this task, students are required to determine which of 
the presented 3D components can be assembled into a given target shape. Both 
the individual components and the target shape are visualized in a 3D interactive 
environment. Students can rotate the pieces, but only one piece is visible at a 
time, and the preview offers no orientation clues. This design encourages 
learners to actively engage their spatial imagination, requiring them to mentally 
manipulate, retain, and integrate visual information to assess whether and how 
the components can form the complete structure. 

Keywords: spatial skills, 3D interactive web, mental 3D manipulation 

Klíčová slova: Prostorová představivost, interaktivní trojrozměrná scéna, 

mentální manipulace v prostoru 

1 Prostorová představivost 

V literatuře najdeme různé definice pojmu „prostorová představivost“, např. [1]. 
Obvykle se jedná o výčet určitých schopností jako jsou vnímání prostorových 

objektů, mentální manipulace a orientace v prostoru. Prostorová představivost 

je nezbytná pro každého člověka (i zvíře), aby se dokázal orientovat ve světě 

kolem sebe, ale jako učitele geometrie nás zajímá jako schopnost využívaná 
k řešení problémů a úloh. 

Vytváření softwarových nástrojů na podporu a rozvíjení prostorové 

představivosti se věnujeme už dlouho, viz [2], [3], [4], a v tomto textu chceme 
představit další z nich, který jsme pojmenovali „Složenka“. 

2 Návrh aplikace na procvičování prostorové představivosti 

Naším cílem bylo vytvořit aplikaci, která by uživatele (žáky) vedla k tomu, aby 

si představovali a pamatovali trojrozměrné objekty a jejich transformace. 
Taková aplikace by představovala určité dané prostorové objekty a kladla 

by uživateli otázku, zda složením těchto objektů (dvou nebo více) může 

vzniknout požadovaný výsledný objekt. Například mějme objekty složené ze tří 

slepených krychliček (Obr. 1): 
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Obr. 1:  Výchozí objekt „L“ 

Takové objekty můžeme libovolně otáčet a posouvat a ptáme se, zda z nich 

lze složit krychli rozměru 2×2×2. 
Odpověď na tuto otázku nevyžaduje mnoho prostorové představivosti, stačí 

si spočítat, že krychle 2×2×2 obsahuje 8 krychliček a z dílků po třech 

krychličkách ji složit nelze. Ale když se zeptáme, zda z daných dílků lze složit 

krychli rozměru  3×3×3, odpověď už tak zřejmá není. 

2.1 Požadavky 

Požadavky na navrhovanou aplikaci byly tyto: 
 budou představeny jednotlivé dílky a úkolem bude označit všechny 

dílky, ze kterých lze složit požadovaný výsledný tvar 
 dílky i výsledný tvar si bude moci uživatel libovolně prohlížet, 

zvětšovat, posouvat a otáčet je, aby si je mohl dobře prohlédnout, 

vracet se k nim  
 ...vždy ale uvidí pouze jeden dílek nebo výsledný tvar, takže bude 

nucen si tvary pamatovat, případně v duchu otáčet 
 aplikace bude obsahovat větší počet úloh, mezi kterými si uživatel 

bude moci vybírat 
 aplikace bude hodnotit, jestli je odevzdaná odpověď správná 
 budou označeny úlohy, které už uživatel vyřešil, i ty, které zkusil řešit 

a neuspěl 
 informace o řešených úlohách zůstanou zachovány i při opakovaném 

spuštění programu  
 aplikace nebude vyžadovat žádný login, registraci, heslo apod. 
 aplikace nebude řešit vztah učitel–žák ve smyslu, že by učitel zadával 

úlohy žákům a měl možnost vidět jejich výsledky; bude si ji moci 

pustit kdokoliv a bude pro všechny obsahovat stejné úlohy 
 aplikace bude mít tvar webové stránky, takže nebude potřeba nic 

stahovat ani instalovat a spouštět. 
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2.2 Výsledná aplikace 

Výsledný program má podobu webové stránky dostupné na adrese 

https://slozenka.geometry.cz/. Při vstupu na tuto stránku se automaticky 

vygeneruje unikátní přihlašovací kód a uživatel je přesměrován na adresu 

s tímto kódem. Když si tuto adresu uloží do záložek, dostane se vždy ke svému 

seznamu vyřešených úloh. 
Vlastní stránka aplikace obsahuje nadpis, který je zároveň odkazem na 

nápovědu, seznam úloh s vyznačením, které úlohy už byly řešeny a vyřešeny, 
a vedle něj zadání vybrané úlohy s tlačítky pro zobrazení jednotlivých tvarů 

tvořících zadání této úlohy. Po vybrání dílku se tento dílek zobrazí v poli 
zobrazení, kde s ním může uživatel pohybovat a otáčet (Obr. 2). V poli se 
zadáním úlohy může zaškrtnout dílky, ze kterých lze podle jeho názoru složit 

výsledný tvar. Po stisku tlačítka „Vyhodnoť “ se dozví, zda byla odpověď 

správná – a pokud ano, uvidí ve 3D scéně i požadovaný tvar složený 

z odpovídajících dílků. 
 

Obr. 2:  Prostředí aplikace 

Složenka. Procvičování prostorové představivosti hrou 71

https://slozenka.geometry.cz/


 

 

2.3 Příklady úloh 

Výsledný tvar i dílčí tvary jsou vždy viditelně složeny z „jednotkových“ (tj. 

základních shodných) krychliček, případně válců či koulí téže velikosti.  
Kromě úvodních, záměrně velmi snadných úloh, které jsou určeny 

k seznámení s aplikací, jsou v seznamu zařazeny další snadné úlohy, k jejichž 

vyřešení stačí spočítat základní krychličky v dílku či posoudit výsledný rozměr 

celku. Takové úlohy nevyžadují pokročilou prostorovou představivost. Příklad 

takové úlohy vidíme na Obr. 3. Dílky jsou zde složené z kuliček, což je pro 

vnímání celku obtížnější než dílky složené z krychliček. 
 

 
Obr. 3:  Úloha, v níž k vyřešení stačí spočítat kuličky, celek jich má 12 

V další úloze už počítání jednotkových dílků (zde jsou to válce) nestačí, 

výsledný tvar je složen z devíti základních válců, takže k jediné čtveřici je třeba 

hledat odpovídající pětici. 
 

 
Obr. 4:  Úloha z dílčích válců 

V úloze na Obr. 5 má každý dílek 4 jednotkové krychličky. Vpravo je vidět 

výsledný složený tvar, který žák uvidí po vyhodnocení správného řešení.  
 

 
Obr. 5:  Jednotlivé dílky a výsledné složení požadovaného tvaru 

 
V některých úlohách je třeba rozlišovat mezi nepřímo shodnými dílky. 

Příklad je na Obr. 6. 
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Obr. 6:  Obtížná úloha – zelený dílek je nepřímo shodný s červeným i žlutým. 

3 Zkušenosti 

Složenku jsme nechali řešit různě staré žáky a studenty gymnázia: 13leté žáky 

sekundy, 15leté žáky kvarty osmiletého gymnázia a studenty maturitního 

ročníku kurzu deskriptivní geometrie. Zajímalo nás především to, zda pro ně 

budou úlohy obtížné. Rozdíly v úspěšnosti a rychlosti řešení souvisely spíše 

s individuálními schopnostmi žáků, než s věkem. Zdatní řešitelé vyřešili celou 

sadu úloh za 30–40 minut. Nejrychleji, za 25 minut, celou sadu vyřešil žák 

sekundy a v sekundě také všichni až na jednoho vyřešili celou sadu během 

jedné vyučovací hodiny. Nejvíce žáků, kteří sadu za 45 minut nevyřešili, bylo 

v kvintě. 

3.1 Strategie řešení 

Vzhledem k tomu, že dílky jsou ve výchozí poloze různě otočené (tedy ne tak, 

jak patří do výsledného tvaru) a ve scénách nejsou žádné prvky pro orientaci 

v prostoru, museli si žáci sami najít způsob, jak si tvar částí zapamatovat a jak 

rozhodnout o výsledku. Starší žáci a studenti počítali základní kostičky v dílech 

A, B, C, D, což v některých úlohách pro rozhodnutí o výsledku stačilo. Jindy 

odhadli dílek, který by mohl do výsledku patřit (největší dílek, případně jen 

první – dílek A) a určili k němu doplněk. Pokud doplněk nenašli, postup 

opakovali s dalším kandidátem. Dílky k výběru jsou vždy jen čtyři, postup tedy 

vedl rychle k cíli.  

Žáci sekundy nedokázali slovně popsat strategii řešení, často uváděli, že si 

„pamatovali tvar“ (využívali tedy „ fotografickou paměť“). 

Podle očekávání byly nejobtížnější ty úlohy, kde bylo třeba vybrat správný 

z  nepřímo shodných dílků. Tam žáci přiznávali náhodné pokusy. 

Celkově žáci úkol hodnotili jako nepříliš obtížný, po skončení se většinou 

necítili unaveni. 

4  Odpověď na závěr 

Odpověď na úvodní otázku jsme uložili do posledních úloh sady. Z dílků 

„L“ krychli 3×3×3 složit jde. Například složením všech dílků (v nichž jsou 

tvary „L“ je dobře vidět) na Obr. 7. 

Složenka. Procvičování prostorové představivosti hrou 73



 

 

 
Obr. 7:  Krychle 3×3×3 z dílků „L“ 
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email: marta.hlavova@fs.cvut.cz, ivana.linkeova@fs.cvut.cz,
nikola.pajerova@fs.cvut.cz

Abstract. The paper provides a reflection on the event Become a
Woman-Scientist for a Day 2025, held on February 11 at the Czech
Technical University in Prague on the occasion of the International
Day of Women and Girls in Science. The event, aimed at highlighting
the essential role of women in the scientific community and promoting
their access to scientific education, attracted considerable interest,
particularly among secondary school students. The authors contributed
to the event with a lecture on engineering applications of envelope
surfaces, followed by a workshop. During the modelling of envelope
surfaces in CAD, the significant didactic potential of a self-created
dynamic 3D model became evident, as it effectively illustrated a rather
complex theory unfamiliar to the participants.
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Kĺıčová slova: Obalová plocha, charakteristika obalové plochy, CAD
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1 Úvod

Akce Staň se na den vědkyńı pořádaná na Českém vysokém učeńı tech-
nickém v Praze (ČVUT) při př́ıležitosti Mezinárodńıho dne žen a d́ıvek
ve vědě (11. únor) zajǐst’uje již několikátým rokem program pro d́ıvky
zaj́ımaj́ıćı se o budoućı kariéru ve vědě a ukázky vědeckých praćı, jakými
se ženy ve vědě na ČVUT zabývaj́ı. Během dne si účastnice mohly po-
slechnout přednášky odbornic z akademické sféry, na které navazovaly
praktické ukázky a možnost vyzkoušet si vědu na vlastńı k̊uži v rámci
témat, která sahala od částicové fyziky a robotiky až po aplikace geo-
metrického modelováńı ve stroj́ırenstv́ı. Na organizaci se pod́ılela Fakulta
strojńı spolu s Fakultou jadernou a fyzikálně inženýrskou a Fakultou elek-
trotechnickou ČVUT.

V rámci př́ıspěvku Fakulty strojńı k této akci zazněla v dopoledńım
bloku přednáška na téma Geometrie obalových ploch a jejich aplikace ve
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stroj́ırenstv́ı, na kterou odpoledne navazovalo cvičeńı zaměřené na geo-
metrickou aplikaci obalových ploch v numericky ř́ızeném obráběńı. Stu-
dentky byly seznámeny s výzvou, kterou tato úloha představuje: určit
obalovou plochu vytvořenou pohybem obecné rotačńı plochy neńı triviálńı
a současné CAD (Computer Aided Design) systémy nedisponuj́ı př́ıkazy
pro řešeńı tohoto zadáńı. Proto byla na Ústavu technické matematiky
Fakulty strojńı vyvinuta unikátńı metoda modelováńı obalových ploch
založená na aplikaci poznatk̊u z diferenciálńı geometrie. Účastnićım byla
tato metoda vysvětlena a měly poté možnost vytvořit si dle vlastńıho
návrhu sv̊uj originálńı CAD model obalové plochy v programu Rhinoceros
s využit́ım vestavěného grafického programátorského prostřed́ı Grasshop-
per.

2 Obalová plocha
Definice 1: Obalová plocha je část povrchu E(s, t) tělesa B(u, v, t), které
vznikne jednoparametrickým pohybem tvořićı plochy S(u, v) po trajekto-
rii T(t), jestliže plat́ı (u, v, s, t jsou reálné parametry z uzavřených inter-
val̊u)

• Obalová plocha E(s, t) a každá uv-parametrická plocha tělesa
B(u, v, t) se dotýkaj́ı podél parametrické s-křivky plochy E(s, t),
která se nazývá charakteristika obalové plochy.

• V každém bodě obalové plochy E(s, t) existuje společná tečná rovina
této plochy a jediné parametrické uv-plochy tělesa B(u, v, t).

• Neexistuje plocha, která by byla současně část́ı obalové plochy E(s, t)
a některé parametrické uv-plochy tělesa B(u, v, t).[1]

Většina vysokoškolských sylab̊u obsahuje syntetické řešeńı nalezeńı
charakteristiky obalové plochy generované př́ımočarým, rotačńım a šrou-
bovým pohybem roviny, koule a specificky zadané rotačńı plochy (me-
ridián je tvořen př́ımkami či kružnicovými oblouky), viz např. [2]. Pokud je
uvedeno analytické řešeńı, je bud’ redukováno na implicitńı vyjádřeńı za-
daných útvar̊u nebo je zvoleno takové zadáńı, že obalová plocha je předem
známa. Př́ıkazy v CAD systémech, které by umožňovaly modelovat oba-
lovou plochu jinak než jako předem známý útvar, neexistuj́ı a v CAM
(Computer Aided Manufacturing) systémech se obalové plochy generované
pohybem nástroje aproximuj́ı plochami ekvidistantńımi ke jmenovitému
povrchu.

Analytický př́ıstup založený na podmı́nce, že charakteristika je množina
bod̊u, ve kterých jsou komplanárńı tečné vektory k parametrickým křivkách
tvořićı plochy a tečný vektor k trajektorii uvažovaného bodu je uveden
v [3]. Zcela zásadńı význam v teorii obalových ploch zauj́ımá [4], kde je
použit DG/K (Differential Geometry/Kinematics) př́ıstup k źıskáńı ana-
lytické reprezentace obalové plochy v dostatečně obecném pojet́ı, a sice
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na základě podmı́nky, že obalová plocha je plocha, která se dotýká jedno-
parametrické soustavy tvořićıch ploch.

3 CAD model rotačńı obalové plochy

Definice 1 uvedená v [1] je zobecněńım př́ıstupu v [3] a [4] v tom smyslu,
že obalová plocha je plocha v tělese generovaném jednoparametrickým po-
hybem (obecným) tvořićı plochy (určené obecným meridiánem), v jej́ımž
každém bodě jsou komplanárńı všechny tři tečné vektory k parametrickým
křivkám tohoto tělesa. Z definice vyplývá také d̊uležitá skutečnost, která
je rozhoduj́ıćı pro vytvořeńı CAD reprezentace obalové plochy: uvažujeme-
li dvě nekonečně bĺızké parametrické uv-plochy tělesa B(u, v, t), splynou
charakteristiky v těchto polohách v jedinou křivku, a tud́ıž charakteris-
tika je pr̊uniková křivka dvou nekonečně bĺızkých poloh tvořićı plochy,
jak je uvedeno v [2] (str. 37, vlastnost 4). Při př́ımočarém, rotačńım
a šroubovém pohybu má charakteristika neproměnný tvar, tud́ıž stač́ı
vymodelovat jedinou pr̊unikovou křivku dvou – kv̊uli konečné přesnosti
CAD/CAM systémů – dostatečně bĺızkých poloh tvořićı plochy a obalo-
vou plochu poté vytvořit odpov́ıdaj́ıćım pohybem takto źıskané charakte-
ristiky [1]. Při obecném pohybu má charakteristika proměnný tvar, tud́ıž
je nutné vymodelovat dostatečné množstv́ı dvojic bĺızkých poloh tvořićı
plochy a obalovou plochu vytvořit jako plochu procházej́ıćı pr̊unikovými
křivkami.

3.1 Modelováńı obalových ploch na cvičeńı

Princip tvorby CAD modelu rotačńı obalové plochy v Rhinoceros & Grass-
hopper je ukázán na obr. 1. Obalová plocha je zde generovaná rotaćı
válcové rotačńı plochy kolem osy, která je s osou válcové plochy mi-
moběžná. V nárysu a p̊udorysu jsou barevně odlǐseny dvě bĺızké polohy
tvořićı plochy. Jejich pr̊uniková křivka ještě neńı zkonstruována, nicméně
již z barevného přechodu obou ploch je jej́ı tvar zřetelně patrný. V iso-
metrickém pohledu je zobrazen hotový CAD model v polopr̊uhledném
režimu.

V ukázkovém cvičeńı si nejprve účastnice v předem připravených šablo-
nách pro Rhinoceros vytvořily statický CAD model obalové plochy z obr. 1,
z něhož si poté v Grasshopperu vytvořily dynamický model, viz obr. 3.
V dynamickém modelu bylo možné tvořićı plochou pohybovat, a t́ım
zřetelně demonstrovat princip vzniku obalové plochy a jej́ı vlastnosti. Stu-
dentky se také naučily měnit barvy a vlastnosti objekt̊u a měnit typ zob-
razeńı.

V daľśı části cvičeńı následovala konstrukce obecné rotačńı tvořićı plo-
chy, kdy meridiánem byla B-spline křivka 4. stupně určená danými ř́ıdićımi
body, viz obr. 2.
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Obr. 1: Obalová plocha generovaná rotaćı rotačńı válcové plochy

Obr. 2: Obalová plocha generovaná rotaćı obecné rotačńı plochy

V posledńı části cvičeńı si účastnice vytvořily parametrický dynamický
model rotačńı obalové plochy v Grasshopperu, viz obr. 4, ve kterém bylo
možné měnit jak polohu ř́ıdićıch bod̊u meridiánu tvořićı plochy, tak i jej́ı
polohu v̊uči ose rotace. Studentky tuto závěrečnou část uv́ıtaly s velkým
nadšeńım, nebot’ dynamický parametrický CAD model umožňoval uplat-
nit jejich kreativńı potenciál. Mnohé z nich ocenily toto interaktivńı a prak-
tické cvičeńı, které jim umožnilo seznámit se s problematikou obalových
ploch. Hlavńı d̊uraz při svém hodnoceńı kladly na práci v Grasshopperu,
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Obr. 3: Dynamický model rotačńı obalové plochy

která jim poskytla nové dovednosti v oblasti parametrického designu a vi-
zualizace, které jsou v současném vědeckém a inženýrském prostřed́ı stále
žádaněǰśı.

Obr. 4: Parametrický dynamický model obecné rotačńı plochy
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4 Závěr
Akce Staň se na den vědkyńı se těš́ı č́ım dál větš́ımu zájmu – letošńıho
9. ročńıku se celkově zúčastnilo přes 140 studentek. V rámci této akce se
během cvičeńı věnovanému modelováńı obalových ploch v CADu zřetelně
projevil značný didaktický potenciál vlastnoručně vytvořeného paramet-
rického dynamického 3D modelu k objasněńı poměrně složité teorie oba-
lových ploch, se kterou se studentky středńıch škol dosud nesetkaly. Źıskané
dovednosti a prvńı zkušenost s parametrickým modelováńım tedy mohou
studentky inspirovat k daľśımu vzděláváńı v oblasti strojńıho inženýrstv́ı,
což je jedńım z hlavńıch ćıl̊u zmiňované akce.
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Abstract. We sketch some basic properties and applications of
isometries within hyperbolic plane. The properties are well known
and the paper stresses the main lines of developmnet of the area. We
also point to some applications not only within the area of hyperbolic
geometry. We would like to point out that many approaches from
various fields of math meet in hyperbolic geometry and therefore it is
a suitable topic where they can be learned following the basics.
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1 Introduction

Non-Euclidean geometry was discovered by N. Lobachevsky and in paral-
lel and in a different way by J. Bolyai around the end of the 3rd decade of
the XIXth century. The key goal was to show that the parallel postulate
of Euclid fails to be dependent on the other postulates. Hence, infinitely
many parallel lines through a point (hyperbolic geometry) or no parallel
line through a point (spherical geometry) might be a case. The goal was
reached and a vast area of research has been revealed. In the hyperbolic
case, the surface representing the plane has constant negative Gaussian
curvature K = −1. The length of a circle grows exponentially with radius
unlike the Euclidean or spherical cases. On the other hand, the isome-
tries have similar structure in comparison with the Euclidean ones when
constructing, though the group of isometries is much more complicated.

Fig. 1: A triangle in hypebolic plane in Poincaré disc model.
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Fig. 2: Stereographic projection of the 2-dimensional sphere and a real
plane (or complex line).

2 Stereographic projection
Stereographic projection connects points of a sphere and C. This very
useful mapping can be met in many areas as a basic fact/construction.
The connection between coordinates (u, v, w) of a point of a sphere u2 +
v2 + w2 = 1 is mapped to the plane point (x, y, 0) so that x(u, v, w) =
u

1−z , y(u, v, w) =
v

1−z and the inverse mapping is given by u = 2x
1+x2+y2 ,

v = 2y
1+x2+y2 , u = −1+x2+y2

1+x2+y2 . The mapping preserves angles and it maps

circles on the sphere to circles or lines in the plane (see fig 2).

3 Models of hyperbolic geometry
There are many models of hyperbolic geometry, some of them just local.
The advantage of so many models is that we can easily identify properties
in one model and via isomorphisms use this information within the other
model as well.

The primary model is a hyperboloid model U for q(x, y, z) = x2+y2−
z2 for z ≥ 0. Using appropriate projections, one obtains other models
such as Poincaré disc model UPoincare (improvement of Klein disc model
UKlein), half-sphere model S2+, halfplane model Uhalfplane (see fig. 3, left)
and there is also local pseudosphere model (see fig. 3, right).

All the models except the pseudosphere are interconnected via certain
projections (more-less stereographic).

4 Metrics in hyperbolic geometry
The metrics can be computed by methods of differential geometry from the
hyperboloid model, but for the other models, the formula of the hyperbolic
distance can be easily found in the Klein’s model for points a,b with ideal
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Fig. 3: Models of hyperbolic plane
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Fig. 4: (left) Cayley-Klein metric of a convex figure; (right) Hyperbolic
lines and angles in Poincaré model.

points a′,b′ on the hyperbolic line ab based on Cayley-Klein metric (see
fig. 4, left) applicable in any convex figure using Euclidean distances

dH(a,b) = ln
dE(b

′,a)dE(a
′,b)

dE(b′,b)dE(a′,a)
.

Connecting projective geometry, Euclidean geometry as well as hyper-
bolic geometry is done not only in an analytic but also in a synthetic
way.

5 Isometries of the hyperbolic plane

Isometries – mappings preserving the distance of all pairs of the mapped
points. They are well-known even on basic school level and used in ele-
mentary synthetic constructions in Euclidean geometry.

In halfplane model, matrices of PSL(2,R) form the group of all orien-
tation preserving isometries. Hence, PGL(2,R) are all isometries. These
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Fig. 5: Isometries (rotation upper row, reflection and glide reflection of a
triangle, lower row) in the Klein and Poincaré model of hyperbolic plane.
The neighboring points on the lines are uniformly distant.

are all matrices (
a b
c d

)
, ad− bc = ±1, a, b, c, d ∈ R

with identification up to a multiple. Hyperbolic line reflections (line in-
versions, circle inversions) are generators of the group.

5.1 Classification of plane isometries

Various classification criteria can be used. Using minimum number of
line reflections to chain, we get similarly to Euclidean plane identity, hy-
perbolic line reflection, hyperbolic translation, hyperbolic rotation (real
point, ideal point), glide reflection (see fig. 5).

Interpreting the elements of PGL(2,R) as Möbius transformation, 1
z̄

represents circle inversion in unit circle centered at origin. In general,
f(z) = az+b

cz+d or f(z) = az̄+b
cz̄+d is a composition of translations, inversion,

reflection in a real line, scaling and rotation for a, b, c, d ∈ C, ad− bc = 1.

Hyperbolic isometries can be represented with a, b, c, d ∈ R. Geometry
of complex projective line can be used in description of the hyperbolic
plane. The loxodromic type of Möbius transformation cannot be found
among the hyperbolic tranformations.

5.2 Subgroups of hyperbolic isometries

The structure of subgroups of PSL(2,R) is very rich. A subgroup Γ of
isometries of discrete and free type corresponds in some sense uniquely
to a hyperbolic surface of genus g ≥ 2. Fairly heavy algebraic topology
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Fig. 6: Tiling of hyperbolic plane using regular 5-gon (left) and 7-gon
(right).

and/or geometry theory is used for their classification. Such a group cor-
responds to certain tiling of the plane. There is a real (6g+6)-dimensional
Teichmüller space of non-isomorphic hyperbolic surfaces of genus g given
as H2/Γ.

Number theory studies modular group PSL(2,Z) generated by trans-
forms z + 1 and − 1

z . Hence, many connections of hyperbolic geometry
and number theory naturally appear.

A gateway to study 3-manifolds (see work of Thurston), their classifi-
cation and further properties is the 2-dimensional hyperbolic plane. The
higher dimensional approach is in many aspects similar. The higher di-
mensional transformas can be decomposed into a series of twodimensional
transforms in a similar way to he Euclidean isometries. The results of 3-
dimensional case are used physics for studying possible phenomena in real
hyperbolic space around us.

6 Very few applications

6.1 Tilings and tesselations

The easiest tilings not to be found in the Euclidean setting is a tesselation
by a regular n-gon for any n ≥ 3 (see fig. 6). They can be found in the
artworks of M. C. Escher As mentioned above, the tilings can be produced
using and appropriate subgroup of the isometries. They are called Fuch-
sian groups and their description requires some additional work. The
algebraic/combinatorial/geometric properties are closely interconnected
and explored.

Modern tesselations of surfaces in architecture can be a further exten-
sion in the setting of discrete differential geometry.
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Fig. 7: Pappus Arbelos is a problem which can be easily transfered into
a hyperbolic setting. It can be found in the art of Alfons Mucha.

6.2 Classical geometry problems

Classical problems of Euclidean geometry can be asked in the hyperbolic
setting as well. Some of them have the same or almost same solution
due to the fact that circles in hyperbolic setting can be identfied with
Euclidean circles within the Poincaré model. Lines there are also part of
the circles. Hence Appolonian problems can be solved relatively easily.
The metric problems are however much more difficult.

7 Conclusions
Hyperbolic geometry is a versatile area not only from the research point of
view but also from the teaching point of view. Classical synthetic geome-
try can be used for explaining ideas, whereas analytical computations can
be done in several ways – linear algebra, complex analysis and differential
geometry approaches, even some geometric topology can be used.

Hyperbolic geometry is used in several areas of industry as a under-
lying space or as a tool. However, many classical problems with circles
can be explored as problems of hyperbolic geometry or close areas such
as Laguerre geometry.

Moreover the area generated many novel approaches in geometry,
topology, combinatorics, e.g. the structure of the group of hyperbolic
isometries is non-trivial and still many combinatorial as well as geometri-
cal aspects can be studied.

The value teacher can bring is the synthetic understanding of many
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time very technical approaches used in many different areas. Students
offen appreciate the interconnections and/or start to understand reasons
why certain techniques are proper to use.
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Konvexńı pětiúhelńıky v matematických
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17. listopadu 12, 779 00 Olomouc, Česká republika
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Abstract. The paper This is devoted to certain properties of the fun-
damental elements in convex pentagons — namely, the lengths of their
sides and diagonals, the measures of their interior and exterior angles,
and, where applicable, their area — as well as to their applications in
solving specific planar geometry problems.

Keywords: convex pentagon, side length, diagonal length, size of
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Kĺıčová slova: Konvexńı pětiúhelńık, délka strany, délka úhlopř́ıčky,
velikost vnitřńıch a vněǰśıch úhl̊u

1 Úvod
Ve srovnáńı s trojúhelńıky a čtyřúhelńıky se v naš́ı matematické lite-
ratuře jen zř́ıdka objevuj́ı př́ıspěvky zaměřené na konvexńı pětiúhelńıky.
Tento př́ıspěvek se věnuje jejich základńım vlastnostem – délkám stran
a úhlopř́ıček, velikostem vnitřńıch a vněǰśıch úhl̊u, jeho obsahu – a jejich
využit́ı při řešeńı planimetrických úloh.

Úvodem si připomeňme větu o součtu velikost́ı vnitřńıch (i vněǰśıch)
úhl̊u v konvexńım n-úhelńıku.

Věta 1
V každém konvexńım n-úhelńıku (n ≥ 3) je součet velikost́ı jeho vnitřńıch
úhl̊u roven (n− 2) · 180◦.

D̊ukaz. Zvolme libovolný vnitřńı bod P konvexńıho n-úhelńıku A1A2 . . . An,
který spoj́ıme se všemi jeho vrcholy (obr. 1 – vlevo). Součet velikost́ı
vnitřńıch úhl̊u ve všech n takto vzniklých trojúhelńıćıch (tzv. triangulace
n-úhelńıku A1A2 . . . An) zmenšený o plný úhel, který je součtem velikost́ı
vnitřńıch úhl̊u u vrcholu P ve všech trojúhelńıćıch se společným vrcho-
lem P , udává hledaný součet S velikost́ı všech vnitřńıch úhl̊u v tomto
konvexńım n-úhelńıku. Plat́ı tak

S = n · 180◦ − 360◦ = n · 180◦ − 2 · 180◦ = (n− 2) · 180◦,

což jsme chtěli dokázat.
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Obr. 1: Věta 1

Jiný d̊ukaz (viz např. v [4]). Zvolme libovolný z vrchol̊u uvažovaného n-
úhelńıku (bez újmy na obecnosti např. A1), a pomoćı všech jeho úhlopř́ıček
vycházej́ıćıch z vrcholu A1 jej rozděĺıme na n − 2 trojúhelńık̊u (obr. 1
– vpravo). Pro součet S velikost́ı všech vnitřńıch úhl̊u v konvexńım n-
úhelńıku A1A2 . . . An tak př́ımo obdrž́ıme S = (n− 2) · 180◦.

Důsledek 1
Součet velikost́ı všech vnitřńıch úhl̊u v každém konvexńım pětiúhelńıku je
roven 540◦.

Důsledek 2
V každém konvexńım n-úhelńıku (n ≥ 3) je součet velikost́ı všech jeho
vněǰśıch úhl̊u roven 360◦.

D̊ukaz. Podle výše uvedené věty je součet velikost́ı n vněǰśıch úhl̊u v libo-
volném konvexńım n-úhelńıku roven rozd́ılu

n · 180◦ − (n− 2) · 180◦ = 2 · 180◦ = 360◦.

V daľśı části uvedeme osm řešených úloh o konvexńıch pětiúhelńıćıch.

Př́ıklad 1
Je dán pravidelný pětiúhelńık ABCDE. Označme M střed strany AB a
K pr̊useč́ık osy úsečky DM s úhlopř́ıčkou AC. Dokažte, že AK⊥DK.

Řešeńı. Trojúhelńık ADM je pravoúhlý s pravým úhlem při vrcholu M.
Kružnice tomuto trojúhelńıku opsaná je Thaletova kružnice nad přeponou
AD. Bod K lež́ı rovněž na této kružnici, jelikož je pr̊useč́ıkem osy strany
DM a osy vnitřńıho úhlu při vrcholu A. Tedy velikost úhelu AKD je 90◦.

Jiné řešeńı. Uvažujme bod A′ souměrně sdružený s vrcholem A vzhledem
ke středu K. Protože bod K lež́ı na ose úsečky DM , lež́ı bod A′ na
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Obr. 2: Př́ıklad 1

Obr. 3: Př́ıklad 1 – jiné řešeńı

rovnoběžce s př́ımkou AB, která procháźı vrcholem D (Obr. 3). Stř́ıdavé
úhly A′AB a DA′A jsou shodné s úhlem DAC. Tedy trojúhelńık AA′D
je rovnoramenný, přičemž bod K je středem jeho základny AA′. Odtud
již př́ımo plyne AK ⊥ DK, což jsme chtěli dokázat.

Př́ıklad 2
Je dán konvexńı pětiúhelńık, jehož všechny vnitřńı úhly jsou tupé. Dokažte,
že existuje taková dvojice jeho úhlopř́ıček, že kruhy uvažované nad těmito
úhlopř́ıčkami (jako pr̊uměry) pokrývaj́ı daný pětiúhelńık.

Řešeńı. K d̊ukazu lze využ́ıt metodu extremálńıho prvku. Bez újmy na
obecnosti předpokládejme, že AB je nejdeľśı stranou konvexńıho pětiúhelńıku
ABCDE , který vyhovuje podmı́nkám úlohy. Kolmice k AB, které procházej́ı
vrcholy A, B, označme po řadě p, q. Uvažujme nyńı pás omezený rov-
noběžkami p, q (obr. 3). Vrcholy C a E uvažovaného pětiúhelńıku lež́ı vně
tohoto pásu, nebot’ úhly ABC a EAB jsou tupé. Současně však vrchol
D tohoto pětiúhelńıku lež́ı uvnitř uvažovaného pásu (v opačném př́ıpadě
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Obr. 4: Př́ıklad 2

by totiž strana AB nebyla nejdeľśı stranou pětiúhelńıku ABCDE ). Pata
D1 kolmice z vrcholu D k př́ımce AB je tedy vnitřńım bodem strany AB
uvažovaného pětiúhelńıku.

Oba kruhy sestrojené nad pr̊uměry AD a BD tak evidentně pokrývaj́ı
uvažovaný pětiúhelńık ABCDE , což jsme chtěli dokázat.

Př́ıklad 3
Je dán konvexńı pětiúhelńık ABCDE , v němž |AB| = |BC| = |CD| =
|DE|, | 6 ABC| = 96◦ a |6 BCD| = | 6 CDE| = 108◦. Určete, jakou velikost
má jeho vnitřńı úhel při vrcholu E.

Řešeńı. Označme P pr̊useč́ık úhlopř́ıček BD a CE. Ze zadáńı plyne, že
trojúhelńıky BCD a CDE jsou rovnoamenné po řadě se základnami BD
a CE. Přitom |6 CDB| = |6 DBC| = | 6 ECD| = | 6 DEC| = 36◦. Protože
|6 BCD| = 108◦, plat́ı | 6 BCP | = | 6 BPC| = 72◦. Trojúhelńık BCP je
tedy rovnoramenný se základnou CP . Podobně zjist́ıme, že i trojúhelńık
DEP je rovnoramenný se základnou DP (obr. 5). Dı́ky zadáńı plat́ı také
|AB| = |BC| = |BP | = |EP | a dále |6 ABP | = 96◦−36◦ = 60◦. Odtud již
bezprostředně plyne, že trojúhelńık ABP je rovnostranný a trojúhelńık
AEP je rovnoramenný se základnou AE. Dopoč́ıtáńım vnitřńıch úhl̊u
v rovnoramanném trojúhelńıku APE snadno zjist́ıme, že | 6 APE| = 180◦−
72◦−60◦ = 48◦, tud́ıž |6 AEP | = 66◦, a tedy | 6 AED| = 36◦+66◦ = 102◦.
Velikost úhlu AED dopoč́ıtáme podle věty 1.

Př́ıklad 4
Je dán konvexńı pětiúhelńık ABCDE s pravými úhly při vrcholech C a
E, kde

|AB| = |CD| = |DE| = 1 a |BC|+ |EA| = 1.

Dokažte, že jeho obsah je 1.
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Obr. 5: Př́ıklad 3

Obr. 6: Př́ıklad 4

Řešeńı. V otočeńı se středem D a orientovaným úhlem EDC se vrchol E
pětiúhelńıku ABCDE zobraźı na vrchol C, nebot’ podle zadáńı je |DE| =
|CD| = 1. Pravoúhlý trojúhelńık DEA s pravým úhlem při vrcholu E se
v tomto otočeńı zobraźı na pravoúhlý trojúhelńık DCA′, tj. plat́ı |EA| =
|CA′|, kde A′ je obrazem vrcholu A. Bod A′ pak lež́ı na polopř́ımce BC za
vrcholem C (obr. 6). Podle zadáńı plat́ı |BA′| = |BC| + |CA′| = |BC| +
|EA| = 1. Obsah pětiúhelńıku ABCDE je tak roven obsahu čtyřúhelńıku
ABA′D , v němž jsou trojúhelńıky ABD, A′BD shodné podle věty sss.
Trojúhelńık A′BD má přitom obsah 1/2, proto pětiúhelńık ABCDE má
obsah 1, jak jsme chtěli dokázat.

Př́ıklad 5
Je dán konvexńı pětiúhelńık ABCDE s pravými úhly při vrcholech B a
E, v němž plat́ı |AB| = |BC|, |DE| = |EA| a |BE| = 10 cm. Určete v
cm2 obsah daného pětiúhelńıku ABCDE .

Řešeńı. Označme F , G pr̊useč́ıky př́ımky CD s kolmicemi k př́ımce BE,
které procházej́ı po řadě vrcholy B, E daného pětiúhelńıku (obr. 7). Na
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Obr. 7: Př́ıklad 5

úhlopř́ıčce BE uvažujme bod P , pro nějž plat́ı |BP | = |BF |. V otočeńı se
středem B a orientovaným úhlem −90◦ je přitom obrazem bodu P bod F
a obrazem bodu A je bod C. Trojúhelńıky ABP a CBF jsou tud́ıž podle
věty sus shodné, nebot’ |6 ABP | = |6 CBF | a také |6 APB| = |6 CFB|.
Vzhledem k tomu, že př́ımky BF a EG jsou rovnoběžné, plat́ı (s ohledem
na shodnost trojúhelńık̊u ABP a CBF )

|6 DGE| = 180◦ − | 6 CFB| = 180◦ − | 6 APB| = | 6 APE|,

tedy trojúhelńıky DGE a APE jsou také shodné (usu), a proto |EG| =
|EP |. Nav́ıc, prvńı z nich je obrazem druhého v otočeńı se středem E
a orientovaným úhlem +90◦. Dále plat́ı |BF | + |GE| = |BP | + |EP | =
|BE| = 10 cm.

Obsah daného pětiúhelńıku ABCDE je tak roven obsahu lichoběžńıku
BFGE se základnami BF a GE, tedy 1

2 |BE|(|BF |+ |GE|) = 1
2 |BE|2 =

50 cm2.

Př́ıklad 6
Je dán konvexńı pětiúhelńık ABCDE s pravými úhly při vrcholech B a
E. Dokažte, že obvod trojúhelńıku ACD neńı menš́ı než 2 |BE|.

Řešeńı. Označme K, L středy úhlopř́ıček po řadě AD, AC. Délka lomené
čáry BLKE je rovna polovině obvodu trojúhelńıku ACD, protože plat́ı:
|KL| = 1

2 |CD| , |EK| = 1
2 |AD| a |BL| = 1

2 |AC|. Tedy velikost úsečky
BE je ostře menš́ı než délka lomené čáry BLKE, která je rovna obvodu
trojúhelńıku ACD.

Př́ıklad 7 (9. geometrická olympiáda I. F. Šarygina, 2013)
Je dán konvexńı pětiúhelńık ABCDE s pravými úhly při vrcholech B a
E, v němž |AB| = |AE| a |BC| = |CD| = |DE|. Necht’ P je pr̊useč́ık jeho
úhlopř́ıček BD a CE. Dokažte, že |PA| = |AB|.
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Obr. 8: Př́ıklad 6

Obr. 9: Př́ıklad 7

Řešeńı. Daný konvexńı pětiúhelńık ABCDE je osově souměrný podle osy
AP . Trojúhelńık BCD je rovnoramenný se základnou BD a plat́ı, že
|6 DBC| = |6 BDC|. Dále je zřejmé, že , protože |6 ABP | + |6 PBC| =
1
2 |6 CPD| + |6 PDC| = 90◦. Odtud plyne, že |6 ABP | = | 6 APB|, tedy
trojúhelńık ABP je rovnoramenný se základnou BP a |PA| = |AB|.

Př́ıklad 8 (XVII. MO junior̊u – Polsko, 2022, viz [5])
V konvexńım pětiúhelńıku ABCDE s pravým úhlem při vrcholu D plat́ı
|AC| = |AD| a |BD| = |BE|. Dokažte, že trojúhelńık ABD a čtyřúhelńık
ABCE maj́ı stejný obsah.

Řešeńı. Označme K, L po řadě pr̊useč́ıky úhlopř́ıčky AD s EC a BD s
EC. V lichoběžńıku APDE plat́ı, že obsah trojúhelńıku EAK se rovná ob-
sahu trojúhelńıku KPD. Analogicky v lichoběžńıku PBCD plat́ı, že obsah
trojúhelńıku PLD se rovná obsahu trojúhelńıku LBC. Tedy trojúhelńık
ABD a čtyřúhelńık ABCE maj́ı stejný obsah.
Poznámka.Článek vznikl se souhlasem redakčńı rady časopisu MFI, nebot’

podstatná část článku již byla zde zveřejněna.
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Obr. 10: Př́ıklad 8
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Intersections of surfaces of revolution:
Interactive modelling
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Department of Technical Mathematics
Faculty of Mechanical Engineering, CTU in Prague
Karlovo nám. 13, 121 35 Praha 2, Czech Republic

email: jakub.kubat@fs.cvut.cz, marta.hlavova@fs.cvut.cz

Abstract. In the Grasshopper programming environment, imple-
mented within the Rhinoceros 3D modelling software, scripts generating
CAD geometry in real-time can be created. The interactive nature
of such scripts can serve as a tool for deepening the understanding of
certain geometrical exercises presented during constructive geometry
lectures. One such example is presented in this paper where a simple
program capable of generating and displaying intersections of surfaces
of revolution is made.

Keywords: Interactive modelling, surface of revolution, intersection,
CAD

1 Introduction
In this paper, an approach to creating a simple Grasshopper [1] program
for generating and visualizing the intersections of two surfaces of revo-
lution [2][3] is presented. The Grasshopper programming environment is
a part of the Rhinoceros 3D modelling software and allows for scripting
in a visual node-based environment and for scripting using one of several
implemented programming languages, for which libraries providing access
to Grasshopper commands are provided. These commands allow for gen-
erating geometries from scratch, but also provide tools for manipulating
geometry already present in the main Rhinoceros 3D viewport. One of the
main features of Grasshopper is the real-time nature of the user interface,
where changes to parameters used in the scripts affect the geometries,
virtually, in real-time. The Grasshopper program presented in this paper
shows how several input parameters and geometries can be combined to
form a useful and customizable tool for use in lectures.

2 The program structure
As the goal is to create a program for modelling the intersection of two
surfaces of revolution, several inputs governing the geometry to perform
calculations on are needed. Defining the surfaces of revolution is the first
step and can be done in many ways. Setting the generatrix curves and
axes of rotation were chosen in this presented approach. As Grasshopper
is capable of manipulating geometry created in the Rhinoceros viewport,
the generatrix curves can be modelled directly within Rhinoceros and sub-
sequently modified using the Grasshopper program. With this knowledge,
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(a) First generatrix
curve

(b) Second generatrix
curve

(c) Surfaces of revolu-
tion

Fig. 1: User-defined generatrix curves and their respective surfaces of
revolution

both generatrix curves can be modelled without the relative position of
the two surfaces of revolution being taken into consideration yet, and their
positioning can be carried out later on using the Grasshopper script. As
the geometry can be altered later on in the Grasshopper program, explic-
itly defining the axes of revolution becomes unnecessary. To be able to
gauge the scale of both surfaces of revolution in relation to each other, a
reference axis of rotation becomes beneficial. Both generatrix curves may
be modelled in respect to the same arbitrary axis of rotation, that can
be defined, for example, as one of the world axes, thus not requiring any
user input. In this approach, the world axis z was chosen for this exact
function and both generatrix curves are to be modelled with respect to
it. An example of two generatrix curves modelled in the Rhinoceros 3D
viewport in the xz plane is shown in Figure 1.

These two generatrix curves are now the only two user input geome-
tries required for defining the base surfaces used in the program. All of
the other steps can now take place in the Grasshopper program, as the
sequence of geometry modifications and other operations are going to be
the same for all input geometries one were to define.

2.1 Grasshopper

Next step is to generate and position the surfaces of revolution governed by
the two user-defined generatrix curves and the arbitrarily defined axes of
rotation. This can be done in Grasshopper using any of the implemented
programming language libraries or using the node-based system directly.
In any case – a command for generating a surface of revolution is called
and two input parameters are fed into it – a generatrix curve and an axis
of rotation. Calling the command twice, once for each generatrix curve,
supplying the world axis z as the axis of rotation both times, two surfaces
of revolution are generated, as seen in Figure 1c.
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Fig. 2: Grasshopper user interface for the presented program

(a) Rotation transforma-
tions applied to the second
surface

(b) Translation applied to the second
surface

Fig. 3: Transformations applied to surfaces
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Fig. 4: Intersection curves of the two surfaces of revolution

Moving along in the program, next the relative position of the two
surfaces of revolution should be defined. Transformations can be applied
to the Grasshopper-generated geometry using a general Transform com-
mand. This command takes a 4x4 transformation matrix as an input. In
order to set the relative position of the surfaces, one can remain station-
ary, and all of the desired transformations can be applied to the other, in
order to make later adjustments more user-friendly. For the purposes of
this paper, two rotations and one translation are going to be applied to
one of the surfaces, and those will be all the degrees of freedom the user
will have access to in order to define the relative position of the surfaces of
revolution. The transformations will be applied to the red surface, gener-
ated from the second generatrix curve. First comes a rotation around the
world y axis. Second is a rotation around the world x axis. The combined
effect of these two affine transformations can be seen in Figure 3a.

The last transformation to apply is the translation. It was chosen to
take place along the world x axis. Its effect can be seen in Figure 3b.

With all three of the chosen transformations applied, the last step
is to calculate and display the surface intersection curves. Calling the
surface intersection command calculates and returns all intersection curves
present, also handling edge cases. The resultant display can be seen in
Figure 4. In Listing 1 the code for the presented program is shown. The
program was coded in the Grasshopper Python 3 module and uses the
rhinoscriptsyntax library for geometry generation.
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Listing 1: Python code of the program

1 ””” Grasshopper  Su r f a c e s  o f  Revolut ion  I n t e r s e c t i o n  S c r i p t ”””
2 ”Author :  Jakub  Kubat”
3 ” Vers ion :  1 . 1 ”
4
5 import r h i n o s c r i p t s y n t a x as r s
6 import math
7 Geo1 = [ ] # output l i s t f o r the 1 s t sur face o f

r e vo l u t i on and r e l a t e d geometr ies
8 Geo2 = [ ] # output l i s t f o r the 2nd sur face o f

r e vo l u t i on and r e l a t e d geometr ies
9 I n t s c = [ ] # output l i s t f o r the i n t e r s e c t i o n curves

10
11 ##### FUNCTIONS #####
12
13 def Tx( x ) : # trans format ion matrix f o r t r an s l a t i o n

along g l o b a l x
14 tx =[ [1 , 0 , 0 , x ] ,
15 [ 0 , 1 , 0 , 0 ] ,
16 [ 0 , 0 , 1 , 0 ] ,
17 [ 0 , 0 , 0 , 1 ] ]
18 return tx
19
20 def Rx( a ) : # trans format ion matrix f o r r o t a t i on

around g l o b a l x
21 c = math . cos (math . rad ians ( a ) )
22 s = math . s i n (math . rad ians ( a ) )
23 R = [ [ 1 , 0 , 0 , 0 ] ,
24 [ 0 , c , −s , 0 ] ,
25 [ 0 , s , c , 0 ] ,
26 [ 0 , 0 , 0 , 1 ] ]
27 return R
28
29 def Ry( a ) : # trans format ion matrix f o r r o t a t i on

around g l o b a l y
30 c = math . cos (math . rad ians ( a ) )
31 s = math . s i n (math . rad ians ( a ) )
32 R = [ [ c , 0 , −s , 0 ] ,
33 [ 0 , 1 , 0 , 0 ] ,
34 [ s , 0 , c , 0 ] ,
35 [ 0 , 0 , 0 , 1 ] ]
36 return R
37
38 ##### SCRIPT #####
39
40 s u r f 1 = r s . AddRevSrf ( r s . coe r cecurve ( Crv1 ) , ( ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) ) )

# crea t i on o f 1 s t sur face o f r e vo l u t i on
41 s u r f 2 = r s . AddRevSrf ( r s . coe r cecurve ( Crv2 ) , ( ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) ) )

# crea t i on o f 2nd sur face o f r e v o l u t i on
42
43 r s . TransformObject ( sur f2 , Rx( Ang leVer t i ca l ) ) # ro ta t i on o f

2nd sur face o f r e vo l u t i on around g l o b a l x ( ang le from
v e r t i c a l p lane )
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44 r s . TransformObject ( sur f2 , Ry( Ang l ePro f i l e ) ) # ro ta t i on o f
2nd sur face o f r e vo l u t i on around g l o b a l y ( ang le from
p r o f i l e p lane )

45 r s . TransformObject ( sur f2 , Tx( Dist ) ) # t r an s l a t i o n
o f 2nd sur face o f r e vo l u t i on along g l o b a l x ( d i s t ance
between r e s p e c t i v e i n i t i a l o r i g i n s in the XY plane )

46
47 i f Boo l Int sc == True : # INTERSECTION CALCULATIONS
48 I n t e r s e c t i o n = r s . I n t e r s e c t B r e p s ( r s . coe rcebrep ( s u r f 1 ) , r s .

coe rcebrep ( s u r f 2 ) ) # in t e r s e c t i o n curves
49
50 i f I n t e r s e c t i o n : # appending i n t e r s e c t i o n r e s u l t s to

the proper output l i s t
51 for i in range ( len ( I n t e r s e c t i o n ) ) :
52 I n t s c . append ( r s . coe r cecurve ( I n t e r s e c t i o n [ i ] ) )
53
54 Geo1 . append ( s u r f 1 ) # appending 1 s t sur face o f r e v o l u t i on to

the proper output l i s t
55 Geo2 . append ( s u r f 2 ) # appending 2nd sur face o f r e vo l u t i on to

the proper output l i s t

3 Conclusion
An approach to creating an interactive program in the Rhinoceros 3D Grasshopper
environment was presented. Simple steps taken during the development of a teaching
program were summarized, and the underlying decisions were discussed.

The Grasshopper environment provides ways to gather user input and use it di-
rectly as variable parameters in the programs created within. Some of the ways to
input numerical variables in real time include widget-like nodes that remain visible
when viewing the main Rhinoceros 3D viewport, allowing for parameter modifications
to translate into visual changes directly, providing intuitive feedback and allowing for
creative decisions to take place. This is the very reason Rhinoceros and Grasshop-
per were chosen to create this interactive intersection generator for use in lectures,
because modifications to the generated geometry can be made immediately and can
spark discussions between the students and the professor.
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Katedra algebry a geometrie, Fakulta matematiky, fyziky a informatiky 
Univerzita Komenského v Bratislave
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Abstract. A refinement c urve i s g enerated by r epeatedly a pplying a
refinement rule to a  coarse control p olygon. In our talk, we discuss the
computation of the length of a refinement curve with a  fixed number of
iterations using Chaikin’s algorithm. We also present several practical
examples where the constant length of the refinement c urve n eeds to
be preserved.
Keywords: Subivision, curve length, refinement.

1 Introduction
Subdivision curves are generated by iterative refinement of an input poly-
line [3, 5]. The limited amount of sources are concerned with the length
of such curves [2], although the study of the length of curves in general is
still an attractive topic [4]. In this work, we investigate the computation
of the length of refinement curves obtained by Chaikin’s scheme [1] after
a fixed number of iterations. We also present computational details and
experimental results for the construction of corner roundings, where the
constant length of the refinement curve must be preserved.

2 Chaikin’s Scheme
Let a polyline after k iterations be given by points V k

0 , V k
1 , . . . , V k

n ∈ R2.
Chaikin’s refinement produces a polyline after k+1 iterations with points
V k+1
0 , V k+1

1 , . . . , V k+1
2n−1 ∈ R2, defined by

V k+1
2i =

3

4
V k
i +

1

4
V k
i+1, V k+1

2i+1 =
1

4
V k
i +

3

4
V k
i+1.

V k
i

V k+1
2i

V k+1
2(i+1)

V k
i+1

V k
i+2

· ·
· · · · V k

i

V k
i+1

V k
i+2

· ·
· · · ·

V k+1
2i+1

V k+1
2(i+1)+1

Fig. 1: Refinement step of Chaikin’s scheme.
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For a polyline P with three control points V 0
0 , V

0
1 , V

0
2 , the control

points of the refined polyline after k iterations can be expressed in matrix
form using the information from the previous iteration as

V k
0

V k
1

V k
2

V k
3
...

V k
2k

V k
2k+1


=

1

4



3 1 0 0 · · · 0 0
1 3 0 0 · · · 0 0
0 3 1 0 · · · 0 0
0 1 3 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 3 1
0 0 0 0 · · · 1 3





V k−1
0

V k−1
1

V k−1
2

V k−1
3
...

V k−1
2k−1

V k−1
2k−1+1


V k = SkV k−1, Sk ∈ R(2k+2)×(2(k−1)+2).

By recursively expanding, we obtain

V k = SkV k−1 = SkSk−1V k−2 = · · · =
k∏

i=1

SiV 0.

We can express the i-th row of the matrix
∏k

i=1 S
i as

1

4k


...

ai (4k − ai − bi) bi
...

 ,

where

ai =
(2k − i+ 2)(2k − i+ 1)

2
, bi =

(i− 1)(i− 2)

2
.

Subsequently, we can compute the coordinates of the point V k
i as the

affine combination of input control points V 0
0 , V

0
1 and V 0

2 as

V k
i =

ai
4k

V 0
0 +

4k − ai − bi
4k

V 0
1 +

bi
4k

V 0
2 .

2.1 Computation of Polyline Length

To compute the length ℓ of the polyline V k
0 , ..., V k

2k+1 after k iterations of
Chaikin’s refinement of the polyline P, we need to sum the lengths of the
vectors given by two consecutive points V k

i , V k
i+1, i = 0, ...2k, i. e.

ℓ =
2k∑
i=0

|V k
i+1 − V k

i |.
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To express the length ℓ using only the input control points V 0
0 , V

0
1 and

V 0
2 , we use the matrix

∏k
i=1 S

i. Denote by Bk and T k the submatrices of∏k
i=1 S

i obtained by removing the first and last row, respectively. Then
the vectors V k

i+1 − V k
i may be expressed as V k

1 − V k
0

...
V k
2k+1 − V k

2k

 = Bk

V 0
0

V 0
1

V 0
2

− T k

V 0
0

V 0
1

V 0
2

 = (Bk − T k)

V 0
0

V 0
1

V 0
2

 .

Since the vector V k
i+1 − V k

i , i = 0, ..., 2k may be computed as

V k
i+1 − V k

i =
−2k + i

4k
V 0
0 +

2k − 2i

4k
V 0
1 +

i

4k
V 0
2 ,

and if we denote the coordinates of the input coordinates V 0
j = (xj , yj)

⊤,
j = 0, 1, 2, we can compute the length as

ℓ =
1

4k

2k∑
i=0

√
(αix0 + βix1 + γix2)2 + (αiy0 + βiy1 + γiy2)2,

where
αi = −2k + i, βi = 2k − 2i, γi = i.

3 Corner Rounding with Fixed Length
Consider an input polyline given by points V 0

0 , V
0
1 and V 0

2 and fix the
starting point of the rounding S on the segment V 0

0 V
0
1 . Let W1 = V 0

1

and let W0 = 2S −W1. Our task is to choose a point W2, so the refined
curve after fixed number of iterations k with control points W0,W1,W2

has fixed length ℓ.
All feasible points W2 = (x, y)⊤ must satisfy the equation g(x, y) = 0,

where

g(x, y) =
1

4k

2k∑
i=0

√
(αix0 + βix1 + γix)2 + (αiy0 + βiy1 + γiy)2 − ℓ.

To determine the position of the point W2, we need to find the intersection
of the ray V 0

1 V
0
2 with the curve g(x, y) = 0, see Fig. 2.

Computationally, it is more efficient to transform the input data into
a coordinate system ⟨O′, e′1, e

′
2⟩, where

O′ = V 0
1

e′2 =
V 0
2 − V 0

1

∥V 0
2 − V 0

1 ∥
=: (x′, y′)⊤

e′1 = (y′,−x′)⊤.
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0 0

W0

k = 9

W1 = V 0
1

W2

V 0
2

V 0
0

Fig. 2: Determination of the point W2 on the curve g(x, y) = 0 for k = 9.

In this coordinate system, the x coordinate of the pointW2 vanishes. With
x = 0, we may plug this value into the function g(x, y) and we obtain the
y coordinate as a root of the function

g0(y) = g(0, y) =
1

4k

2k∑
i=0

√
(αix0 + βix1)2 + (αiy0 + βiy1 + γiy)2 − ℓ.

For the computation of the root we used the bisection method on the
interval [0,∞). After the calculations, we transform the data back to the
standard coordinate system ⟨O, e1, e2⟩.

4 Examples

For illustration, consider the following cases. In the first example, we
set the input polyline to V 0

0 = (400, 200)⊤, V 0
1 = (100, 100)⊤, V 0

2 =
(100, 400)⊤. The number of iterations is set to k = 9, and we fix the length
of the resulting curve to ℓ = 300. The starting point of the rounding S
is defined to be on the segment V 0

0 V
0
1 , i. e. S = (1 − t)V 0

0 + tV 0
1 , where

t ∈ [0, 1]. As we see in Fig. 3, various placements of the starting point S
produce a correct rounding for the input polyline and for the increasing
values of the parameter t, the end point of the rounding approaches the
last input point V 0

2 . As a consequence, for large values of t, the rounding
may exceed the input polyline.

106 Note on refinement curve length



V 0
2

t = 0.2 t = 0.45 t = 0.7

V 0
0

V 0
1 = W1

W0

W2

S

V 0
2

V 0
0

V 0
1 = W1

W0

V 0
2

V 0
0

V 0
1 = W1

W0

W2

S

W2

S

Fig. 3: Corner rounding with fixed length ℓ = 300 with various placements
of the starting point S.

In the second example, the input polyline is given by V 0
0 = (200, 100)⊤,

V 0
1 = (400, 300)⊤, V 0

2 = (100, 600)⊤. Again, we set the number of intera-
tions to k = 9, as seen in Fig. 4. However, now we fix the starting point
as the midpoint S = 0.5V 0

0 + 0.5V 0
1 and inspect various lengths of the

refined curve. Similarly as in the previous example, the endpoint of the
rounding approaches the last input point with increasing length and may
overshoot it for sufficiently large lengths.

W2

W2

ℓ = 200 ℓ = 300 ℓ = 400
V 0
0 = W0

V 0
1 = W1

V 0
2

S

V 0
0 = W0

V 0
1 = W1

V 0
2

S

V 0
0 = W0

V 0
1 = W1

V 0
2

S

Fig. 4: Corner rounding with various lengths.

Note on refinement curve length 107



5 Conclusion
We have presented a method for computing the length of the refinement
curve obtained by k iterations of Chaikin’s rule. A formula was provided
that avoids multiplication of large matrices. Furthermore, we demon-
strated how to construct a refinement curve of fixed length by imposing
additional constraints. Future work includes formalizing the constraints
to ensure that the curve does not exceed the input control polygon, gen-
eralizing the method to control polygons with an arbitrary number of
points, and exploring different constraints and subdivision rules to gener-
ate refinement curves of fixed length.
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Abstract. A triply periodic surface gyroid
and 3D printing technology are, roughly 
speaking, contemporaries. Technology 
experts share an opinion on impossibility to 
produce physical model of gyroid before 3D 
printing era. An commonly known aesthetical 
attractiveness as well as wide technical 
applicabilities spectrum of gyroid are 
enriched here by our original view on mutual 
position of straight lines and gyroid. 
Appendices offer some alphabet-like items on gyroid and a many different 
experiences with it. E. g. involving gyroid-phenomenon to elementary course 
context of mathematics at technical university is educational offer. Also 
challenges to meditate on correlation input-output algorithmical hierarchy if 
starting point is verbal prompt, for ChatGPT, to sketch of an abandoned large 
3D printed gyroid model in the university yard and output looks like ... is it  
gyroid? See inside a contribution. And others. 

Keywords: gyroid, surface, 3D print, straight line, graphic calculator, ChatGPT,
sustainability, metamaterial, Gaussian bell-curve 

1 Introduction 

The gyroid is a surface. Triply periodic one. It is aesthetically magical on the 
one hand. It is superstar in many art galleries. But it  has also various uses from 
point of view of mathematics and/or physics. Gyroid can serve as  

 an geometrical icon of “open” structures,

 representant of lightweight materials,
 inspiration for metamaterials creating – thanks to existence of its

mathematical representation via implicit equation of three variables in 3D 
orthogonal coordinate system,  
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 useful and beautiful infill in 3D printing; there are some “odes on gyroid”,

e. g. in [1], as follows, quoted: “gyroid is hands down the best. as a plus, it

looks good on timelapses.”, “I do use gyroid on all translucent prints though.

Can’t beat that cool infill pattern showing through.”, “Gyroid is def the
strongest, I pretty much use it in 90% of my prints.“

 motivation for architectonic structures [2],
 alternative for al dente-pasta-like in nuclear stars simulations [3, 4, 5, 6],

etc. 
In this paper we offer simple as well as original view on a gyroid in 

combination with parallel straight lines placed to series of gyroidal holes. We 
combine representation of a scene via a) digital simulation, b) photo of physical 
model, c) mathematical equations. 

There is plenty of rational attitudes to gyroid. They agree with Gauss-bell 
curve distribution. There are gyroid-bestoids fans, also gyroid-fans – the 
enemies of lovers of straight lines. 

2 Method  

An equation of gyroid in implicit form, in 3D Cartesian coordinate system 
(O; x, y, z),  looks like sinx cosy + siny cosz+ sinz cosx = 0.

By observing the physical model of the gyroid and straight lines/wooden 
skewers, Fig. 1, and with the help of digital visualization of the scene [7], Fig. 
2, we came to the following conclusions: 

A) the parallel straight lines of one set are skewed (SK: mimobežné) with

ones in next two sets of straight lines; lines of one set are perpendicular to the 
cube wall. 

B) Four sets of parallel straight lines in one set: lines inside one set are of
body diagonal directions, correspondingly. For positive real number c, these are
yellow (c, c, c), red (– c, c, c), green (c, – c, c) and blue (c, c, – c) direction
vectors, Fig. 3.   

Fig. 1:  Gyroid and straight lines/wooden skewers. Sticks of the same direction, 
at the right figure, are for the practical simplicity pulled together with a rubber 

band. 
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Fig. 2:  Digital visualization of the scene, Desmos; gyroid alone (left) an gyroid 
with set of parallel lines (right). 

r = (– c, c, c)                     g = (c, – c, c)           b = (c, c, – c)

Fig. 3:  Direction vectors for c = 1; yellow one, y =  (c, c, c), is not figured here.

3 Discussion 

Although not very deep considerations about the gyroid and lines, nevertheless 
they have led to the generation of a rich palette of questions, opportunities, 
challenges, e. g.: 
 multilevel pedestrian communications inside gyroid-shaped-structures.
 cylindrical helixes with appropriate radius instead of straight lines, with

constant/nonconstant thread height, 
 instead of straight lines, take e.g. straight cylindrical surfaces (with a

defining line, a circle, etc., but also with some non-closed defining line) or 
some suitable translational surfaces and let them pass through a series of gyroid 
holes, 
 instead of lines/surfaces, take a string and explore the properties of

threading it through the holes of a gyroid, 
 field of acoustics: sound amplification by gyroid, diffraction, interference,

..., 
 flow of media (liquid, air/gas, light) through a gyroid; could it be used as

a splitter? That is, (for example) light coming from somewhere would be split 
into several directions when it exits, 
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 intersection of a gyroid with spherical/other – non-planar surfaces (with
a common center (at a gyroid point or in a hole), different R or with mutually
displaced centers and the same R).

4 Conclusion 

Suppose we have gyroidal structure placed in cube. We present here figures on 
digital simulation, photos and info on skewness (in Slovak: mimobežnosť) of 

the straight lines, where they go through the series of holes, perpendicularly on 
the cube walls.  Similarly, scene with straight lines of the some direction as 
a body diagonals have. In this second case lines have an intersection. 
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Appendices 

Appendix B   Beauty. Gyroid – not only Bestoid. Is is also Beautoid, Fig. 4. 

Fig. 4:  a) Gyroid – Beautoid. Gyroid and its shadows in sunshine, 
b) Gyroid geometry offers a multitude of possibilities for tactile sensations.

Appendix C   ChatGPT. Challenges to meditate on correlation input-output 
algorithmical hierarchy if starting point is verbal prompt, for ChatGPT, to 
sketch of an abandoned large 3D printed gyroid model in the university yard 
and output looks like ... see left figure 5a. Is this  gyroid? Let the loneliness of 
the gyroid deepen, and time leaves a strong mark on its appearance, Fig. 5b. 
When we put ChatGPT Abraham's-like-prompt on about "at least one man" 
with a sense of responsibility, the AI's graphical response was enhanced with 
a water jug and a wooden sign with the warning "Do Not Remove", Fig. 5c. 

Fig. 5:  a) An abandoned large 3D printed gyroid, b) time leaves a strong mark 
on its appearance, c) added water jug and a wooden sign with the warning "Do 

Not Remove" . ChatGPT Images, Aug 8, 2025. 
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Comparation of i) ChatGPT-created gyroid, ii) one generated via graphical 
calculator and finally iii) real 3D printed object (Fig. 6) takes together these 
findings, these compatibilities vs. incompatibilities: 

Fig. 6:  a) Is the first, AI-generated object gyroid? Compare it with b) output 
from graphical calculator and with c) real 3D printed gyroid on photo. 

Object on a) is open structure, it has triply periodicity – like the gyroid. Some 
kind of twining plant is given but it is not an ivy of common shape. 
Discrepancies are in incorrect position of holes in two neighbour cube faces, 
long and short paths with no-zero thickness, in 3D print, absent; pronounced, 
distinct vertices and edges are not present in real gyroid; finally, the first object 
looks more like solid with holes then like a surface. 

Appendix GG   Gulliver gyroid. October 3, 2025 is a birthday of Gulliver 
gyroid, fig 7. Our colleague DM, with the help of RĎ from authors team, 
finished making a beautiful, relatively large gyroid, with an edge length of 30 
cm. Gulliver consists of five layers. Time of 3D printing of one layer was about
the whole 24 hours. So far, approximately one hundred people – some of our
students in Trnava and Dubnica nad Váhom, colleagues and coauthor IM’s

family members have been able to meet the Gulliver gyroid.

Fig. 7:  The Gulliver gyroid in various situations 

Appendix E   Education. One of central tips for involving gyroid-phenomenon 
to elementary course context of mathematics at a technical university is 
visualisation of gyroid in some of common graphical web calculators  [7]. It is 
a surface, but it is not a graph of a function of several variables. In this way, the 
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gyroid can reinforce the knowledge of the difference between these two types 
of graphs. Similarly, HS and IM from authors team found, that handling with 
planar sections of gyroid, for variability of plane orientation, Fig. 8, can serve 
as the next way of useful training of spatial imagination.   

Fig. 8:  Three pairs of various planes orientations and positions, and their 
intersections with gyroid, correspondingly. 

Below, on Fig. 9, are four student’s quick sketches of gyroid, within a few 
minutes. Figs are significantly different, but all have in themselves something 
“gyroidal”. 

Fig. 9:   Students’ sketches of gyroid, Secondary Industrial School of Transport 

in Trnava, June 2025 

A notelet to gyroid: Straight lines invited 115



Here are alternatives for involving gyroid-phenomenon into elementary course 
context of mathematics at technical university/secondary school: 
 trig functions,  curve/line – surface – solid/massiv,  functions of one
variable or more variables,  function vs. non-function,  explicit or implicit or
parametric way of object description,  orthogonal projections of something,
 mutual position of …,  transformations of identity/similarity,  linear or
nonlinear transformations,  handling with variables/functions, etc.

Appendix P   Powder. There are many types of 3D printing, e. g. from 
filament, from powder, where special safety attention is required, etc. Flexible 
powder-based gyroid (Fig. 10) was ensured thanks to coauthor RB.  

Fig. 10:  Flexible powder-based, 3D printed gyroid. 

Appendix S   Spontaneity. It is impossible not to add a spontaneous cry of 
amazement at the gyroid of my colleague-friend MM, 2025-07-29: „His eyes! 
Jumping nut! I thought it would be easier! :D” (In Slovak: “Jeho oči! Matička 

skákavá! Myslela som si, že to bude dačo jednoduchšie! :D“)  

Appendix T   Trypophobia. It would probably be strange if there was no other 
phenomenon, next view of the gyroid than fascination and respect. A Gaussian 
bell curve applies. As IM’ colleague PŠ informed, there is a trypophobia in 
nature. Maybe, it can be taken as undesirable, although statistically natural, 
counterbalance to aesthetic and practical enthusiasm for gyroid. 
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On Kárteszi type triangle geometry by geometric 

(Grassmann-Clifford) algebra 

To memory of my professor and doctor father 

 Ferenc Kárteszi (1907-1989)
Emil Molnár 

Dept. of Algebra and Geometry, Fac. of Natural Sciences, 
Budapest Univ. of Technology and Economics, 

H-- 1521 Budapes XI. Egry J. str. 1. H. 22. Hungary 
email: emolnar@math.bme.hu 

Abstract. To memory of Ferenc Kárteszi I follow his didactical credo. Draw 
triangles outward on sides of a given triangle ABC in the Euclidean plane, say 
𝐴𝐵𝐶̅, 𝐵𝐶𝐴̅, 𝐶𝐴𝐵̅, and consider the segments 𝐴𝐴̅, 𝐵𝐵̅, 𝐶𝐶̅. Special starting 
conditions guarantee that the above segments intersect each other in a point K, 
called Kárteszi points to his honour. The later (~1850) strong and very useful 
machinery (by Grassmann and Clifford, in analogy of vector cross product) serves 
us a unified method and further interesting discussions. 

Keywords: Triangle geometry, projective geometric (Grassmann-Clifford) 
algebra, absolute geometry by János Bolyai, problem solving by geometric 
transformation 

11th Slovak-Czech Conference on Geometry and Graphics 2025 117



Let us recall a well-known school task: In the (Euclidean E2) plane of a triangle 
ABC we draw regular triangles outward on sides of ABC, say 𝐴𝐵𝐶̅, 𝐵𝐶𝐴̅, 𝐶𝐴𝐵̅, 
respectively. Prove that the segments 𝐴𝐴̅, 𝐵𝐵̅, 𝐶𝐶̅ intersect each other in a point 
K, that is the isogonal point of ABC and the distance sum AK + BK + CK is 
minimal for K among all points of the plane (Fig. 1). 

Fig. 1:  K is the isogonal (or Fermat-Torricelli) point of triangle ABC 
with minimal distance sum 𝐾𝐴 + 𝐾𝐵 + 𝐾𝐶 = 𝐴𝐴̅ = 𝐵𝐵̅ = 𝐶𝐶̅. 

Professor Kárteszi noticed that instead of regular triangles we can draw isosceles 
ones with all equal base angles, and the above K (called Kárteszi point) exists 
also in the Bolyai–Lobachevsky hyperbolic plane H2 (in the sphere S2 as well, 
(see also Kálmán, 1989 and Sect. 2), the orthocentre, barycentre are specific 
cases.  

This problem leads also to a more general Yaglom triangle configuration 
and to an analogous extremal point K, where the distance sum 
αKA + βKB + γKC is minimal with given positive real numbers α, β, γ (think of 
α = 4, β = 3, γ = 2, Figs. 2, 3.). 

Moreover, as a new result of our previous paper, an extension onto "absolute 
plane" (S2, E2, H2, Minkowski plane M2, Galilei (or isotropic) plane G2) can be 
formulated and solved by three reflections theorem (see e.g. Bachman [1],
Molnár, 1978, [2], and Weiss, 2018, [13]), and geometric (Grassmann–Clifford 
type) algebra (Perwass et al., 2004 and Sect. 3, [12]).  

118 On Kárteszi type triangle geometry by geometric (Grassmann-Clifford) algebra 



Fig. 2: Segmentation (then 
linearization) of αKA + βKB + γKC 
 (say α = 4, β = 3, γ = 2) by rotatory 

similarities 𝛂̅, 𝛃̅, 𝛄̅ about A, B, C, 
with angles α̅, β̅, γ̅,  respectively 

(sketch). 

Fig. 3: The construction of the 
extremal point 𝐾 = 𝐴𝐴̅ ∩ 𝐵𝐵̅ ∩ 𝐶𝐶̅ 
to Yaglom's problem in Fig. 2.  
Here α : β : γ ~ 4 : 3 : 2 (satisfy the 
triangle inequalities!), and α𝐴𝐴̅ =
β𝐵𝐵 =̅̅ ̅̅ ̅ γ𝐶𝐶̅.  

Open problems arise as well. By this we want to follow F. Kárteszi's

didactical credo (see also his wonderful book Kárteszi 1976, [5] of great 
international success): 
Start with a natural, elementary, visually well understandable task! Then follow 
the manipulations, tools, new mathematical concepts, the technical machinery; 
then the solution, occasional theory, further applications, extensions ... . 

In the presentation and future papers the projective geometric (Grassmann- 
Clifford type) algebra leads us to the “most general” extension of Kárteszi point

K to triangle ABC with outward drawn triangles 𝐴𝐵𝐶̅, 𝐵𝐶𝐴̅, 𝐶𝐴𝐵̅ and 𝐾 = 𝐴𝐴̅ ∩
𝐵𝐵̅ ∩ 𝐶𝐶̅. 
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Theorem. For the existence of Kárteszi point it holds the criterion (if and only 
if; now * means the multiplication point):  

sin α𝑏̅ / sin(α + α𝑏̅) ∗ sin β𝑐̅ / sin(β + β𝑐̅) ∗ sin γ𝑎̅/ sin(γ + γ𝑎̅) = 

sin α𝑐̅ / sin(α + α𝑐̅) ∗ sin β𝑎̅ / sin(β + β𝑎̅) ∗ sin γ𝑏̅/ sin(γ + γ𝑏̅) 

     Here e.g. α𝑏̅
 denotes the outward angle at vertex A on the side b, and – for 

simplicity – every angle argument falls between 0 and π. Thus K will be in the 
interior of triangle ABC, as most important situation. (This is a transcendent 
equation, in general!)
     In references [6], [11] we recall Ferenc Kárteszi as a teacher and scientist

personality. 
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Lie group approach to envelope surfaces
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Abstract. The construction and analysis of envelope surfaces are of
great interest from both theoretical and practical perspectives. Certain
special cases, such as the envelopes of (truncated) cones undergoing
Euclidean motion, are particularly relevant for applications in CNC
manufacturing. We describe 1-parameter systems of surfaces as curves
in the homogeneous spaces of appropriate Lie groups. Using the Lie
group formalism, we rigorously express the inherent symmetry and
linearity in the computation of the envelope.

Keywords: envelope surface, characteristic curve, Lie group, homoge-
neous space, tangent mapping.

1 Introduction

The topic of this paper is the connection between envelope surfaces and
Lie groups. Lie groups and their homogeneous spaces are two of the most
widely used mathematical concepts, see e.g. [1, 2]. They are useful for
expressing symmetries. Envelope surfaces have been well studied for both
their theoretical aspects and their applications, with some special cases
being studied in geometric modelling, including canal surfaces [3] and
developable surfaces [4]. The envelopes of moving cones are especially
useful for applications in CNC manufacturing.

This paper ties the two concepts together. We apply a Lie group for-
malism to the computation of envelopes, in an attempt to exploit the
symmetries hidden in our system and simplify the computation. The sec-
tion 2 sums up the theory necessary for our approach. Then, in section 3
we showcase some novel examples, that provide insight into the computa-
tion method. Finally, we conclude the paper.

2 Theory

Let us briefly summarize the necessary concepts from Lie theory and en-
velope computation, before tying them together. The resulting compu-
tational methods will follow closely the theory developed in [5], thus the
proofs will be omitted from here and can be found in the aforementioned
paper.

For the sake of this paper, let us consider an implicitly defined object
F embedded in Rn with its implicit equation f . That is

F = {x ∈ Rn | f(x) = 0}.
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We will refer to F as an elementary object. Typically, we will consider F
to be a surface in R3 (e. g. a plane F = {[x, y, z] ∈ R3 | z = 0}) or a
curve in R2 (e. g. a parabola F = {[x, y] ∈ R2 | x2 − y + 1 = 0}).

A real smooth manifold G of dimension d with a binary operation ◦ is
called a Lie group, if

� (G, ◦) is a group,

� the mappings G × G → G : (x, y) → x ◦ y and G → G : x → x−1 are
smooth.

The tangent space to G at its unit element T1G is called the associated
Lie algebra g. See [1, 2] for more thorough introduction.

Example: As the most important example, let us consider the group of
direct isometries of a Euclidean space, also referred to as special Euclidean
group. In R2 the group is denoted SE(2) and has dimension 3, in R3 the
group is denoted SE(3) and has dimension 6.

All direct isometries can be expressed as Ax+b, where A is a rotation
matrix satisfying AAT = I and detA = 1, while b is a translation vector.
The group can be embedded into the group of (n+ 1)× (n+ 1) matrices
via

(A,b) 7→
(

A b
0 . . . 0 1

)
,

with isometry mapping(
x
1

)
7→

(
A b

0 . . . 0 1

)(
x
1

)
.

In our case, we require the group G to act smoothly on Rn. This
allows us to define a 1-parametric transformation gt ⊆ G for t in some
interval I, which can be applied to our elementary object F , thus defining
a 1-parametric system

F = {gt(F ) | t ∈ I}.

Note, that the elementary object F does not have to lie in F . Also,
observe that each object Ft = gt(F ) in this system can be also defined by
implicitly as

Ft = {x ∈ Rn | ft(x) = 0}, where ft(x) = f(g−1
t (x)).

Now, we would like to compute the envelope of our system Ft. Using
the characterization by [6, 7], we may define characteristic sets as

χt = {x ∈ Rn | ft(x) = 0 ∧ ∂ft
∂t

(x) = 0}.
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The envelope χ of our system will then by the union of these characteristic
sets, i. e.

χ =
⋃
t∈I

χt.

Finally, let us define the linear space of functions Q as follows

Q = span{q:Rn → R | q(x) = f(g−1(x)), g ∈ G}.

Note, that Q contains all implicit equations ft of the system Ft, as well as
f = f ◦ id. For the sake of notation, we also define a map ϕ:G → Q, that
to each element g ∈ G assigns the corresponding function ϕ(g) = f ◦ g−1.

Theorem: Let F be an elementary object in Rn with implicit equation f
and G a Lie group containing 1-parameter system gt for t in some interval
I. Then there exists a preimage set χ̄t such that

χt = gt(χ̄t).

Moreover, for any t0 ∈ I, there exists γt0 ∈ g such that

χ̄t0 = {x ∈ Rn | f(x) = 0 ∧ didϕ(γt0)(x) = 0},

where didϕ: g → Q is a tangent mapping at identity element of our Lie
group G.

The theorem for n = 3 is just a proposition 11 from [5]. Since the
proof in the paper does not depend on dimension, it also applies to this
more general case.

2.1 Finding the envelope

The computation method is as follows. We are given an elementary ob-
ject, defined by its implicit equation f(x) = 0, and the corresponding
transformation gt ⊆ G which is part of a suitable Lie group.

Now, we want to compute the preimage sets χ̄t. For this, we need not
only the elementary object f(x) = 0, but also the equation didϕ(γt0)(x) =
0. To make use of the linearity of tangent mapping, we will need to
evaluate it on the basis of Lie algebra g associated to Lie group G.

Here we need the transformations g(t) that generate our Lie group
G. For example, in standard Euclidean group these will be the rotations
and translations. Differentiating g(t) with respect to t will yield a basis
element γ of the associated Lie algebra g. Differentiating ϕ(g(t)) with
respect to t will yield the desired element didϕ(γ), as this is the definition
of tangent mapping.

To obtain the element γt0 , we will use the proof of proposition 11 in
[5]. Hence, we first define h(t) := g−1

t0 gt and set γt0 = h′(t0). Once we
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express γt0 in our basis, we are able to use the computed coefficients to
write out the desired equation.

The examples in following section will hopefully make the method
more clear.

3 Examples
Let us now illustrate the procedure on couple of examples. We will proceed
with the case of moving parabola in R2, then move on to example in R3.

3.1 Moving parabola

Let us consider a parabola given by

x2 − y + 1 = 0.

This will be our elementary object, with f(x, y) = x2 − y+1. Let us also
consider an Euclidean motion gt parametrized by t

gt =

 −2t+t2

2−2t+t2
−2+2t
2−2t+t2 −t2

2−2t
2−2t+t2

−2t+t2

2−2t+t2 t− t3

0 0 1

 .

Applying this motion to our parabola will yield a new parabola for
each t. The implicit equations of our system can be computed as ft =
ϕ(gt) = f ◦ g−1

t . We obtain

ft =
1

(t2 − 2t+ 2)
2 (t

8 − t7 − 2t6x+ 4t5x+ 4t5y − 3t5 + t4x2 + 4t4x

− 5t4y + 11t4 − 4t3x2 − 4t3xy − 14t3x− 4t3y − 14t3 + 4t2x2

+ 12t2xy + 14t2x+ 4t2y2 + 10t2y + 12t2 − 8txy − 8tx− 8ty2

− 4ty − 8t+ 4x+ 4y2 + 4).

The resulting motion can be seen in figure 3.1.
Now we want to compute the envelope of our system F = {[x, y] ∈ R2 |

ft(x, y) = 0}. As seen from the main theorem, we do not actually need
the equations ft, we only need f and the mysterious equation didϕ(γt) to
compute the preimage sets. As discussed above, didϕ is a linear map from
g to Q. As discussed, we first need to compute the images of generators
of g and then express γt with respect to said generators.

In our case the Lie algebra g is se(2). Its dimension is 3 just like its
corresponding Lie group, and it is generated by

γr =

0 −1 0
1 0 0
0 0 0

 , γtx =

0 0 1
0 0 0
0 0 0

 , γty =

0 0 0
0 0 1
0 0 0

 .
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Fig. 1: Motion of parabola for t ∈ (−2, 2).

The first basis element is the derivative of rotation, the other two corre-
spond to translations in R2, see [2] for details.

To compute the images of these elements, we need to obtain and then
differentiate the equation of parabola undergoing the specific motion. In
the case of rotation, we pick

rt =

cos t − sin t 0
sin t cos t 0
0 0 1

 ,

compute the corresponding parabola as ϕ(rt) and obtain

(x cos(t) + y sin(t))
2
+ x sin(t)− y cos(t) + 1.

Since the unit element of SE(2) corresponds to t = 0, we differentiate the
function at 0 to obtain

didϕ(γr) = x(1 + y).

Analogical computation for translations yields

didϕ(γtx) = −2x,

didϕ(γty) = 1.

Now, we are only left to compute γt and its coefficients in the basis.
We obtain

γt =
2

t2 − 2t+ 2
γr +

4t3 − 2t2 − 2t+ 2

t2 − 2t+ 2
γtx +

−3t4 + 6t3 − 3t2 + 2t

t2 − 2t+ 2
γty.
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Fig. 2: The envelope of system of parabolas with t ∈ (−1, 1).

Thus, the resulting equation is

2

t2 − 2t+ 2
x(1+y)+

4t3 − 2t2 − 2t+ 2

t2 − 2t+ 2
(−2x)+

−3t4 + 6t3 − 3t2 + 2t

t2 − 2t+ 2
= 0.

Solving this alongside f(x, y) = x2− y+1 = 0 yields the preimage set χ̄t.
Applying the transformation gt to the set then yields the characteristic
set and subsequently the envelope χ, which will be a parametric curve,
parametrized by t. Its expression is too long to be included here, but you
can see it in figure 3.1.

The most important part of this computation is its great generality. If
we change the motion of our parabola, the only thing we have to recom-
pute are the coefficients of γt (as long as our motion lies in SE(2)). For
γt = kr(t)γr + ktx(t)γtx + kty(t)γty we obtain the equation

kr(t)x(1 + y)− 2ktx(t)x+ kty(t) = 0.

Expressing y = x2 +1 from the definition of our elementary parabola, we
are in fact solving the cubic equation

2kr(t)x
3 + (3kr(t)− 2ktx(t))x+ kty(t) = 0

with parameter t. The resulting preimage set can then be described as a
curve

χt =

(
xt

yt

)
,

where xt is the solution to the equation above and yt = x2
t + 1.
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3.2 Moving plane in space

Let us consider a plane in space defined as {[x, y, z] ∈ R3 | z = 0}, i.e.
f(x, y, z) = z. Once again we will consider the Euclidean motion, this
time in space. The gt ⊆ SE(3) will be given by rotation about vector
(t + 2, 3t2 − 3t + 2, 4t2 + t + 1) by angle arccos((t2 − 1)/(t2 + 1)) and
translation by vector (−t2, 1 + 3t,−2t3)T . The resulting 4 × 4 matrix is
too big to be included here.

Now similarly to precious case, we want to compute the preimage
sets. This time the Lie group SE(3) has dimension 6, so we obtain six
basis elements of se(3) – three correspond to rotations about axes x, y, z
and three to translations in direction of these axes. The resulting basis is

γrx =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 γry =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 γrz =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



γtx =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 γty =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 γtz =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

The images of basis elements under didϕ are

didϕ(γrx) = −y, didϕ(γry) = −x, didϕ(γrz) = 0,
didϕ(γtx) = 0, didϕ(γty) = 0, didϕ(γtz) = −1.

Since we are mapping a linear space of dimension 6, we would expect
the image to also have dimension 6. However, this is not the case here.
The zeros which we computed above correspond to the symmetries of
our elementary plane z = 0. Neither the rotation about z axis, nor the
translations in the direction of x and y axes, change the position of our
plane. Thus they do not affect the resulting envelope.

In general case we will get some coefficients a, b, c (depending on t),
that will yield the second equation of the form

−ax− by − c = 0,

which is the implicit equation of an arbitrary plane perpendicular to our
elementary plane. Thus the preimage curves will be lines in said plane.
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Fig. 3: The elementary plane (black) along with several planes produced
by equation didϕ(γt) = 0.

In the case of our motion gt we obtain the equation

1

(t2 + 1) (5t2 − t+ 3)
2 (−12 + 50t− 48t2 + 160t3 + 38t4 + 48t5 + 288t6

− 60t7 + t8 + (−10 + 40t− 40t2 + 60t3 − 30t4)X

+ (22 + 12t+ 28t2 + 20t3)Y ) = 0.

Adding the equation z = 0 allows us to compute the preimage curve. The
parametrization of resulting line is straightforward, but too long to be
included here. The plane z = 0 along with the perpendicular planes used
for computation of characteristic lines can be seen in figure 3.2.

Applying gt to the preimage curves will yield the resulting envelope.
Since it is a union of lines undergoing Euclidean motion, the envelope is
a ruled surface. It can be seen in figure 3.2.

4 Conclusion
We connected the theory of Lie groups to the description of envelope sur-
faces. Using the theory developed by [5], we were able to define a suitable
computation method in section 2, that exploits the inherent symmetry
and linearity in computation of characteristic sets.

In section 3 we applied this method to new examples. While the
computational concept is not brand new (see [5]), we were able to extend
its use beyond surfaces in R3.

In the future, we would like to apply the method to objects in other
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Fig. 4: Several instances of the moving plane (gray) along with their
envelope (red).

dimensions and extend the research into projective setup. This would be
the first steps in generalizing the method for an arbitrary setting.
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Abstract. In the text we demonstrate a geometry problem that is
closely related to the well-known Wallace-Simson theorem. This prob-
lem turns out to be quite difficult for some software tools incorporated
in the DGE software. The computation of a searched locus by the
software works well in our case, but the problem must be formulated
in a specific way.
In addition to the conclusions attained by DGE software, we present
computer-aided analytical solutions in the second half of paper. It is
shown that the use of non-degeneracy conditions before elimination
leads to a significant reduction of the computation time.

Keywords: GeoGebra, elimination, locus equation, Wallace-Simson
theorem.

1 Introduction

The paper serves as a demonstration of what can be discovered about a
problem through human-computer collaboration, thus easing the path to
a synthetic solution. It is a concrete example of the topic discussed in the
paper. The second goal was to show not only the capabilities of GeoGebra
tools, but also its current limitations. In this paper we present a way how
to construct a locus of point if a Boolean condition has to be satisfied,
which expresses a fact that two lines form an angle of a given magnitude
(we mean here the magnitude of a constructible angle).

Fig. 1: Determine the locus of P such that KN ‖ LM.

As for the computer algebra software CoCoA [3], besides the general
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demonstration of the solution method, two points are emphasized. The
first has to do with the fact that currently a locus equation cannot be
factorized in CAS software without a human activity. The second point
shows the fact that when solving a problem using CAS, prescribing non-
degenerate conditions before eliminating variables has a significant impact
on the computation time, see also [1, 2].

2 Special cases of a problem

A special case of a problem is as follows:

Let ABCD be a quadrilateral and K,L,M,N feet of perpendiculars from

a point P to lines AB,BC,CD,DA. Determine the locus of the point P
such that KN is parallel to ML, see Fig. 1.

Using GeoGebra command LocusEquation(AreParallel(KN, LM), P) we
get a circle c1 passing through the points A,C, see Fig.2.

Fig. 2: The locus of P is a circle c1 through the points A,C.

Construction of the circle c1 :
The circle c1 must pass through the so called Miquel point Q which is the

Fig. 3: The circle c1 is passing through A,C and the Miquel point Q.
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point, such that feet of perpendiculars from Q to the sides of a quadrilat-
eral ABCD are collinear [4]. Now the classical construction of the locus
follows. The circle c1 is determined by three points A,C and the Miquel
point Q, see Fig. 3.

Another special case.

Let ABCD be a quadrilateral and K,L,M,N feet of perpendiculars from

a point P to lines AB,BC,CD,DA. Determine the locus of the point P
such that KN is perpendicular to ML, see Fig. 4.

Fig. 4: Determine the locus of the point P such that KN is perpendicular
to ML.

Using GeoGebra command LocusEquation(ArePerpendicular(KN, LM), P)
we surprisingly get again a circle c2 through the points A,C including its
equation, see Fig. 5.

Fig. 5: The locus of the point P is a circle c2.
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How to construct the circle c2 classically?
Try the following heuristic: the circles c1 and c2 have common points

Fig. 6: Difference of angles is equal to ϕ− γ ≈ 90◦.

A and C, what about comparing the angles which are subtended by the
common chord AC at points of circles?
It looks like 6 APC ≡ ϕ ≈ 98.61◦ and 6 AQC ≡ γ ≈ 8.61◦, so their differ-
ence is equal to ϕ− γ ≈ 90◦.

Fig. 7: ϕ = γ + 90◦.

Classical construction of the circle c2, where we use the formula 6 APC =
ϕ = γ + 90◦ for a point P in the circumference of c2, see Fig. 7.

3 General case

Let ABCD be a quadrilateral and K,L,M,N feet of perpendiculars from

a point P to lines AB,BC,CD,DA. Determine the locus of the point P
such that KN makes with ML a given angle ω, see Fig. 8.
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Fig. 8: Determine the locus of P such that KN makes with ML a given
angle ω.

Using GeoGebra command for ω = 30◦

LocusEquation(Angle(KN,LM)==30◦,P)

gives no output.
Similarly to the previous case, we construct circle c3 such that ϕ = γ+30◦

is perimeter angle above segment AC. The construction works as well!

Fig. 9: ϕ = γ + 30◦.

Classical construction of the locus circle c if KN makes with LM the
angle ω, where

6 APC = ϕ = γ + ω (1)

is similar to the previous case. It turns out that the relation (1) is correct,
we proved it classically as well.
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4 Solving the problem by CAS

Why did GeoGebra not react in general case? Let’s try to answer that
question using CAS tools. We enter

Fig. 10: Assignment of the problem.

PK ⊥ AB ⇔ h1 := p− k = 0,
L ∈ BC ⇔ h2 := ul2 + av − al2 − vl1 = 0,
PL ⊥ BC ⇔ h3 := (p− l1)(u− a) + (q − l2)v = 0,
M ∈ CD ⇔ h4 := um2 + zm1 + vw − wm2 − uz − vm1 = 0,
PM ⊥ CD ⇔ h5 := (p−m1)(w − u) + (q −m2)(z − v) = 0,
N ∈ DA ⇔ h6 := wn2 − zn1 = 0,
PN ⊥ DA ⇔ h7 := (p− n1)w + (q − n2)z = 0,

Denote 6 (KN,LM) = ω, then by the well-known formula

cosω =
~KN · ~LM

| ~KN || ~LM |
we get

6 (KN,LM) = ω ⇒ h8 := c2((n1 − k)2 + n2

2)((m1 − l1)
2 + (m2 − l2)

2) −
((n1 − k)(m1 − l1) + n2(m2 − l2))

2 = 0,

where c = cosω.

Elimination of k, l1, l2,m1,m2, n1, n2 in CoCoA yields

Use R::=Q[a,u,v,w,z,k,l[1..2],m[1..2],n[1..2],p,q];

I:=Ideal(h1,h2,h3,h4,h5,h6,h7,h8);

Elim(k..n[2],I);

in 12 hours and 3 minutes the elimination ideal generated by one poly-
nomial with 4110 terms. After factorization we get the locus equation in
the form

z2(av − vw − az + uz)2 ·M = 0,
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with

M = (p2 + q2)2(E2 − H) + 2(p3 + pq2)(uH − EF ) + 2(p2q + q3)(vH −
EG) + p2(F 2 − (u2 + v2)H) + 2pqFG+ q2(G2 − (u2 + v2)H),

where

E = auw − u2w + v2w − aw2 + uw2 + avz − 2uvz − az2 + uz2,
F = au2w − u3w + av2w − uv2w − auw2 + u2w2 + v2w2 − u2vz − v3z −
auz2 + u2z2 + v2z2,
G = u2vw + v3w − avw2 + au2z − u3z + av2z − uv2z − avz2,
H = c2(w2 + z2)((u − w)2 + (v − z)2)((u − a)2 + v2).

We can assume that z(av− vw− az+uz) 6= 0 otherwise the quadrilateral
ABCD degenerates. Now the locus equation of the point P may be
written in the form

M = 0.

To make the elimination process faster, we can apply this non-degeneracy
condition

z(av − vw − az + uz)t− 1 = 0,

where t is a slack variable, before starting the calculation [5].

In 1 hour and 30 minutes we obtain the locus equation directly in the
form M = 0. Now the resulting polynomial M has 901 terms. M = 0 is a
fourth-degree equation, but further factorization using a computer is not
possible.
The locus equation M = 0 may be written using CAS and human inter-
vention in the form of a product

(p2 − 2ps1 + q2 − 2qt1) · (p2 − 2ps2 + q2 − 2qt2) = 0,

where

s1 = (c(EF − uH) + vsH)/(2c(E2 −H)),
t1 = (c(EG− vH)− usH)/(2c(E2 −H)),
s2 = (c(EF − uH)− vsH)/(2c(E2 −H)),
t2 = (c(EG− vH) + usH)/(2c(E2 −H))

with

s = sinω, c = cosω and c 6= 0, E2 −H 6= 0.

We see that the locus M consists of two circles centered at [s1, t1] and
[s2, t2] passing through the points A and C. Note that along with the
prescribed angle ω corresponding to cosω, the solution also includes the
angle π − ω, which corresponds to − cosω. However, for both angles,
the lines KN and LM form the angle min(ω, π − ω). Thus, the solution
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contains two circles.

Example: For ω = 60◦ and a = 4, u = 3, v = 3, w = 1 and z = 2 we have

p4 + 2p2q2 + q4 + 6p3 − 18p2q + 6pq2 − 18q3 − 66p2 + 96pq + 6q2 = 0.

Factorization in Maple by AFactor (over constructible reals) yields

(p2+q2+(3+5
√
3)p−(9+5

√
3)q)(p2+q2+(3−5

√
3)p−(9−5

√
3)q) = 0,

(2)
see Fig. 11. We see that (2) represents two circles.

Fig. 11: Locus of P consists of two circles.
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Abstract. The study of properties of three-dimensional objects and
their mutual relationships often proceeds via planar projections, that is,
two-dimensional representations. For some students, however, such 2D
projections do not evoke an adequate mental model of the correspond-
ing 3D object. The growing accessibility of 3D printing technologies
introduces new opportunities for teaching three-dimensional geometry.
This paper reports research findings demonstrating substantial benefits
of employing 3D pens in the teaching of solid geometry. It also presents
new instructional materials for classroom work with a 3D pen.
Keywords: 3D pen, solid geometry, teaching, education.

1 Introduction
Psychological research indicates that tactile-kinesthetic learning meth-
ods are highly effective for students. Learning is particularly effective
when it includes observation, measurement, and hands-on manipulation
of physical objects, an approach known as embodied learning (Hall and
Nemirovsky [3], Shapiro [11]). Nevertheless, current classroom practice
often provides too few opportunities for such activities. The 3D pen not
only allows students to physically construct models of basic geometric
solids but also enables them to draw directly in space – lines, planes,
and cross-sections of solids – capabilities that were previously unavail-
able. Published findings suggest that using such tools improves students’
conceptual understanding and retention in spatial (solid) geometry.

2 Using 3D pen in Solid Geometry Education
3D printing technology is increasingly used across diverse educational do-
mains. In physics, students can create models of various mechanical de-
vices. In chemistry, 3D printing can be employed to produce molecular
models of chemical compounds. Medical students can also design models
of organs and cells. In geography classes, students can construct topo-
graphic maps and urban planning models. In engineering and technology,
students can prototype designs for technical apparatus, thereby enhancing
their capacity for visualization and experimentation. Volume [2] presents
a synthesis of findings from the International Symposium on 3D Printing
in Mathematics Education.
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2.1 The 3D Pen as an Educational Tool
A 3D pen is an innovative technology that enables the creation of spa-
tial objects from thermoplastic materials. The pen extrudes heated plastic
that cools almost immediately into a solid, stable structure, thereby allow-
ing the freehand fabrication of three-dimensional objects. It uses a plastic
filament made of polylactic acid (PLA). Compared with a 3D printer,
the 3D pen is more affordable and requires no software to operate. It
thus makes it possible to produce 3D models in home or school settings
with minimal setup. In the instructional context, it is therefore natural
to employ it for teaching solid geometry.

2.2 Related Work
Several researchers have explored the use of 3D pens in geometry instruc-
tion. Ng and Ye [8] present the first author’s five-year research program
on the use of 3D pens in mathematics classrooms. In the first of these
studies, Ng and Sinclair [6] describe using a 3D pen to teach properties of
graphs of functions. Students learned concepts such as the tangent line
and slope through physical manipulation of the graph of a function. They
then used a 3D pen to draw a curve together with the coordinate axes and
rotated the x-axis, thereby obtaining a solid of revolution and improving
their visualization of how it is formed. The study by Ng and Ferrara [4]
describes a lesson design for teaching and learning the target properties of
prisms, pyramids, and cross-sections of 3D solids using 3D pens alongside
glass solids filled with water, where the water level represented a cutting
plane. The paper by Ng, Shi, and Ting [5] compares differences in geom-
etry learning outcomes in two technology-enhanced environments. Two
groups shared an almost identical lesson procedure except for the technol-
ogy used in class. The first group used 3D pens to explore the properties
of prisms and pyramids, while the second group used a pre-made dy-
namic geometry environment (DGE). This DGE displayed a 3D solid on
the computer screen, allowing students to perform basic transformations
such as rotation and translation.

The findings of this five-year research program can be summarized
as follows: the studies highlight the unity of mind-body and body-tool
interactions in the act of making something (i.e., mathematics learning as
embodied making). 3D pens, as a form of maker technology – together
with embodied making – supported students’ investigation, visualization,
and learning of geometric relationships in significant ways. Students using
3D pens demonstrated better retention of the properties of 3D solids.

2.3 Solid Geometry with 3D Pen
All of the aforementioned studies primarily focused on younger students
(aged 11–12). In contrast, this research also focuses on older students, who
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often experience difficulties when solving more complex problems in solid
geometry. The study of the properties and mutual relationships of three-
dimensional objects often proceeds via planar projections. It is difficult
for some students to realize that not all lines that intersect on paper ac-
tually have a point of intersection in the original three-dimensional space.
The author of this paper supervised several completed theses aimed at
developing instructional materials for teaching solid geometry using 3D
pens in secondary schools.

In Redechová [10], we focused on planar cross-sections of a cube, typ-
ically taught in the seventh year (septima, age 17) of secondary school.
Our objective was to demonstrate the range of polygons that can arise as
the intersection of a cube with a sectioning plane (fig. 1). We deliberately
selected problem statements from textbooks currently used in Slovakia,
aiming to make the teaching method attractive to teachers rather than
burdensome. For these examples, we developed templates for construct-
ing 3D models of cube–plane intersections (fig. 2). Using these models,
students were able to verify the correctness of their solutions and exam-
ine the results from different viewpoints. The ability to perform physical
rotations proved valuable, since mental rotation is often challenging for
students (Bruce and Hawes [1]).

Fig. 1: A set of 3D pen models illustrating the variety of polygons that
can occur as cross-sections of a cube. Source: Redechová [10], p. 70.

The thesis by Piačková [9] aims to support students’ spatial visuali-
zation in analytic geometry problems involving the computation of line-
segment lengths and angles between planes and lines. This topic is typ-
ically taught in the seventh class (septima, age 17) of secondary school.
The proposed tasks focus on using the dot product, the Pythagorean the-
orem, and the law of cosines. The templates were designed to enable the
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Fig. 2: Step-by-step construction of a cube–plane intersection model using
a 3D pen: from the printed template to the completed 3D structure.
Source: Redechová [10], pp. 67, 69, 70.

constructed models to clearly illustrate the spatial relationships among the
figures whose properties students are expected to determine. Each tem-
plate set includes a paper ruler, allowing students to verify the lengths of
calculated line segments (fig. 3). Because paper is flexible, it is possible
to perform measurements even within the interior of the cube. The mea-
surements are not entirely precise, as the quality of the constructed model
depends on the students’ manual skills. Nevertheless, they are sufficient
to reveal substantial deviations and to assist students in developing an
awareness of the spatial position of the measured line segment. Students
can situate the entire model within a coordinate system.

Trubačová [12] focused on younger students attending the second year
(sekunda, age 13) of secondary school, who were learning their first pro-
jection method – oblique parallel projection. Students learn to draw basic
3D solids, such as cubes, rectangular prisms, and pyramids, in cabinet
projection. Therefore, we created a template containing squares, rectan-
gles, and triangles that can be used to build these basic solids. Thanks
to the hatching on the cube’s faces, the hidden edges are shown clearly
as dashed lines, which is not achievable with traditional paper models
students usually make at school.

Physical models enable students to explore the fundamental properties
of geometric shapes through tactile and visual experience. By manipu-
lating the models, students can literally feel what it means for edges or
planes to be parallel or perpendicular, transforming abstract spatial rela-
tionships into concrete sensory experiences. This multimodal perception
greatly supports the development of accurate mental representations of
solids. The perception of a cube’s face depends on the viewing angle (by
sight one perceives a parallelogram; by touch, a square). Building these
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Fig. 3: Classroom models created with a 3D pen: the left model, together
with its corresponding template, illustrates the perpendicularity of two
planes, while the right model, together with a paper ruler, serves to verify
calculated lengths and areas using the Pythagorean theorem. Source:
Piačková [9], pp. 58, 71, 78.

mental connections is very important at this age (fig. 4).
The thesis also includes proposed communication scenarios that rep-

resent model dialogues between the teacher and the student, designed as
a methodological framework for conducting mathematics lessons that em-
ploy 3D pen technology. These scenarios are structured to foster guided
discovery and student reflection through question sequences that encour-
age independent formulation of geometric concepts, relationships, and
projection rules. They include progressively graded interactions – from
motivational and situational prompts to analytical and verification-oriented
questions that reinforce and apply newly acquired knowledge during task
completion. The dialog structure simultaneously strengthens elements
of the constructivist approach, promotes students’ reasoning and argu-
mentation skills, and creates space for mutual discussion and cooperative
learning.

2.4 Application in the Classroom
All three authors of [10], [9], and [12] were teaching mathematics while
studying, which enabled them to test the designed teaching aids directly
in classrooms.

In Redechová [10], two parallel classes were involved in the experiment.
Each class was assigned general tasks for spatial imagination. After ana-
lyzing the results of these tasks, the class that achieved weaker results was
identified. This class (11 students) was selected as the experimental group
in which teaching using a 3D pen was implemented. In the second class,
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Fig. 4: Classroom activity on cabinet projection: on the left, students
construct a cube model and use hand gestures to indicate the perpen-
dicularity of its faces; in the center, the completed cube is placed in a
coordinate system – hatched faces make it possible to distinguish visible
and hidden edges; on the right, the worksheet template on which students
supplemented the diagram with visible (solid) and hidden (dashed) edges
to produce the cube’s cabinet projection (left or right view), using the
constructed model for reference. Source: Trubačová [12], pp. 36, 44, 64.

designated as the control group (12 students), teaching was conducted
traditionally, using paper-based drawing. After the end of the teaching,
students in both groups were given further tasks to develop their spatial
imagination, including a written test. Although the sample of students
was too small for a statistically relevant assessment of the effectiveness of
teaching with 3D pens compared to standard methods, the experimental
group demonstrated greater attention, anticipation, and active engage-
ment during lessons.

In Piačková [9], 18 students worked together in groups of three and
took turns using the 3D pen to construct geometric models. According
to their responses in the post-lesson questionnaire, they particularly ap-
preciated the opportunity to verify their calculated results by directly
comparing them with the physical model. The tangible representation
made it easier for them to identify geometric properties, such as which of
the constructed triangles were right-angled, although they subsequently
had to provide a formal mathematical justification. The teacher’s observa-
tions also revealed that even students who are usually passive during math
lessons were actively involved in this collaborative environment. Working
in groups and using the 3D pen stimulated motivation, encouraged stu-
dents to participate in problem solving, explore alternative approaches,
and engage in independent learning – often without realizing it. Based on
the observations, the new approach was perceived as more attractive and
innovative compared with traditional teaching methods and was a good
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complement to paper-based constructions.
The experimental teaching in Trubačová [12] was implemented in two

student groups comprising 12 and 15 seventh-grade learners (equivalent
to the second year of secondary school). Throughout the sessions, a high
level of engagement was observed, accompanied by spontaneous nonverbal
expression of understanding. Students unconsciously used hand gestures
to represent geometric concepts – for example, illustrating a cube’s face
with the palm of the hand, indicating parallel and perpendicular lines
with appropriately positioned fingers, or marking points with fingertips.
These gestures served as clear indicators of internalized comprehension
of spatial relationships. The use of two-color filaments further enhanced
visual clarity, enabling students to distinguish geometric elements such
as edges and faces more easily. Many students expressed enthusiasm for
working with the 3D pen, noting that they preferred creating geometric
figures in this way rather than with a pencil, as it allowed them to physi-
cally touch and examine their ’drawings’ from multiple perspectives. Even
those who struggled to complete a full model – whether due to breakage
or other technical issues – remained engaged by borrowing models from
classmates and continuing to solve related tasks collaboratively. Students
were evidently more focused and motivated when working with objects
they had created themselves than when merely viewing teacher-prepared
models.

3 Conclusion
Across all conducted studies, the use of 3D pen technology in geometry in-
struction has demonstrated strong potential to enhance students’ spatial
reasoning, conceptual understanding, and engagement. The combination
of tactile manipulation and visual observation enables learners to connect
abstract geometric principles with concrete experience, thereby reduc-
ing misconceptions and improving the accuracy of spatial visualization.
Collaborative group work with 3D pens promotes active participation,
self-directed learning, and peer-to-peer explanation, even among typically
passive students. Teachers have also emphasized the accessibility and in-
tuitive nature of the tool, which requires minimal technical preparation
while offering high didactic value. The results collectively suggest that
integrating 3D pen activities into mathematics education can effectively
bridge the gap between theory and practice. Future research should focus
on long-term impacts and evaluation of the effectiveness of using the pro-
posed teaching aids across multiple schools. We plan to develop additional
teaching materials for other areas of solid geometry and to create a plat-
form where these materials will be freely available for download, together
with usage instructions. All of these measures are aimed at making the
study of geometry and methods of descriptive geometry more attractive.
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Abstract. Surfaces of revolution are frequently used in architectural practice. 
This paper presents them as the theme for a team-based graphical project assigned 
to students at the Faculty of Architecture and Design (STU Bratislava). The 
project's goal was to design a structure composed of multiple types of surfaces of 
revolution sharing a common axis. Students were tasked with graphically 
developing the design using projection methods based on orthogonal projection, 
and then creating a 3D visualization in a virtual environment with appropriate 
modeling software. As an optional bonus, students could also complement their 
project with a 3D printed model. 

Keywords: surface of revolution, Monge’s method, axonometry, 3D digital 
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Kľúčové slová: rotačná plocha, Mongeova projekcia, axonometria, digitálny 3D 
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1 Využitie rotačných plôch v architektúre 

Rotačné plochy majú využitie v architektúre pre svoje rozmanité praktické aj 
estetické vlastnosti. Často ich vidíme napr. ako zastrešenia rozličných typov 
budov (chrámy, planetáriá, štadióny) vo forme kupoly (polguľová, parabolická 
alebo eliptická). Tvar valca môžeme vidieť na stĺpoch, vežiach, rotundách či 

celých budovách tohto tvaru. Ich hladký a oblý tvar je vysoko aerodynamický, 

čím lepšie odoláva vetru. Budovy s tvarom kupoly sú tiež energeticky 

úspornejšie. Obľúbeným a efektívnym v modernej architektúre je tiež elegantný 

tvar jednodielneho rotačného hyperboloidu (chladiarenske veže, rozhľadne, 

nosné prvky), ktorý je možné postaviť len pomocou úplne rovných tyčí (keďže 

je to zároveň priamková plocha) (Obr.1).  

2 Rotačné plochy vo výučbe 

Študenti FAD a SvF STU sa s rotačnými plochami oboznámia v rámci predmetu 

Deskritptívna geometria v časti Plochy technickej praxe. Naučia sa základné  
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Obr. 1:  vľavo - Paul Andreu [3], Národné divadlo, Peking, Čína, 
vpravo - Oscar Niemeyer [2], Katedrála v Brazílii 

pojmy o rotačnom pohybe a princípe vzniku rotačných plôch. V rámci ich 

klasifikácie sa zoznámia s rôznymi typmi rotačných plôch ako sú: priamkové, 

cyklické, kvadratické a všeobecné. Aplikujú tiež svoje znalosti zobrazovacích 

metód a naučia sa zostrojiť ich obraz v kolmom rovnobežnom premietaní 
(Mongeova projekcia, kolmá axonometria).  

Veľmi efektívnou pomôckou pri výučbe a štúdiu sú materiály dostupné ako 
online učebnica, ktoré majú formu PowerPoint prezentácií [1], (Obr.2).  

 

Obr.2: Ukážky snímok zo študijných materiálov [1] 
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Doplnkom prezentácii sú počítačové modely (*.dwfx), ktoré umožňujú prezerať 

si konkrétny model plochy pri otáčaní v reálnom čase. Okrem teoretických 
poznatkov tu študenti nájdu aj množstvo  príkladov, kde v architektúre a dizajne 
boli dané plochy aplikované, a ktorými sa môžu inšpirovať. 

3 Rotačné plochy – téma grafickej práce 

Súčasťou celkového hodnotenia študenta v predmete je priebežné hodnotenie, 

ktoré pozostáva z dvoch teoretických testov a vypracovaní dvoch grafických 

prác. Ako experiment sme sa rozhodli grafickú prácu na tému Aplikácia 

rotačných plôch v architektúre zadať ako skupinový projekt.  
Cieľom práce bolo vytvoriť návrh stavby alebo jej časti, umiestnenej do 

zvolenej lokality alebo terénu. Ako hlavný konštrukčný a estetický prvok mohla 
byť využitá rotačná plocha (celá, alebo len jej časť, alebo len jednotlivé polohy 

rotujúceho meridiánu). 
Navrhnutý objekt mal byť kombináciou aspoň troch rôznych typov rotačných 

plôch, ktoré majú spoločnú os rotácie, napr. všeobecná rotačná plocha, rotačný 

valec, rotačný kužeľ, guľa, jednodielny rotačný hyperboloid, rotačný elipsoid, 

anuloid či iné. 
Zadanie malo spĺňať konkrétne požiadavky na grafické spracovanie, ktoré 

študenti mohli vykresliť ručne a tiež s využitím grafických softvérov na štyri 
výkresy formátu A4, ktoré následne prepoja: 

Obr. 3:  Ukážka z grafickej práce študentov FAD STU 
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1) Zobrazenie objektu v pohľadoch Mongeovej projekcie (pôdorys, nárys), kde 
vo zvolenej mierke zohľadnia reálne rozmery objektu, ktoré okótujú. 
Vyznačia tiež obrysové tvoriace kružnice a aj špeciálne rovnobežkové 

kružnice ak ich plocha obsahuje, taktiež hlavný meridián, os rotácie 

a súradnicové osi (Obr.3 vľavo, Obr.6 vpravo). 
2) Zobrazenie objektu v kolmej axonometrii (daný  XYZ) pomocou meridiánu 

zhodného s meridiánom z Mongeovej projekcie. Mali zohľadniť viditeľnosť 

rovnobežkových kružníc a zobraziť meridiánový rez ležiaci v jednej zo 
súradnicových rovín. Hotovú axonometriu mali doplniť pauzovacím 

papierom, na ktorom bude zvýraznený a esteticky v okolí dotvorený výsledný 

objekt návrhu (Obr.3 vpravo, Obr.4 vľavo, Obr.6 vľavo).  
3) Spracovanie objektu ako digitálneho 3D modelu vo vhodnom softvérovom 

programe (napr. AutoCAD, Sketchup, Blender a iné.) s využitím jeho 

rozmerov a geometrických vlastností, ktorý vo výsledku môže byť zasadený 

do virtuálneho okolia (Obr.4 vpravo). 
4) Záverečnou požiadavkou bolo stručne popísať návrh objektu, jeho rozmery, 

účel, materiály a pod. Z geometrického hľadiska uviesť z akých tipov 

rotačných plôch je zostavený. Taktiež popísať proces rozdelenia práce v tíme, 
kde sa vyjadrí každý člen, ako a na čom pracoval (Obr.5 vľavo). 
Bola stanovená aj požiadavka  nad rámec zadania, za ktorú bolo možné získať 

bonusové body, a to vytvorenie fyzického modelu objektu, ideálne 3D tlačeného 

modelu (Obr.5 vľavo, Obr.7), ktorý tiež mohol byť súčasťou celkového modelu 

s okolitou krajinou. 
Takto špecifikované zadanie bolo pridelené do 3-4 členných skupín 

študentov jednotlivých krúžkov.  

Obr. 4:  Ukážka z grafickej práce študentov FAD STU 
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Obr. 5:  Ukážka z grafickej práce študentov doplnená o 3D tlačený model [4] 

 

Obr. 6:  Ukážka z grafickej práce študentov FAD STU 
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4 Záver 

Takto postavené projektové zadanie sa ukázalo pre študentov ako veľmi prínosné 

vo viacerých aspektoch. Posúva ich zručnosti od izolovaných cviční k riešeniu 
komplexného priestorového problému, čo je vlastne podstatou budúcej práce 

architekta. Intenzívne pritom trénujú priestorovú predstavivosť a schopnosť 

analyzovať zložitejšie 3D formy. Zároveň sa učia ako tieto tvary presne, 

jednoznačne a technicky správne komunikovať pomocou výkresovej 

dokumentácie obsahujúcej pohľady, rezy či axonometriu. Zároveň si vyskúšajú 
aj vzájomnú spoluprácu v tíme, pri ktorej si navzájom kontrolujú prácu, môžu 
diskutovať o rôznych prístupoch k riešeniu a učia sa prezentovať svoje návrhy. 
Samotní študenti sa vyjadrili o takomto type tímového zadania veľmi pozitívne.  

 

Obr. 7:  Ukážka 3D tlačených modelov ku grafickým prácam študentov 
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Abstract. For a given plane curve, consider a one-parameter family
of curves (called isoptics) each of which being the locus of points from
which the given curve is seen at a constant angle. We present a Cauchy
problem, the solution of which can be used to construct the parametric
form of the orthogonal trajectories to isoptics of the given oval.

Keywords: isoptic curve, support function, orthogonal trajectory.

1 Introduction
For a plane curve C one can consider locus of the points at which the
support lines to C intersect under the fixed angle π − α. The curve Cα,
where α ∈ (0, π), is called an α-isoptic, or simply an isoptic [Philippe de
La Hire].

As examples of isoptics given by implicit equations let us recall
• isoptics of the circle x2 + y2 = r2:

Cα : x2 + y2 − r2

cos2 α2
= 0, (1)

• isoptics of the ellipse x2

a2 + y2

b2 = 1 derived in [2]:

Cα : cosα = − a2 + b2 − x2 − y2√
(x2 − a2 + b2)2 + 2y2(x2 + a2 − b2) + y4

. (2)

Another, very convenient way to describe the isoptics is the parametriza-
tion by the support function of the given curve.

Let us recall the definition of the support function p(t) of a given
closed, strictly convex curve C, following [8]. We fix the origin O of the
coordinate system in the interior of C. Denote by t the angle formed by the
first coordinate axis and the halfline starting from O and perpendicular to
the support line to C. Define p(t) as the distance from O to the support
line of C perpendicular to eit at z(t) ∈ C (see Fig. 1). We can parametrize
the given curve C, by the formula

z(t) = p(t)eit + p′(t)ieit for t ∈ [0, 2π).
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Fig. 1: Support function parametrization for an oval and parametrization
of isoptics by the support function of the given curve

For ovals (a simple closed convex plane curves of class C2 with positive
curvature) p(t) ∈ C2 and the radius of curvature R(t) = p(t) + p′′(t)
is positive for all t ∈ [0, 2π). The notion of the support function has
been recently developed for open curves as well as curves and surfaces
represented by polynomial support functions (see [11], [9]).

For C given by the support function parametrization z(t) = p(t)eit +
p′(t)ieit, an α-isoptic Cα is given by

zα(t) = p(t)eit +

(
−p(t) cotα+

1

sinα
p(t+ α)

)
ieit, t ∈ [0, 2π).

For more details about this approach see [1]. It was introduced for a given
closed, strictly convex curve and studied also for a wider class of curves
(see for example [5], [7], [11]).

2 Orthogonal trajectories of isoptics

2.1 Classical approach

Let us recall that the orthogonal trajectory is a curve, which intersects
any curve of a given pencil of (planar) curves orthogonally.

The classical approach in Cartesian coordinates assumes that we have
a pencil of implicitly given curves F (x, y, c) = 0 for which we can write a
first order ordinary differential equation Fx(x, y, c) +Fy(x, y, c)y′ = 0 and
simplify it by eliminating the parameter c to the form y′ = f(x, y). Then
we can consider the differential equation y′ = − 1

f(x,y) , which is satisfied

by orthogonal trajectories of the given curves.

Examples

1. For isoptics of the circle Cα : x2 + y2− r2

cos2 α
2

= 0 by straighforward

computations we get the following equation for orthogonal trajecto-
ries y′ = y

x which can be easily solved: y = cx, where c ∈ R.
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2. For an ellipse C : x2

a2 + y2

b2 = 1, α-isoptics are given by equation (2).
A differential equation for orthogonal trajectories of those curves is

y′ =
y

x

(a4 − a2b2 + x2(2b2 − a2) + y2a2)

(b4 − a2b2 + x2b2 + y2(2a2 − b2))
.

2.2 Parametric approach

Now we are going to derive a Cauchy problem, the solution of which can be
used to obtain the parametric form of orthogonal trajectories to isoptics.
Those results have already been published in [10].

Recalling [1] we can assign the following diffeomorphism to isoptics:

F (α, t) = zα(t) = p(t)eit +

(
−p(t) cotα+

1

sinα
p(t+ α)

)
ieit

between the rectangle (0, π) × (0, 2π) and the exterior of C without one
halfline.

Now let us consider orthogonal trajectories to isoptics as curves γ(α) =
F (α, t(α)), where α ∈ [0, π), each of which starts at a point on the oval C
and have one common point with each isoptic. There t(α) is a function
of variable α and allows us to move along the isoptic Cα.

We are looking for such a curve γ, for which the tangent vector γ′(α)
is perpendicular to the tangent vector to Cα in the intersection point of
those curves. This condition can be written in the form

〈γ′(α), z′α(t(α))〉 = 0.

To consider the above condition we use standard notation (as seen in
Fig. 2) introduced for isoptics in [1] after the following slight extention,
which we proposed in [10]. For (α, t) ∈ [0, π)× R let us define

F (α, t) =

{
zα(t), (α, t) ∈ (0, π)× R,
z(t), (α, t) ∈ {0} × R.

(3)

λ(α, t) =

{
(p(t+α)−p(t) cosα−p′(t) sinα)

sinα , (α, t) ∈ (0, π)× R,
0, (α, t) ∈ {0} × R,

(4)

µ(α, t) =

{
− (p(t)−p(t+α) cosα+p′(t+α) sinα)

sinα , (α, t) ∈ (0, π)× R,
0, (α, t) ∈ {0} × R,

(5)

ν(α, t) =

{
µ(α,t)
sinα , (α, t) ∈ (0, π)× R,
− 1

2R(t), (α, t) ∈ {0} × R,
(6)

ρ(α, t) =

{
(p(t) sinα−p′(t) cosα+p′(t+α))

sinα , (α, t) ∈ (0, π)× R,
R(t), (α, t) ∈ {0} × R.

(7)
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Fig. 2: Standard notation for isoptics

Limits in (3), (4) and (7) were previously proved in [6].
Since the condition for orthogonal trajectories for isoptics can be writ-

ten in the form 〈γ′(α), z′α(t(α))〉 = 0 and

γ′(α) =
∂

∂α
F (α, t(α)) =

∂F

∂α
(α, t(α)) +

∂F

∂t
(α, t(α)) · t′(α) (8)

= −λ(α, t(α))t′(α)eit(α) +

(
−µ(α, t(α))

sinα
+ ρ(α, t(α))t′(α)

)
ieit(α),

z′α(t(α)) =
∂

∂t
F (α, t(α)) = −λ(α, t(α))eit(α) + ρ(α, t(α))ieit(α)

it leads to the differential equation for the following function of t(α)

t′(α) =
ν(α, t(α))ρ(α, t(α))

λ2(α, t(α)) + ρ2(α, t(α))
. (9)

Let us define the function

H(α, t) =


ν(α, t)ρ(α, t)

λ2(α, t) + ρ2(α, t)
, (α, t) ∈ (0, π)× R,

−1

2
, (α, t) ∈ {0} × R,

and H(α, t) = H(−α, t) for (α, t) ∈ (−π, 0)× R.

Theorem 2.1 If p is a C2 function, then H is continuous in (−π, π)×R.

In the proof of Theorem 2.1 (see [10]) we used some version of l’Hôpital’s
rule for multivariable functions (see [3] and [4]).

Theorem 2.2 If p is a C3 function, then for each (α0, t0) ∈ (−π, π)×R
the Cauchy problem{

t′(α) = H(α, t(α)), α ∈ (−π, π),
t(α0) = t0,

(10)
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has a unique solution.

Theorem 2.3 Orthogonal trajectories to isoptics of an oval C, where C is
parametrized in terms of the support function p of class C3, are the curves
parameterized by functions γτ0 : [0, π)→ R2 for τ0 ∈ [0, 2π), defined by

γτ0(α) = F (α, t(α)),

where t : [0, π)→ R is the solution to the Cauchy problem{
t′(α) = H(α, t(α)), α ∈ (0, π),
t(0) = τ0.

(11)

The proofs of Theorem 2.2 and Theorem 2.3 are avalaible in [10].

Remark It can be noticed that the tangent to the orthogonal trajectory
γt(α) is the line passing through points P (t) and zα(t) indicated in Fig. 2.
The direction vector of this line is ~w = ρeit + λieit. From (8) and (9) we
have γ′t(α) = A · ~w, where A = − νλ

λ2+ρ2 . The authors would like to thank
Prof. G. Weiss and Prof. H. Stachel for their advice about this fact.

Examples
1. For the circle C : x2 + y2 = r2 the support function is p(t) = r

and the parametrization of isoptics is zα(t) = reit. We can easily
compute the function H(α, t) = − 1

2 for (α, t) ∈ [0, π)×R and solve
the considered Cauchy problem. The solution is t(α) = − 1

2α +
τ0, α ∈ [0, π). Thus orthogonal trajectories to the isoptics to the
circle C are half-lines

γ(α) = F

(
α, τ0 −

1

2
α

)
=

r

cos α2
eiτ0 , α ∈ [0, π),

starting from z(τ0) = reiτ0 , where τ0 ∈ [0, 2π).

2. For the ellipse C : x2 + y2

4 = 1 the support function is p(t) =√
cos2 t+ 4 sin2 t, t ∈ R. The function H is more complicated and

we do not have an analytic solution of (10). Orthogonal trajecto-
ries to the isoptics of the ellipse obtained numerically in Wolfram
Mathematica are presented in Fig. 3 a).

3. The graphs of orthogonal trajectories for isoptics of the curve with
the support function

p(t) =

 r, t ∈ [0, π2 ),
r − 17a+ 20a cos t+ 20a sin t− 16a sin 2t−
−4 cos 3t+ 4a sin 3t+ a cos 4t, t ∈ [π2 , 2π),

where r = 150, a = 1 are presented in Fig. 3 b).
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Fig. 3: Orthogonal trajectories of isoptics of a) the ellipse, b) the oval
with the support function of class C3
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Flexible cross-polytopes with two flat poses
in three and four dimensions
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Abstract. According to R. Bricard 1897, there exist three types of
flexible octahedra. The octahedra of type-3 are unsymmetric and admit
two flat poses. The n-dimensional analogues of octahedra are called
cross-polytopes. In 2014, A.A. Găıfullin determined with methods
from algebraic geometry all flexible cross-polytopes in n-dimensional
Euclidean, hyperbolic and spherical spaces for n > 3. The goal of this
presentation is a synthetic approach to a particular family, the flexible
3- and 4-dimensional cross-polytopes with two flat poses. These poses
are characterized by two geometric properties, local symmetries and
concurrent axes of symmetry.

Keywords: flexible octahedron, flexible cross-polytope, flat pose.

1 Introduction
In 1897, Raoul Bricard [2] proved that in the 3-dimensional Euclidean
space E3 there exist three types of flexible octahedra, i.e., polyhedra of
the combinatorial type of a regular octahedron with rigid faces and hinges
as edges while self-intersections are ignored. Type-3 octahedra are unsym-
metric and admit two flat poses. Figure 1 shows how a flat pose can be
constructed according to [1, Fig. 8] and also to [3, Fig. 297, p. 330].

The n-dimensional analogues of octahedra are called cross-polytopes.
In 2014, Alexander A. Găıfullin [4] surprised the scientific community
with the complete solution of a long-lasting open problem, namely the
question for flexible cross-polytopes in the n-dimensional Euclidean, hy-
perbolic and spherical spaces for n > 3. Before that, only particular flex-
ible examples in E4 where known (see [5]). Based on algebraic methods,
Găıfullin succeeded to classify the flexible types, and he even presented
parametrizations of the flexions in terms of Jacobian elliptic functions.

From the algebraic point of view, the n-dimensional analogues of
Bricard’s type-3 octahedra are the simplest. While Găıfullin showed their
existence in an algebraic way, the goal of this presentation is to analyse
the geometry of these flexible cross-polytopes in E3 and E4. Our novel
approach starts from the existence of two flat poses.

Following the notation in [4], the cross-polytopes Cn in the Euclidean
n-space En have 2n vertices coupled into pairs of opposite vertices (Ai, Bi),
i = 1, . . . , n. The 2n hyperfaces (or facets) of Cn are the simplices
X1 . . . Xn where Xi stands either for Ai or Bi. The 4

(
n
2

)
= 2n(n − 1)

edges of Cn are XiXj for i 6= j. More general, the k-faces, 1 < k ≤ n− 1
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Fig. 1, kiev_f1

Fig. 1: Bricard’s construction of a flat pose of a flexible type-3 octahedron:
Two given concentric circles k12, k31 and two points A1, B1 define the
remaining vertices A2, . . . , B3 and a third contacting circle k23.

of Cn are the 2k+1
(
n
k+1

)
simplices with k + 1 vertices Xi0 . . . Xik out of

{A1, . . . , An, B1, . . . , Bn} such that the indices i0 . . . ik are mutually dif-
ferent. Hence, no k-face contains a pair (Ai, Bi) of opposite vertices.
Moreover we assume that no k-face is of dimension smaller than k, i.e.,
flat.

According to [4], a polyhedron is called flexible, if we have hinges at
all edges, and the polyhedron can deform while each hyperface remains
congruent to itself. In other words, only the dihedral angles between
neighboring facets can vary. We are interested in nontrivial deformations,
which means that the deformation is not induced by a motion of the rigid
cross-polytope in the ambient space.

When studying the flexibility of cross-polytopes Cn, we still follow
the convention in [4] and assume that the simplex ∆0 := A1, . . . , An is
fixed while the opposite simplex ∆ := B1, . . . , Bn is moving. This means
that the vertex Bi can rotate about the (n− 2)-dimensional axis spanned
by A1, . . . , Ai−1, Ai+1, . . . , An while tracing a circle. Point Bi rotates
together with the simplex called wing ∆i := A1 . . . Ai−1BiAi+1 . . . An
relative to the fixed simplex ∆0 (note the flexible octahedron in Figure 5
as an example for n = 3).

At flexible cross-polytopes there exist simultaneous rotations of all n
wings ∆1, . . . ,∆n such that all

(
n
2

)
edges of the moving simplex ∆ preserve

their lengths BiBj . We call such a self-movement of Cn a flexion.
Below we focus on cases, where during the flexion the cross-polytope

passes through two incongruent flat poses where the moving simplex ∆ is
located in the hyperplane spanned by ∆0. When for each vertex Bi ∈ ∆

162 Flexible cross-polytopes with two flat poses in three and four dimension



the two corresponding positions B′i and B′′i are different, we speak briefly
of a twice-flat flexible cross-polytope.

2 Revisiting Bricard’s type-3 octahedra
Let A1, B1, A2, B2, A3, B3 be the vertices of a three-dimensional cross-
polytope C3.

2.1 Local symmetries of twice-flat octahedra

A1

A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

A3 B′
1

B′
2

B′
3

B′′
1

B′′
2

B′′
3

Fig. 2, kiev_f7

Fig. 2: At a twice-flat octahedron the moving triangle varies between
B′1B

′
2B
′
3 and B′′1B

′′
2B
′′
3 . The double lines are projections of circular paths

of the moving vertices in the case of a flexible octahedron.

Lemma 1. A flat octahedron with the fixed triangle A1A2A3 and the
coplanar moving triangle B′1B

′
2B
′
3 admits a second flat pose B′′1B

′′
2B
′′
3 with

B′i 6= B′′i for all i ∈ {1, 2, 3} if and only if at each vertex Ai the connecting
lines with the remaining pairs (Aj , B

′
j) of opposite vertices have common

axes of symmetry.

Proof. The half-rotation in E3 about the axis [A1, A2] sends B′3 to B′′3 , and
that about [A1, A3] sends B′2 to B′′2 .1 Thus, the bisectors of (B′2, B

′′
2 ) and

(B′3, B
′′
3 ) intersect at A1, while there are equal distances B′2B

′
3 = B′′2B

′′
3 .

1Throughout the paper we use [X,Y, . . . , Z] as the symbol for the affine hull of the
listed points, e.g., [X,Y ] for the line connecting the points X and Y , while the symbol
XY . . . Z stands for the simplex with vertices X,Y, . . . , Z, and in particular XY for
the segment terminated by X and Y .
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This implies that A1 is the center of a 2D-rotation that brings B′2B
′
3 to

B′′2B
′′
3 . Half of the angle of this rotation is marked in Figure 2 and reveals

that pairs of lines ([A1, A2], [A1, B
′
2]) and ([A1, B

′
3], [A1, A3]) share the

angle bisectors.
Moreover, the flat pose shows that at the flexible four-sided pyramid

connecting A1 with the sides of the quadrangle A2A3B2B3 opposite apex
angles are equal. We speak of an isogonal pyramid ; its intersection with
the unit sphere centered at A1 gives a spherical isogram (Figure 4) with
opposite sides of equal or complementary length. It is wellknown (see, e.g.,
[6, eq. (9)]) that during the flexion of this pyramid the tangents of the
half dihedral angles ϕ3 along A1A2 and ϕ2 along A1A3 are proportional
(note below Lemma 2).

The found symmetry at A1 occurs similarly at A2 and A3, and also at
all B′-points since for the existence of two flat poses it is not relevant which
face of the octahedron is fixed. We speak briefly of local symmetries at the
flat pose. It will turn out that these are not sufficient for the flexibility of
a twice-flat octahedron.

2.2 Transmission between adjacent wings

Let the points A1, . . . , B
′
3 of a flat pose satisfy the local symmetries. For

obtaining an exact formula for the transmission between wings, we assume
that the fixed triangle A1A2A3 is counter-clockwise oriented, and the
directions of the axes of rotations a1, a2, a3 are given, respectively, by the
directed segments A2A3, A3A1 and A1A2. The signed interior angles of
A1A2A3 are denoted by α1, α2, α3 (Figure 3).

A1

A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

B′
1B
′
1B′
1B′
1B′
1B′
1B′
1B′
1B′
1B′
1B′
1B′
1B′
1B′
1B′
1B′
1B′
1

B′
2B′
2B′
2B′
2B′
2B′
2B′
2B′
2B′
2B′
2B′
2B′
2B′
2B′
2B′
2B′
2B′
2

B′
3

S

a1

a2

a3

k31

k12

k23

α1

α2α2α2α2α2α2α2α2α2α2α2α2α2α2α2α2α2

α3α3α3α3α3α3α3α3α3α3α3α3α3α3α3α3α3
γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1
γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1

γ1γ1

γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2γ2
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Fig. 3, kiev_d
Fig. 3: The angles in the fixed face and the wings of a type-3 octahedron.
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With γ1 we denote the signed angle at A1 between the lines [A1, A3],
[A1, B

′
2]. It equals the angle between [A1, A2] and [A1, B

′
3]. We use the

rotation by γ1 about A1 to transfer the orientation of a2 to the line [A1, B
′
2]

and denote with p1 the signed distance of A1B
′
2, and similarly q1 that of

A1B
′
3. An analogous procedure yields the signed angles γ2, γ3 and the

signed distances p2, q2 and p3, q3 at the remaining vertices A2 and A3.
We assume for all i that 0 < αi, γi < π and (αi + γi), (αi − γi) 6= kπ for
all k ∈ Z.

Lemma 2. Referring to the previous notation, the angles of rotation ϕ2 of
the wing A3A1B

′
2 about a2 and ϕ3 of A2A1B

′
3 about a3 relative to A1A2A3

with ti := tan
ϕi

2
for i = 2, 3 are related by

t3 =
− sin γ1 ± sinα1

sin(γ1 + α1)
t2 .

The cases with the upper and the lower sign are respectively equivalent to

t3 =
sin α1−γ1

2

sin α1+γ1
2

t2 and t3 = −
cos α1−γ1

2

cos α1+γ1
2

t2 .

Proof. We use a right-handed coordinate frame with the flat pose in the
plane z = 0, with A1 as origin and a2 as positive x-axis. From points

a3
a2

A1B3

A1B2

ϕ3
ϕ2

γ

γ

α

α

Fig. 4, kiev_d

Fig. 4: The flexion of the isogonal pyramid with apex A1 induces on
spheres centered at A1 two spherical motions with bifurcations at the
aligned poses.
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in the half-space z > 0 the triangle A1A2A3 appears counter-clockwise
oriented, as shown in Figure 3. For the sake of brevity, we temporarily
suppress the subscript 1 at α1 and γ1.

Thus, the circular paths of B2 and B3 (Figure 5) can be parametrized
as

B2 = p

 cos γ
sin γ cosϕ2

sin γ sinϕ2

, B3 = q

 − cosα cos γ − sinα sin γ cosϕ3

sinα cos γ − cosα sin γ cosϕ3

sin γ sinϕ3

.
The request that the distance B2B3 remains equal to B′2B

′
3 in the initial

flat pose with ϕ2 = ϕ3 = 0 is equivalent to

(p cos γ + q cosα cos γ + q sinα sin γ cosϕ3)
2

+ (p sin γ cosϕ2 − q sinα cos γ + q cosα sin γ cosϕ3)
2

+ (p sin γ sinϕ2 − q sin γ sinϕ3)
2

= p2 + q2 + 2pq cosα.

It implies

sinα sin γ cos γ (cosϕ3 − cosϕ2)− cosα sin2 γ (1− cosϕ2 cosϕ3)

− sin2 γ sinϕ2 sinϕ3 = 0

and, after the substitution ti := tan
ϕi

2
for i = 2, 3,

2 sinα cos γ (t22 − t23)− 2 cosα sin γ (t22 + t23)− 4 sin γ t2t3 = 0,

hence

sin(α− γ) t22 − sin(α+ γ) t23 − 2 sin γ t2t3 = 0.

This reveals that in the particular case of isogonal pyramid the biquadratic
relation (according to [6, eq. (4)] or [4, eq. (3.3)]) splits into two linear
functions

t3 =
− sin γ ±

√
sin2γ + sin2α cos2γ − cos2α sin2γ

sin(α+ γ)
t2 =

− sin γ ± sinα

sin(α+ γ)
t2.

Thus we obtain either

t3 =
sin α−γ

2

sin α+γ
2

t2 or t3 = −
cos α−γ2
cos α+γ2

t2 .

Both flat poses offer bifurcations between two rational movements. Their
spherical images are depicted in Figure 4.
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Lemma 3. Let (Ai, B
′
i) for i = 1, 2, 3 be coplanar pairs of points with

local symmetries. Then, referring to Lemma 2, all points S 6= A1 on one
of the common axes of symmetry between the lines [A1, A2], [A1, B

′
2] and

[A1, A3], [A1, B
′
2] satisfy the relation

t3 =
d(S, a2)

d(S, a3)
t2 ,

where d(S, ai) denotes the signed distance of S to the revolute axis ai
such that for points in the interior of A1A2A3 the distances to all axes
are positive.

Proof. Let (i, j, k) by a cyclic permutation of (1, 2, 3). If one symmetry
axis through Ai meets the opposite side AjAk, then it includes with the

axes ak and aj the angles
αi − γi

2
and

αi + γi

2
, respectively (note vertex A3

in Figure 3). Therefore holds, by virtue of Lemma 2,

− sin γi + sinαi
sin(γi + αi)

=
sin

αi − γi

2

sin
αi + γi

2

=
d(S, aj)

d(S, ak)
.

Otherwise (note points A1 or A2 in Figure 3) one of the axes includes the

angles
π + αi − γi

2
or

π − αi + γi

2
and

π − αi − γi

2
with aj and ak, and we

obtain

− sin γi − sinαi
sin(γi + αi)

= −
cos

αi − γi

2

cos
αi + γi

2

=
d(S, aj)

d(S, ak)
.

This confirms the claim. The absolute values of the distances d(S, ai) are
the radii of the concentric circles k12, k23, k31 in Figures 1 and 3.

2.3 Necessary and sufficient condition for flexibility

The following theorem rephrases a part of Bricard’s main result in [2].
The new formulation paves the way to higher-dimensional versions.

Theorem 1. Six coplanar points A1, . . . , B
′
3 define a twice-flat flexible

octahedron in E3 if and only if at each vertex there holds local symmetry
according to Lemma 1 and one of the axes of symmetry at each vertex
passes through a common (finite or infinite) point S.

Proof. For the sake of brevity we only prove that the condition is sufficient
for finite S: By virtue of Lemma 3, all side lengths of the moving triangle
are preserved, since for the transmissions between the wings’ rotations
from ∆1 to ∆2, from ∆2 to ∆3, and finally from ∆3 to ∆1 holds

d(S, a3)

d(S, a1)
· d(S, a2)

d(S, a3)
· d(S, a1)

d(S, a2)
t1 = t1.

This confirms the flexibility.
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Fig. 5: Spatial pose of the moving triangleB1B2B3 with the corresponding
rotation angles ϕ2, ϕ3 of B2, B3 and wings A1A3B2 and A1A2B3 along
with the respective axes a2 and a3.

3 Outlook on twice-flat flexible cross-polytopes in E4

Four-dimensional cross-polytopes C4 contain four pairs of opposite vertices
(A1, B1), . . . , (A4, B4). Their 16 facets are tetrahedra X1X2X3X4 where
X stands for A or B. They contain 24 edges XiXj , i 6= j, and 32 triangles
XiXjXk with mutually different indices i, j, k ∈ {1, . . . , 4}.

We still follow Bricard [2] and Găıfullin [4] and study the flexibility of
C4 by keeping the tetrahedron ∆0 := A1, . . . , A4 fixed, while the opposite
tetrahedron ∆ := B1, . . . , B4 moves. Vertex B1 rotates together with the
wing ∆1 := A2A3A4B1 about the plane ε1 = [A2, A3, A4] and traces a
circle in a plane orthogonal to ε1. The other vertices B2, B3, B4 ∈ ∆
move similarily.

We call C4 twice-flat if it admits two flat poses with the moving tetra-
hedron placed as B′1 . . . B

′
n or B′′1 . . . B

′′
n in the three-dimensional span of

∆0, where additionally holds B′i 6= B′′i for all i ∈ {1, . . . , 4}.
The cross-polytope C4 is flexible if the four wings ∆1, . . . ,∆4 can rotate

continuously relative to ∆0 in such a way that all six distances BiBj are
preserved. During this motion all tetrahedra of C4 remain rigid. Only the
dihedral angles between adjacent facets vary.

3.1 Local symmetries of twice-flat cross-polytopes

Suppose that the moving tetrahedron ∆ of C4 admits two flat poses
B′1 . . . B

′
n and B′′1 . . . B

′′
n with B′i 6= B′′i for all i ∈ {1, . . . , 4}. Then the sec-

ond pose B′′1 of B1 arises from the first pose B′1 by a 4D-rotation through
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180◦ about ε1, i.e., by a 3D-reflection in the plane ε1 within the three-
space spanned by ∆0. Consequently, the plane ε1 = [A2, A3, A4] is the
bisecting plane between B′1 and B′′1 . Similarly, ε2 is the bisecting plane
between B′2 and B′′2 . Since B′2B

′
3 = B′′2B

′′
3 , there exists a 3D-rotation

about [A3, A4] = ε1 ∩ ε2 with B′1 7→ B′′1 and B′2 7→ B′′2 .
The rotation about [A3, A4] through half angle takes [A3, A4, B

′
1] to

ε1 = [A3, A4, A2] and [A3, A4, B
′
2] to ε2 = [A3, A4, A1]. Thus, the signed

dihedral angles of the wings ∆1 = A3A4B1A2 and ∆1 = A3A4B2A1 along
the edge A3A4 are either congruent or complementary which implies a
local symmetry at A3A4.
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Fig. 6: Orthogonal view of C4 after projection parallel to the edge A3A4.

Figure 6 shows this congruence after an orthogonal projection X 7→
Xn of E4 into a hyperplane Π orthogonal to A3A4:

3.2 The transmission of rotations between adjacent wings

We study the transmission from the wing ∆1 to ∆2, when the length
of the moving edge B1B2 remains constant. ∆1 rotates with B1 about
ε1 = [A2, A3, A4], while ∆2 with B2 rotates about ε2 = [A1, A3, A4].

The two wings are connected by the facet ∆12 := A3A4B1B2 and by
the fixed tetrahedron ∆0. The four tetrahedra ∆1, ∆0, ∆2, and ∆12 form
a 4D-pyramid with the one-dimensional apex [A3, A4]. The orthogonal
projection mentioned above sends it to a 3D-pyramid with the apex An3 =
An4 bounded by the quadrangle Bn1B

n
2A

n
1A

n
2 , and for each tetrahedron its

dihedral angle along A3A4 appears in true size. The flat pose of twice-flat
cross-polytopes, as depicted in Figure 6, reveals that the 3D-pyramid is
again isogonal. Moreover, orthogonal distances to ε1 and ε2 are shown in
true size.

The dihedral angle ϕ1 between the wing ∆1 and ∆0 is measured
in a plane totally orthogonal to ε1. Since ε1 contains A3A4, the total-
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orthogonal plane is parallel to the image-hyperplane Π of the orthogonal
projection. Consequently, ϕ1 appears in true size, and the same holds
for ϕ2 =<) ∆2∆0 along ε2. Thus, the 4D-transmissions between adjacent
wings satisfy formulas analogous to that derived in three-space2, and we
obtain, by virtue of Lemma 3, for the angles of rotation ϕi of the wings

tj =
d(S, εi)

d(S, aj)
ti where tk = tan

ϕk

2
. (1)

The symbol d(S, εk) stands for the signed distance of S to the planes εk
of the fixed tetrahedron ∆0 such that for points in the interior of ∆0 the
distances to all faces are positive. Similar to Theorem 1 we conclude:

Theorem 2. Eight points A1, . . . , B
′
4 in E3 define a flat pose of a twice-

flat flexible cross-polytope C4 in E4 if and only if at each edge of the fixed
tetrahedron A1 . . . A4 there holds local symmetry between the connecting
planes with the remaining pairs of opposite vertices, and one of the planes
of symmetry passes through a common finite or infinite point S.

4 Conclusion
A detailed kinematic analysis of Bricard’s octahedra of type 3 paved
the way to a characterization of those four-dimensional flexible cross-
polytopes which admit two flat, i.e., three-dimensional poses. Further
properties of this interesting family of higher-dimensional flexible poly-
topes will be disclosed in a further research.
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Abstract. We can look at sundials from the perspective of history, philosophy, 
astronomy, art, but also mathematics and geometry. Sundial dials contain images 
of the meridians and parallels of a spherical surface in a gnomonic azimuthal 
projection. Images of the meridians show hour lines, with the shadow of the 
pointer (called gnomon or style) showing the time during sunny days. Images of 
the parallels, here called declination lines, where the end of the shadow falls on 
certain significant days of the year, especially on the days of the equinox, summer 
and winter solstices. The aim of the paper is to show these connections, to 
formulate the constructions of the dial lines of several types of sundials using 
gnomonic azimuthal projection. The main contribution of this paper is in the 
creation of formulas for determining its parameters in relation to the geographical 
location of the dial plane, its orientation and the length of gnomon. In Wolfram 
Mathematica software, we demonstrate the rendering of the dials of various 
sundials using map equations and relations for determining the parameters of the 
gnomonic azimuthal projection. 

Keywords: sundial, solar declination, gnomonic projection, gnomon 

1 What we need to know about the Earth and the Sun 

A sundial tells the time of day based on the apparent position of the Sun in the 
sky. Planar sundial dials contain hour and declination lines, they are images of 
the meridians and parallels of a spherical surface in a gnomonic azimuthal 
projection.  

The construction of the sundial depends on the location of the installation 
site, which is expressed by coordinates on the reference surface of the Earth. 
Reference sphere of the Earth has a constant curvature at every point, its radius 
is R. Point M is given by spherical geographic coordinates (Fig.1): 

- spherical latitude U: U  -90 o, 90 o.
- spherical longitude V: V  -180 o, 180 o).

Earth’s parallel has constant latitude U and Earth’s meridian has constant 
longitude V. 

The position of the Sun in relation to the Earth is expressed by the solar 
declination (Fig.1). Solar declination   is an angular distance of the line 
connecting the Sun with the center of the Earth from the equator, measured along 
the solar declination circle, positive toward the North Pole, negative toward the 
South Pole [7]. Solar declination  is approximately the same during the day and 
the solar declination angles  are in the interval from the Tropic of Cancer to the 
Tropic of Capricorn, hence between 232622.  

11th Slovak-Czech Conference on Geometry and Graphics 2025 171



 
The Earth rotates around its axis in 24 hours. A rotation is 360o, then the 

speed is: 360o/24h = 15o per hour (hour angle). 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1:  Relative position of the Earth and the Sun 
 
We can divide the types of sundials [1] as follows (Fig.2): 

 Planar sundials – the dial plate is a plane, they are: 
- Horizontal sundials – planar plate is parallel with tangent plane to the 

reference surface. 
- Vertical sundials – planar plate is normal plane to the reference surface:  

- direct south sundial, 
- declining sundial defined by azimuth A, 
- direct west sundial, 
- direct east sundial, 
- meridian sundial. 

- Inclining sundials – planar plate is not in the direction of the tangent or 
normal plane: 

- polar sundial, 
- equatorial sundial, 
- other inclining sundial. 

 Non-planar sundials – the plate is not a plane (sphere, cylinder, cone, etc.). 
 
 
 
 
 
 
 
 

 
 

Fig. 2:  Types of the sundials 
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Figure 3 shows a planar sundial and its components. The dial plate of a planar 

sundial is the plane . The gnomon (so-called „style“ or „pointer“) PS casts a 
shadow PS onto the dial, which indicates the hour line. The gnomon must be 
parallel to the axis of the Earth's rotation for the sundial to be accurate throughout 
the year. The shadow of the gnomon's endpoint during the day describes the 
declination (datum) line which correspond to declination angle  on certain 
significant days of the year, especially on the days of the equinox, summer and 
winter solstices and when the Sun enters the individual "signs" of the zodiac [5].  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3:  Components of the planar sundial 

2 Gnomonic azimuthal projection 

The gnomonic azimuthal projection is the central perspective projection of  a 
reference sphere  onto a plane, while the center projection S equals the center 
of reference sphere  (Fig. 4) [4].  

The author of the gnomonic projection is the Greek astronomer, 
mathematician, and philosopher Thales of Miletus (624-547 BC).  

The following properties apply in the gnomonic azimuthal projection (Fig. 4): 
1st The gnomonic images of the two extreme points of the diameter of the 

reference sphere are identical.  
2nd The gnomonic image of all the great circles of the sphere  are straight lines. 

From the above properties, other properties follow: 

3rd The gnomonic projection of all meridians, the equator, and the orthodromes 
of the reference sphere  are straight lines. 

4th The gnomonic images of the geographic poles are identical (real point or point 
at infinity). 

5th Gnomonic images of meridians are straight lines passing through the image 
of the poles (a pencil of lines, parallel lines). 

6th Gnomonic images of geographic parallels are conic sections, namely ellipses, 
parabolas, hyperbolas. 
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Fig. 4: The principle and properties of gnomonic azimuthal projection 

We know three types of gnomonic projection by position of the projection 
plane:  
- Normal (polar) aspect – projection plane  is perpendicular to the Earth's 

axis. 
- Transversal aspect – projection plane  is perpendicular to the equatorial 

plane. 
- Oblique aspect – projection plane   is not perpendicular to the Earth's axis, 

nor  the equatorial plane. 
The geographical coordinates of the tangent point K of the reference spherical 

surface with the projection plane (the so-called cartographic pole and the origin 
of the coordinate system) are UK and VK. Radius of spherical surface is R and 
the map equations of gnomonic azimuthal projection are: 
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3 Gnomonic azimuthal projection on the sundials 

The use of gnomonic projection on sundials has been discussed, but we 
lacked a simple explanation of why and how. Therefore, we created our own 
illustration and explanation of relation between sundial and gnomonic azimuthal 
projection (Fig. 5). In the chapter 1, we mentioned, that the position of the sundial 
plate and the angle between the gnomon and the plate depend on the geographical 
coordinates UL and VL of the installation location. The gnomon PS must be 
parallel to the axis of the Earth's rotation. The planar sundial dials contain images 
of the meridians and parallels of a spherical surface in a gnomonic azimuthal 
projection. Now we will define this spherical surface .  

Let the solar declination be  , then on this day the Sun's rays have this 
direction and pass through point S. Since the declination line is the set of shadows 
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of the endpoint S of the gnomon, let us construct a spherical surface  with center 
in the endpoint S of the gnomon and  is tangent to the dial plane . The spherical 
surface  is homothetic to the reference sphere of the Earth (Fig. 5).  

Due to the Earth’s rotation, the declination line is the image of a parallel of 
the spherical surface , where the spherical latitude is the declination , in 
gnomonic azimuthal projection with center S onto a plane . 

The gnomon lies on the axis of rotation of the spherical surface , so the 
shadows of the gnomon, and therefore the hour lines, are the gnomonic projection 
of the meridians. The images of meridians are straight lines and the image of the 
local meridian shows noon, i.e. 12 o'clock. 

Image of the equator of this spherical surface  is the straight line. It is the 
path of the shadow of the end point of the gnomon during the equinoxes, when 
the Sun is on the equatorial plane. 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

 
 

Fig. 5:  The principle of using gnomonic azimuthal projection on sundials 

3.1 Geometric construction of hour lines and declination lines 

on horizontal and vertical direct south sundials 

The lines on the dial of horizontal and vertical sundials are images of meridians 
and parallels in gnomonic projection in oblique aspect (Fig. 6). The projection 
plane is tangent to the spherical surface at point K whose spherical coordinates 
are related to the spherical coordinates UL, VL of the sundial’s location. 

The image of the equator is a straight line. The base of the gnomon is an 
image of the Earth's pole. The image of the local meridian with the longitude VL 
shows 12 o'clock. The other hour lines are identical to the images of the 
meridians, whose the angular spacing is in integer multiples hour angle 15 from 
the local meridian. The images of the meridians are straight lines passing through 
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the image of the Earth's pole and the corresponding point on the equator, which 
we construct by rotating the equatorial plane into a projection plane.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6:  Construction of hour lines and declination lines on sundials by using 
gnomonic azimuthal projection  

The declination lines are the images of parallels in a gnomonic projection in 
an oblique aspect. In the specified range of latitudes (between 232622), the 
image of parallels are hyperbolas. These hyperbolas share a common axis, which 
is the image of the meridian perpendicular to the image of the equator.  

We determine hyperbolas using their principal vertices hAs hBs and a focus 
hF. This focus is constructed as the tangential point of the projection plane and 
the spherical surface inscribed in the projective conic surface (in accordance with 
the Quetellet-Dandelin theorem).  
In the vertical direct south sundials, image of equator equals to horizon. 
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3.2  Geometric construction of hour lines on declining vertical 

sundials defined by azimuth A 

The local spherical latitude is UL and P is base point of the gnomon, d is the 
length of gnomon. The azimuth of the wall is A, which is measured for normal 
line of the wall from the meridian (the direction of the South in the northern 
hemisphere).  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7:  Geometric construction of hour lines on declining vertical sundials 
defined by azimuth A 

In the work of [2], the following construction of hour lines on declining vertical 
sundials is published (Fig. 7): 
- First, construct a right triangle PEH given: the hypotenuse PE is vertical and 

points to 12 o'clock, ∢(PEH) = UL, ∢(EPH) = 90- UL and  |PH| = d, where 
d is the length of gnomon. 

- The horizon passes through point H and the image of the equator passes 
through point E. The equator forms an angle  with the horizon, which we call 
declination of sundial and for which: 

.
90

90
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
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- The intersection of the equator and the horizon will be marked H. 
- We construct point S0 at the intersection of Thales circle with diameter EH 

and the line perpendicular to equator drawn from point P (where E is the foot 
of this perpendicular). 

- From the point S0, we construct lines that enclose multiples of the 15 hour 
angle with the line segment S0E. We connect the intersections points of these 
lines and the equator to point P to get the hour lines on the sundial dial. 
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3.3 Derivation of the parameters of the gnomonic projection 

on a declining vertical sundials defined by azimuth A 

The lines corresponding to specific dates, known as datum or declination lines, 
are constructed as gnomonic images of the parallels on the spherical surface. To 
achieve this, we first construct an auxiliary view for the gnomonic azimuthal 
projection of this spherical surface onto the dial plane .  

At point H we choose the image of the projection plane . We derive the 
center S2 of the spherical surface from its rotated position S0. The angle between 
the Earth's axis and the projection plane is 90- UL, where UL is the local 

latitude. The tangential point K (also called cartographic pole) has spherical 
latitude of UK = 90- UL. As we mentioned in chapter 3.1, in our latitudes, the 
images of parallels are hyperbolas with a common axis perpendicular to the 
image of the equator. We determine these hyperbolas using their principal 
vertices hAs , hBs and focus hF.  

When using the map equations of the gnomonic azimuthal projection, we also 
need the spherical longitude VK of the cartographic pole K and the radius R of 
the spherical surface. The spherical longitude VL of the local meridian indicates 
noon, so its gnomonic image passes through point E on the equator. The 
gnomonic projection of the meridian of the cartographic pole K with longitude 
VK passes through point S0, therefore: VK = VL - ∢(ES0E). 

We derive the angle  = ∢(ES0E) as follows:  
|ES0|= R sin UL,  
|PE|= |HK|+|KP|=R (cot UL + tan UL).    

Considering ∢(EPE) =   then after substitution: 
|EE|=|PE| tan  = R tan  (cot UL + tan UL). 

We formulate this angle : 
 
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From the previously mentioned properties, we can derive the radius R of the 
spherical surface, depending on the length d of the gnomon. The position of the 
equator image depends on the length d of the gnomon, the local spherical latitude 
UL, and the angle , which is also determined from the azimuth A of the wall. 
The length of the line segment PE in the triangle PEH is: 
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We determine the length of the segment PE in the triangle PEE, since 
∢(EPE) = , then: 
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In another way, the length of the line segment PE can be determined from 
the size and position of the spherical surface, namely from its radius R and local 
spherical latitude U, so the following holds:  

|PE|= |HK|+|KP|=R (cot UL + tan UL).   (5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8:  Geometric construction of declination lines on declining vertical 
sundials defined by azimuth A 

Equating the right sides of the relations (4) and (5), we obtain an expression 
for the radius R of the spherical surface: 
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  after modification:  R = d cos  cos UL. (6) 

We can also reformulate this relationship: 

 R = d cos  cos (90- UK).      (7) 
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4 Application of derived parameters to create a sundial dial   

The parameters of the gnomonic projection, namely the spherical latitude and 
longitude UK, VK of the cartographic pole K and the radius R of the spherical 
surface, derived in the previous chapter can be applied to the creation of the dial 
of horizontal sundials, vertical direct south sundials, and also a declining vertical 
sundials defined by azimuth A. Considering the comparison of different types of 
sundials, we have created designs of dials for a specific location in Bratislava 
with the following spherical coordinates: 

UL = 48 8 53.38,  
 VL = 17 6 24.26. 

4.1 Horizontal sundials 

The dial plate of horizontal sundial is parallel to the local tangent plane of the 
reference surface and the gnomon is parallel with Earth’s axis and the angle 
between the gnomon and dial plate is equal to the local spherical latitude UL.  

The projection plane of gnomonic azimuthal projection is tangent to the 
spherical surface at the cartographic pole K, whose spherical coordinates are:  

spherical latitude UK = UL,  
spherical longitude VK = VL,     (8) 

where UL and VL are the geographic coordinates of the sundials’s installation 

location. 
Since in equation (7) for calculating the radius R of the spherical surface, 

 = 0, then the following applies to horizontal sundials: 
 R = d cos (90- UL),     (9) 

where d is length of gnomon. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9:  Hour lines and declination lines in horizontal sundial for the Bratislava 

location 

12 13 
14 

15 

16 

17 

18 6 

7 

8 

9 

10 
11 

d 

180 Sundials and gnomonic azimuthal projection



 
Figure 9 shows a visualization of hour and declination lines on horizontal 

sundial for the Bratislava location, which were created in the software Wolfram 
Mathematica [8] using the map equations (1) of the gnomonic azimuthal 
projection. The parameters UK, VK, R of gnomonic azimuthal projection in 
oblique aspect were determined using the relations (8) and (9), from spherical 
coordinates UL, VL of location Bratislava and from length of gnomon d, which is 
shown in the scale of the dial. 

Figure 10 shows examples of horizontal sundials, on the left is sundial located 
in the center of the village Babiná, made in 2010 by folk craftsman M. Baran 

from Sliač and sundial on the right is located in the park near the Cultural Center 
in Bernolákovo. It was made according to the design of Mr. Milan Baran in 2011. 

Fig. 10:  Examples of the horizontal sundials located in Babiná (left) and in 

Bernolákovo (right) (photo by Ladislav Barabás) [3] 

4.2 Vertical direct south sundials  

Planar plate of vertical sundial is in normal plane to the reference surface, the 
gnomon is parallel to the Earth’s axis, then the angle between the gnomon and 

the dial plate is: 90 - UL, where UL is the spherical latitude of the installation 
site. Vertical direct south sundials have dial plane perpendicular to the tangent to 
the south-facing meridian, its azimuth is A = 0.  

The projection plane of gnomonic azimuthal projection in the oblique aspect 
is tangent to the spherical surface at the cartographic pole K, whose coordinates 
are:  

spherical latitude UK = 90 - UL,  
spherical longitude VK = VL,     (10) 

where UL and VL are the geographic coordinates of the sundials’s installation 

location. 
Since in equation (6) for calculating the radius R of the spherical surface, 

 = 0, then the following applies to vertical direct south sundials: 
 R = d cos UL,      (11) 

where d is length of gnomon.  
Figure 11 shows a visualization of hour and declination lines on vertical direct 
south sundial for the Bratislava location, which were created in the software 
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Wolfram Mathematica [8] using the map equations (1) of the gnomonic 
azimuthal projection. The parameters UK, VK, R of gnomonic azimuthal 
projection in oblique aspect were determined using the relations (10) and (11), 
from spherical coordinates UL, VL of location Bratislava and from length of 
gnomon d, which is shown in the scale of the dial. 

Fig. 11:  Hour lines and declination lines in vertical direct south sundial for the 
Bratislava location 

Fig. 12: Examples of vertical direct south, polar and horizontal sundials  

Figure 12 shows examples of sundials. On the left is dial of sundial from 
ancient Egypt, Valley of the Kings (1500 BC) [6] and on the center and the right 
is vertical, polar and horizontal sundials in the of Brno Observatory and 
Planetarium area (photo by Vajsáblová).  

4.3 Declining vertical sundials defined by azimuth A  

Dial plane of declining vertical sundial defined by azimuth A is in normal plane 
to the reference surface with angle A to the tangent to the south plane. The 
gnomon is also parallel to the Earth’s axis, then the angle between the gnomon 
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and the dial plate is: 90 - UL, where UL is the spherical latitude of the installation 
site.  

The projection plane of gnomonic azimuthal projection in the oblique aspect 
is tangent to the spherical surface at the cartographic pole K with coordinates:  

spherical latitude UK = 90 - UL,  
spherical longitude VK is defined in (3): 

.
cossin

tan
arctan

2 











LL

L
U U

VVK

    

where UL and VL are the geographic coordinates of the sundials’s installation 

location and declination   is defined by (2):  

.
90

90




 LU

A  

Radius R of the spherical surface is defined by (6):  
 R = d cos   cos UL.     

where d is length of gnomon. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13:  Hour lines and declination lines in declining vertical sundial defined 
by azimuth A = 10 for the Bratislava location 

 
Fig. 14:  Declining vertical sundials on two walls with different azimuth A in 

Bratislava, Bezručova [3]  
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Figures 13 shows a visualization of hour and declination lines on declining 

vertical sundial defined by azimuth A = 10 for the Bratislava location, which 
were created in the software Wolfram Mathematica using the map equations (1) 
of the gnomonic azimuthal projection. The parameters UK, VK, R of gnomonic 
azimuthal projection in oblique aspect were determined using the relations (3) 
and (6), from spherical coordinates UL, VL of location Bratislava, azimuth A and 
from length of gnomon d, which is shown in the scale of the dial. The image of 
the equator is a straight line inclined from the horizon by an angle , which is 
determined according to relation (2).  

Figure 14 shows two declining vertical sundial defined by azimuth A. 

5 Conclusion 

Sundials are not just history. In 2022, the Technical Museum in Košice [3] 
published an overview of 245 sundials in Slovakia, an increase of 117 sundials 
since 1977.  

In the paper, we showed a geometric solution to the dial design, both 
constructive and analytical, with a strict connection to the gnomonic azimuthal 
projection. Another benefit is the derivation of the parameters of the gnomonic 
azimuthal projection with application to several types of sundials. We applied 
these parameters when using the map equations of the gnomonic azimuthal 
projection in the creating a program for rendering a sundial dial in the Wolfram 
Mathematica software environment. 
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Abstract. This paper brings examples of curves that are inverse to some 
elementary planar curves in the complex plane, through algorithm based on point-
wise operation of Minkowski division of point sets defined in the sense of 
Minkowski geometric algebra of complex sets. Pairs of inverse curves are 
presented for line, circle, conic sections, spirals and helix, as modelled in the 
GeoGebra software environment. 
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1 Introduction 

Minkowski geometric algebra of complex sets was introduced in 2001 by Rida 
T. Farouki and Bahram Ravani and published in paper [1]. Arithmetic operations
of summation, difference, multiplication and division of points in the complex
plane are defined in this paper as standard operations on complex numbers.
Point-wise operations of Minkowski sum, difference, product and quotient of
point sets in the complex plane are then defined as follows.

Let A and B be point sets in the complex plane. Then 

Minkowski sum be set  𝐴 ⊕ 𝐵 = {𝐚 + 𝐛; 𝐚 ∈ 𝐴 ∧ 𝐛 ∈ 𝐵}  

Minkowski difference be set 𝐴 ⊖ 𝐵 = {𝐚 − 𝐛; 𝐚 ∈ 𝐴 ∧ 𝐛 ∈ 𝐵} 

Minkowski product be set 𝐴 ⊗ 𝐵 = {𝐚 × 𝐛; 𝐚 ∈ 𝐴 ∧ 𝐛 ∈ 𝐵} 

Minkowski quotient be set 𝐴 ⊘ 𝐵 = {𝐚 ÷ 𝐛; 𝐚 ∈ 𝐴 ∧ 𝐛 ∈ 𝐵, 𝐛 ≠ (0,0))} 

where +, ,  and  are standard operations on complex numbers. Let points a 
and b be determined in the algebraic form as 𝐚 = (𝑎1, 𝑎2), 𝐛 = (𝑏1, 𝑏2), then

𝐚 + 𝐛 = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2)

𝐚 − 𝐛 = (𝑎1 − 𝑏1, 𝑎2 − 𝑏2)

𝐚 × 𝐛 = (𝑎1𝑏1 − 𝑎2𝑏2, 𝑎1𝑏2 + 𝑎2𝑏1)

𝐚 ÷ 𝐛 =
(𝑎1𝑏1 + 𝑎2𝑏2, 𝑎2𝑏1 − 𝑎1𝑏2)

𝑏1
2 + 𝑏2

2

Minkowski division of point sets A and B might be also regarded as 
Minkowski multiplication of set A by the inverse set B-1 to the set B. In order to 
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determine an inverse set B-1 to the set B, the following equation should be 
satisfied 

𝐵 × 𝐵−1 = 𝐵−1 × 𝐵 = {(1,0)} 
yielding to the form of the inverse set determination as 𝐵−1 =

{(1,0)}

𝐵
, 

whereas for points in the set 𝐵−1 this leads to the form 𝐛−1 =
(1,0)

𝐛
=

𝑏

|𝐛|2 . 

2 Inverse curves 

Let us consider smooth curves in the complex plane as point sets to be multiplied 
and divided following the above rules, and let us look at the formula of an inverse 
curve to an arbitrary planar curve. Let the curve A be defined by its vector 
parameterisation 𝐴: 𝐫(𝑢) = (𝑥(𝑢), 𝑦(𝑢)), 𝑢 ∈ 𝐼 ⊂ 𝑹 . Then, using the operation 
of Minkowski division of point sets, we receive 

𝐫−1(𝑢) =
𝟏

𝐫(𝑢)
=

(1,0)

𝐫(𝑢)
=

𝐫(𝑢)

|𝐫(𝑢)|2
=

(𝑥(𝑢), 𝑦(𝑢))

(𝑥(𝑢))2 + (𝑦(𝑢))2 
 . 

Looking for pairs of inverse curves, we will start with line, then continue with 
circle, ellipse, parabola and hyperbola, spiral and helix. We will investigate the 
influence of various positions of the basic curve on the form of its inverse.  

2.1 Inverse to a line 

Parametric representation of a line in the form  
𝐫(𝑢) = (𝑢, 𝑘𝑢 + ℎ), 𝑢 ∈ 𝑹, 𝑘, ℎ ∈ 𝑹  

determines the form of the parameterisation of the line inverse 

𝐫−1(𝑢) =
(𝑢, 𝑘𝑢 + ℎ)

𝑢2(𝑘2 + 1) + 2𝑘ℎ𝑢 + ℎ2
, 𝑢 ∈ 𝑹, 𝑘, ℎ ∈ 𝑹 . 

Thus inverse to a line not passing through the origin is a circle, while the 
inverse is a line for a line passing through the origin, as illustrated in Fig. 1.  

 

 
Fig. 1: Inverse curves to lines 
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2.2 Inverse to a circle 

Considering parameterisation of a circle given by vector function  

𝐫(𝑢) = (𝑘 cos 𝑢 + 𝑑1, 𝑘 sin 𝑢 + 𝑑2), 𝑢 ∈ ]0, 2𝜋[, 𝑘, 𝑑1, 𝑑2 ∈ 𝑹 

there might be derived vector representation of its inverse curve in the form 

𝐫−1(𝑢) =
(𝑘 cos 𝑢 + 𝑑1, 𝑘 sin 𝑢 + 𝑑2)

𝑘2 + 2𝑘(𝑑1 cos 𝑢 + 𝑑2 sin 𝑢) + 𝑑1
2 + 𝑑2

2  , 𝑢 ∈ ]0, 2𝜋[, 𝑘, 𝑑1, 𝑑2 ∈ 𝑹 

 With respect to the position of the circle, its inverse might be:  
a line, if circle is passing through the origin 
a circle, in all other positions, see in Fig. 2. 

   
Fig. 2: Inverse curves to circles 

2.3 Inverse to an ellipse 

Inverse curve to an ellipse represented parametrically by vector map 

𝐫(𝑢) = (𝑎 cos 𝑢 + 𝑑1, 𝑏 sin 𝑢 + 𝑑2), 𝑢 ∈ ]0, 2𝜋[, 𝑎, 𝑏, 𝑑1, 𝑑2 ∈ 𝑹 

is determined by vector function 

𝐫−1(𝑢) =
(𝑎 cos 𝑢 + 𝑑1, 𝑏 sin 𝑢 + 𝑑2)

ℎ(𝑢)
 , 𝑢 ∈ ]0, 2𝜋[, 𝑎, 𝑏, 𝑑1, 𝑑2 ∈ 𝑹,  

where ℎ(𝑢) = 𝑎2 cos2 𝑢 + 𝑏2 sin2 𝑢 + 2(𝑎𝑑1 cos 𝑢 + 𝑏𝑑2 sin 𝑢) + 𝑑1
2 + 𝑑2

2 . 
Inverse curve might have many different forms, depending on the position of 

ellipse. Inverse to ellipse with centre in the origin and axes in the coordinate axes 
resemble curves called hippopede of Eudoxus, if the ellipse is passing through 
the origin, its inverse curve looks like cissoid of Diocles. There are also many 
other forms of inverse curve to an ellipse, one of which might be perhaps also 
epitrochoid, in case of certain values of parameters describing the ellipse.  Many 
other forms might be achieved by general position of ellipse with axes not 
coinciding with the coordinate axes and arbitrary centre in the plane, see Fig. 3. 
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Fig. 3: Inverse curves to ellipses 

2.4 Inverse to a parabola 

Parabola in the basic position in the plane with axis coinciding or parallel to the 
coordinate axis y might be represented by vector function 

𝐫(𝑢) = (𝑢, 𝑘𝑢2 + ℎ), 𝑢 ∈ 𝑹, 𝑘, ℎ ∈ 𝑹  

and its inverse curve has parametric representation in the form  

𝐫−1(𝑢) =
(𝑢, 𝑘𝑢2 + ℎ)

𝑢2(1 + 𝑘2𝑢2 + 2𝑘ℎ) + ℎ2
, 𝑢 ∈ 𝑹, 𝑘, ℎ ∈ 𝑹 . 

Inverse curves have the form of hippopede of Eudoxus, cissoid of Diocles, or 
even and epitrochoid, with respect to the position of parabola to the coordinate 
axes and the origin as illustrated in Fig. 4. 
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Fig. 4: Inverse curves to parabolas 

2.5 Inverse to a hyperbola 

Parametric representation of hyperbola in the form  

𝐫(𝑢) = (
𝑎

𝑐(𝑢)
+ 𝑑1, 𝑏 𝑡(𝑢) + 𝑑2) , 𝑢 ∈ ]0, 1[, 𝑎, 𝑏, 𝑑1, 𝑑2 ∈ 𝑹 

for c(u) = cos((1 − 2𝑢)𝜋), t(u) = tan((1 − 2𝑢)𝜋) yields parametric representation 
of its inverse curve 

𝐫−1(𝑢) =
𝐫(𝑢)

ℎ(𝑢)
 , 𝑢 ∈ ]0,1[, 𝑎, 𝑏, 𝑑1, 𝑑2 ∈ 𝑹,  

where  ℎ(𝑢) = 𝑎2 𝑐−2(𝑢) + 𝑏2 𝑡2(𝑢) + 2(𝑎𝑑1 c−1(𝑢) + 𝑏𝑑2 t(𝑢) + 𝑑1
2 + 𝑑2

2 . 

Lemniscate of Bernoulli is inverse curve to equiaxed hyperbola with equal 
semi-axes a = b and axes in the coordinate axis, limaçon of Pascal (epitrochoid) 
is inverse to properly shifted equiaxed hyperbola, the inverse curve might be also 
Cartesian oval or even cissoids of Diocles if the equiaxed hyperbola is passing 
through the origin, as this was the case also of other conic sections, ellipse and 
parabola.  

These specific forms of hyperbola inverse curves, and also some other 
interesting forms of hyperbola inverses, are presented in Fig. 5.  
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Fig. 5: Inverse curves to hyperbolas 

2.6 Inverse to a spiral 

Inverse curve to spiral 

𝐫(𝑢) = (𝑘𝑢 cos 𝑢 + 𝑑1, 𝑘𝑢 sin 𝑢 + 𝑑2), 𝑢 ∈ ]0, 2𝜋[, 𝑘, 𝑑1, 𝑑2 ∈ 𝑹 

is parameterised in the form 

𝐫−1(𝑢) =
(𝑘𝑢 cos 𝑢 + 𝑑1, 𝑘𝑢 sin 𝑢 + 𝑑2)

ℎ(𝑢)
 , 𝑢 ∈ ]0, 2𝜋[, 𝑘, 𝑑1, 𝑑2 ∈ 𝑹 

where ℎ(𝑢) = 𝑘2 𝑢2 + 2𝑘𝑢(𝑑1 cos 𝑢 + 𝑑2 sin 𝑢) + 𝑑1
2 + 𝑑2

2 . 

Various interesting forms of inverse curves to spiral in several specific 
positions with respect to coordinate system, determined by presented chosen 
values of parameters k, d1, and d2, are illustrated in Fig. 6. 
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Fig. 6: Inverse curves to spirals 

2.7 Inverse to a helix 

Applying the same formula for definition of an inverse curve to a space curve 
determined parametrically by formula 

𝐫(𝑢) = (𝑥(𝑢), 𝑦(𝑢), 𝑧(𝑢)), 𝑢 ∈ 𝐼 ⊂ 𝑹, 

there might be derived parametric form of such inverse as 

𝐫−1(𝑢) =
𝟏

𝐫(𝑢)
=

(𝑥(𝑢), 𝑦(𝑢), 𝑧(𝑢))

(𝑥(𝑢))2 + (𝑦(𝑢))2 + (𝑧(𝑢))2 
 , 𝑢 ∈ 𝐼 ⊂ 𝑹. 

     Considering helix in the form 

𝐫(𝑢) = (𝑘 cos 𝑢 + 𝑑1, 𝑘 sin 𝑢 + 𝑑2, 𝑣𝑢), 𝑢 ∈ ]0, 2𝜋[, 𝑘, 𝑑1, 𝑑2, 𝑣 ∈ 𝑹, 

its inverse curve is defined by formula 

𝐫−1(𝑢) =
(𝑘 cos 𝑢 + 𝑑1, 𝑘 sin 𝑢 + 𝑑2, 𝑣𝑢)

ℎ(𝑢) 
, 𝑘, 𝑑1, 𝑑2, 𝑣 ∈ 𝑹, 
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while  ℎ(𝑢) = 𝑘2 + 2𝑘(𝑑1 cos 𝑢 + 𝑑2 sin 𝑢) + 𝑑1

2 + 𝑑2
2 + 𝑣2𝑢2. 

      Inverse curve to a helix in the basic position is another helix, generally, it is 
a space curve, see Fig. 7. 

 
Fig. 7: Inverse curves to spirals 

3 Conclusion 

Curves inverse to basic planar curves were presented, based on Minkowski point 
set operations defined according to Minkowski geometric algebra of complex 
sets. Examples of pairs of inverse curves are presented for line, circle, all conic 
sections - ellipse, parabola, hyperbola, and spiral, while always the parametric 
representations of these inverses are derived, and a short analyses of the inverse 
curves forms with respect to the special positions of the basic curves is provided.  

Well-known curves like hippopede of Eudoxus, cissoid of Diocles, limaçon 

of Pascal or cardiod (epitrochoids), or even lemniscate of Bernoulli and Cartesian 
ovals might appear as inverse curves to conic sections, if these are in special 
position to the coordinate system. These interesting findings should be studied 
further on carefully, in order to find relations between various forms of inverses 
with respect to transformations of scaling, shifting and probably also rotation of 
the basic curve in the complex plane. There might be found some connections to 
Möbius transformations of the complex plane.  

An example of possible definition of an inverse to a space curve, namely 
helix, is presented, too, while more investigations should be paid to this problem. 
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Abstract. The paper deals with the changes in the teaching of
descriptive geometry at the VSB – Technical University of Ostrava
over the last 68 years in the context of technological development and
changing requirements of technical disciplines. The main topics are
the transition from traditional manual drawing to digital methods of
visualization and modeling, as well as changes in the perception of the
role of descriptive geometry in engineering education. The paper also
analyses which of the topics discussed remain timeless and which have
been progressively reduced or replaced, based on their relevance to
contemporary engineering disciplines. The insights gained can serve as
a starting point for further modernization of the curriculum in order to
maintain geometric thinking as one of the cornerstones of engineering
training.
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1 Úvod

Deskriptivńı geometrie se na VŠB-TUO vyučuje už od jej́ıch počátk̊u,
které sahaj́ı do poloviny 19. stolet́ı, kdy se ještě jednalo o báňské učilǐstě
v Př́ıbrami.[2] Katedra matematiky a deskriptivńı geometrie vznikla jako
samostatný ústav v roce 1899 a dosud zajǐst’uje výuku matematických
předmět̊u a deskriptivńı geometrie.1

Proměny výuky deskriptivńı geometrie budeme sledovat zejména s po-
moćı učebnic a skript vydaných na VŠB-TUO. Nejstarš́ım skriptem je
Deskriptivńı geometrie autora Václava Štěpánského z roku 1953. Výchoźı
pro nás je rok 1957, ve kterém vyšlo skriptum Deskriptivńı geometrie II,
jehož autory jsou Václav Štěpánský, Oldřich Hajkr, Jan Hebelka a Josef
Láńıček. Toto skriptum je nejstarš́ı zdroj, o který se článek oṕırá.

1V současnosti spolu s daľśımi katedrami matematiky p̊usob́ıćımi na r̊uzných fa-
kultách univerzity.
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2 Výuka
Jedńım z ukazatel̊u toho, jak se měnila výuka deskriptivńı geometrie,
je určitě i časová dotace přidělená předmětu a zp̊usob jeho zakončeńı.
Přehled ńıže prezentuje situaci na Hornicko-geologické fakultě, kde se
deskriptivńı geometrie vyučovala po celou dobu sledovaného obdob́ı. Roky,
které nejsou uvedeny se nepodařilo dohledat.

Téměř od počátku sledovaného obdob́ı až do roku 1976/77 byl počet
hodin konstantńı, měnil se jen zp̊usob zakončeńı předmětu.2 Od roku
1977/78 ale začal počet hodin postupně klesat, kromě třech okamžik̊u,
kdy došlo k nár̊ustu. Prvńım byl rok 1987/88, kdy se z jednosemestrálńıho
předmětu stal opět dvousemestrálńı. V roce 1990/91 přibyla nav́ıc ve
druhém semestru jedna hodina přednášky, d́ıky čemuž měla výuka stejný
rozsah jako v roce 1977/78. Posledńım navýšeńım bylo v roce 1996/97
přidáńı jedné hodiny přednášky.

Obr. 1: Časová dotace v jednotlivých akademických roćıch spolu se
zp̊usobem zakončeńı.[5]

3 Skripta
Během sledovaného obdob́ı vyšlo velké množstv́ı skript, podklad tohoto
článku tvoř́ı 24 z nich.[4]3 Porovnávat mezi sebou jednotlivá skripta by

2zk – zkouška, zap – zápočet, kl.zap – klasifikovaný zápočet, pr – projekt
3Jejich seznam lze na vyžádáńı zaslat.
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bylo nepřehledné a př́ılǐs náročné, proto je rozděĺıme do skupin, z nichž
každá tvoř́ı zdánlivý celek. Poj́ıćım prvkem skupiny je např́ıklad totožný
autorský kolektiv nebo návaznost jednotlivých skript na sebe atp. U každé
skupiny uvád́ıme přibližnou dobu použ́ıváńı skript, resp. rok prvńıho a po-
sledńıho vydáńı některého skripta ze skupiny.

1. 1957 – 1989 V. Štěpánský, O. Hajkr, E. Plocková

2. 1990 – 1998 J. Láńıček, E. Plocková

3. 1994 – 2008 Základy DG a KG + Sb́ırka řešených př́ıklad̊u z DG
a KG (5 d́ıl̊u)

4. 2006 – 2013 mdg.vsb.cz

5. 2012 – dnes LMS
Prvńı skupina se vyznačuje velkým množstv́ım vydaných knih, ve kterých
se ale témata téměř neměnila. Pro skripta druhé skupiny je charakte-
ristické převzet́ı témat ze skupiny prvńı a jejich zestručněńı. Třet́ı sku-
pina je ucelenou sadou pěti skript doplněná pěti sb́ırkami úloh. Čtvrtou
skupinu definuj́ı materiály š́ı̌rené předevš́ım elektronicky, v současnosti
shromážděné na uvedené webové adrese.[3] Posledńı a současná skupina
neobsahuje žádná skripta vydaná klasickým zp̊usobem, ale zahrnuje ma-
teriály, které si vyučuj́ıćı tvoř́ı sami a zveřejňuj́ı je ve svých elektronických
kurzech v LMS.4

Časová osa vyznačuje obdob́ı p̊usobnosti jednotlivých skupin skript.
Tato doba se postupně zkracuje, což znamená, že rychlost proměňováńı
výuky se zvyšuje.

Obr. 2: Orientačńı časová osa.

4 Témata
Změny se nejv́ıce projevuj́ı v prob́ıraných tématech, pod́ıváme se tedy na
to, která témata autoři do svých skript zařazovali a v jaké mı́̌re. Sledujeme
vždy jedno téma a porovnáváme to, jak se mu věnovaly jednotlivé skupiny.
Zároveň muśıme zohlednit, pro které studijńı obory byla skripta určena.
Ve skupinách 1, 2 a 3 jsou skripta určená pro všechny obory VŠB-TUO,
které měly ve studijńım plánu deskriptivńı geometrii. Výběr konkrétńıch
témat byl pak upřesněn na přednáškách. Ve skupinách 4 a 5 už jsou jed-
notlivá skripta určena pro r̊uzné obory a nedaj́ı se tak snadno porovnat,
např. proto, že pro některé obory skripta nevznikla.

4Learning Management System.

Proměny výuky deskriptivní geometrie na VŠB-TUO 195



Nyńı poṕı̌seme, v jaké mı́̌re se v jednotlivých skupinách vyskytovala
nejvýznamněǰśı témata a na co kladli autoři d̊uraz. Vše ilustruje přehled
na konci odstavce. Kapitolu o vývoji deskriptivńı geometrie, stejně jako
projektivńı geometrii, obsahovaly pouze skripta z prvńı skupiny. Geomet-
rické základy jsou zmiňovány jen v prvńı a druhé skupině a pak ve čtvrté.
V prvńıch dvou skupinách se kladl d̊uraz na axiomatiku, ve čtvrté skupině
autoři připomı́nali také množiny bod̊u dané vlastnosti a úlohy týkaj́ıćı
se trojúhelńık̊u. Zobrazovaćım metodám se věnovala skripta v každém
obdob́ı, přičemž je zde třeba upozornit, že pokud v některé skupině ne-
bylo zpracováno určité téma, neznamená to, že by se neprob́ıralo např.
s využit́ım předchoźıch materiál̊u. Naopak lineárńı perspektiva a kosoúhlé
promı́táńı se vyskytuj́ı pouze v posledńı skupině, což souviśı s výukou
deskriptivńı geometrie na Stavebńı fakultě od roku 1997. U kuželoseček
se ve všech obdob́ıch prob́ırala elipsa, hyperbola a parabola a v prvńıch
třech obdob́ıch také konstrukce řez̊u válcových a kuželových ploch. Stálým
tématem jsou i křivky, včetně cyklických a plochy, jejichž výběr byl vždy
uzp̊usoben konkrétńımu typu studia.5 Zpočátku se řešilo i osvětleńı a śıtě
ploch, v posledńıch třech skupinách z̊ustaly jen konstrukce řez̊u a pr̊unik̊u.

Obr. 3: Přehled témat v jednotlivých skupinách.

5 Závěr

Role deskriptivńı geometrie v inženýrské př́ıpravě se proměňuje. Dř́ıve
to byl nutný nástroj pro správné zpracováńı výkres̊u, dnes se významně
pod́ıĺı na rozvoji prostorové představivosti a umožňuje správné pochopeńı
moderńıch modelovaćıch a vizualizačńıch nástroj̊u. Studium vlastnost́ı ge-
ometrických objekt̊u z̊ustává jej́ım předmětem stále.[1]

Původńı záměr využ́ıt poznatky o proměnách výuky k daľśı moderni-
zaci deskriptivńı geometrie se ukázal jako obt́ıžně dosažitelný. Sledované

5Hornictv́ı, strojnictv́ı, stavebnictv́ı, architektura.
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změny nebyly natolik zásadńı, aby bylo možné postihnout tendenci vývoje
předmětu. Nelze tedy stanovit trend jeho vývoje ani v následuj́ıćıch letech.

Shrneme aspoň poznatky, které se vyskytly při studiu zmiňované pro-
blematiky. Časová dotace se pr̊uběžně snižuje, na některých školách se
od výuky deskriptivńı geometrie upoušt́ı úplně. Témata se neměńı kon-
tinuálně, sṕı̌se nárazově mezi jednotlivými skupinami. Intenzita změn
nar̊ustá, ale nejsou to změny zásadńı, měńı se většinou jen d́ılč́ı témata,
př́ıpadně se snižuje náročnost. Významná témata jako jsou zobrazovaćı
metody, křivky a plochy a kuželosečky z̊ustávaj́ı beze změn. Do výuky se
postupně zapojuj́ı nové technologie, např. POV-Ray, GeoGebra a 3D tisk.
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