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Forewords

Slovak University of Technology, Institute of Mathematics and Physics at the
Faculty of Mechanical Engineering in Bratislava, hosted the 11™ Slovak-Czech
Conference on Geometry and Graphics held on September 1 — 4, 2025.
Conference was the next successful common event of two traditional conferences
organized by national societies for geometry and graphics, 34" Symposium on
Computer Geometry SCG'2025 in Slovakia and the 45" Conference on
Geometry and Graphics in the Czech Republic, and was arranged under the
leadership of the Slovak Society for Geometry and Graphics.

42 registered participants from 6 countries — Slovakia, Czech Republic, Austria,
Hungary, Poland and Italy attended conference and contributed to its quality
scientific programme. The atmosphere of the meeting was as usually very cordial
and enjoyable. The rich conference programme included lectures and
presentations from various fields of geometry and graphics. Four invited plenary
lectures were presented, with one additional invited presentation.

Professor Luigi Cocchiarella from Milan Polytechnic in Italy, former president
of the International Society for Geometry and Graphics ISGG, presented in his
opening talk “Be it pencil or Al: Informing Geometry in Forming Architecture*
many valuable ideas on the role of geometry in technical education, architecture
in particular.

Nice plenary talk on “Aesthetic Curve Families in Computer-Aided Design” was
presented by Péter Salvi from Budapest University of Technology and
Economics, Hungary. Participants could learn about what we actually mean by
aesthetic curves, how this question might be explored by revisiting classical
curves generally regarded as beautiful, and about families of aesthetic curve
representations, with a deeper look into so-called log-aesthetic curves and their
variations. There was also presented the intriguing connection to Archimedean
spirals, offering insights into possible applications.

Invited lecture “Historical Constructions of Ellipses and Ovals from the
Perspective of Franz Sales Meyer and Nicolaus Fialkowski* introduced to
participants historical methods of constructing ellipses and oval shapes. Véra
Ferdianova from University in Ostrava, Czech Republic and Michaela HoleSova
from University in Zilina, Slovakia, presented Franz Sales Meyer constructions
of ellipses and ellipsoids, which were essential for designing more complex
forms in architecture and decorative arts, and Nicolaus Fialkowski systematic
overview of both classical and lesser-known methods for constructing ellipses,
often based on the practical use of circles and arcs. The lecture not only
introduced selected methods from the theoretical perspective and through
practical demonstrations, but emphasised on their application in education of
geometry with potential integration of digital tools, e.g. GeoGebra.

Invited speaker Michal Zamboj from the Charles University in Prague, Czech
Republic, described in his interesting invited lecture “Current Challenges and
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Perspectives of Descriptive Geometry™ the current problems that descriptive
geometry encounters in the field of education, applications, and research. He
identified the original motivations as fixed elements accompanying the subject
since its foundation. The aim of this lecture was to propose projections of these
motivations to the current time into two interrelated projection planes:
descriptive geometry as a part of mathematics and as an application in other
subjects of not only technical but also general education.

Jana Chalmovianskd from the Comenius University in Bratislava, Slovakia,
presented her invited lecture as “Report from a meeting between a mathematician
and descriptive geometry”, bringing reflections of a mathematician on teaching
descriptive geometry to prospective teachers of the subject, offering thus
a viewpoint of an outsider, and informing about implementations of the
observations into the current transformations of the course at the Faculty of
Mathematics, Physics and Informatics.

Submitted 19 contributed talks from applied and pure geometry, graphics and
education of geometry are published in this proceedings.

Conference was organized by the Slovak Society for Geometry and Graphics at
its official seat, the Institute of Mathematics and Physics, Mechanical
Engineering Faculty of the Slovak University of Technology in Bratislava,
Slovakia. Social programme included the boat trip on Danube River to the nearby
iconic castle Devin, firmly connected with the history of Slavic peoples in the
territory of Slovakia. Conference dinner was held in the historic environment of
the former Monastery of the Merciful Brothers, today popular Bratislava Flag
Ship restaurant, in a relaxing atmosphere with the traditional Slovak cuisine and
home-brewed beer.

We would like to invite all interested parties to attend the next joint event of the
46" Conference on Geometry and Graphics and the 35" Symposium on
Computer Geometry SCG"2026. This next conference will be held again
together in 2026 by representatives of both national societies for geometry and
graphics as the 121" Czech-Slovak Conference on Geometry and Graphics in the
South Bohemian city Ceské Budé&jovice, Czech Republic, under the supervision
of the Czech Society for Geometry and Graphics.

Let us keep the good tradition of our common meetings deeply rooted in the
history.

October 31, 2025

Daniela Velichové Zbynék Sir
chair of SSGG chair of CSGG
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Be it pencil or Al: Informing geometry
in forming architecture

Luigi Cocchiarella

Politecnico di Milano, Department of Architecture and Urban Studies (DASTU)
Milano, Italy
email: luigi.cocchiarella@polimi.it

Abstract. IT has increasingly revealed the dual function of Geometry, that
is, as a meta-language supporting the generative processes in design, and,
as the structure of that same meta-language.

Keywords: Geometry, architecture, interdisciplinary cooperation, visualization,
artificial intelligence

IT has increasingly revealed the dual function of Geometry, that is, as a meta-
language supporting the generative processes in design, and, as the structure of
that same meta-language.

Parametric modelling by visual programming made us familiar with the
visualization of the logical patterns behind geometric configurations and
transformations.

As an evolution of CAD modelling, the level of abstraction remained close to
that of the pure Geometry anyway. When parameterisation evolved further, new
sets of information were digitally integrated in the geometric structures,
increasing the semanticity level of the models, on which in turn, they could
finally have an impact during the design processes.

Therefore, geometries could even be generated with no direct geometric inputs,
or, by operating on other types of data, which was the antechamber of the shape
generation by ‘prompts” via Al

On the one hand, this new mode reflects that long-desired permeability among
languages that is promising in terms of feeding novel ways of interdisciplinary
cooperation.

On the other hand, it raises a question about ‘how’ we are expected to think and
learn in this new syncretic system of knowledge, independently on the tools used
to learn.

Probably, we have to dive more closely, in research, education, and profession,
into the profound connections of Geometry with the wide range of disciplinary
fields to which it is linked, in other words, into how its purity is essential to the
many components of the real realm including architecture, considered in all the
scalar extensions of its humanized space, which is a significant part of that real
realm.
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Historical constructions of ellipses and ovals
from the perspective of Franz Sales Meyer
and
Nicolaus Fialkowski

Véra Ferdianova, Michaela HoleSova

Dept. of mathematics, Fac. of Science, Univ. of Ostrava
Mlynska 5, 701 03 Ostrava, Czech Republic
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Abstract. This lecture focuses on historical methods of constructing ellipses
and oval shapes, as documented in the works of Franz Sales Meyer and
Nicolaus Fialkowski. In his renowned Handbook of Ornament, Franz Sales
Meyer presents not only ornamental elements but also devotes a section to the
constructions of ellipses and ellipsoids, which were essential for designing more
complex forms in architecture and decorative arts. Nicolaus Fialkowski, in his
comprehensive textbook Die Zeichnende Geometrie, offers a systematic
overview of both classical and lesser-known methods for constructing ellipses,
often based on the practical use of circles and arcs. The lecture will introduce
selected methods from both a theoretical perspective and through practical
demonstrations, with an emphasis on their application in geometry education
and the potential integration with digital tools such as GeoGebra.

Keywords: Nicolaus Fialkowski, Franz Sales Meyer, ellipses, ovals

1 Introduction

In technical practice, the terms oval, ellipse, and oval describing an ellipse are
often used interchangeably. Although an exact mathematical definition of an
oval in the Euclidean plane is not known, it is usually described as a curve with
the following properties.

e (differentiable (visually smooth, without sharp breaks),

® simple (does not intersect itself),

® convex (the line segment connecting any two points on the curve lies

within the area it bounds),

® closed,

® and has at least one axis of symmetry.
Unlike the oval, an ellipse has a precise mathematical definition as the locus of
points whose sum of distances from two fixed foci is constant. Despite their
visual similarity, the ellipse differs by its continuously changing curvature.
Therefore, although the terms are often confused in technical fields, it is
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essential for students—especially in technical disciplines—to understand the
key differences summarised in Tab. 1.

Criterion Oval (general/technical Ellipse
sense)

Definition Descriptive term for an egg- [Set of points with a constant
like shape; often composed [sum of distances from two
of circular arcs. fixed foci.

Mathematical ['Ambiguous, context- Precisely defined by an

precision dependent." analytical equation.

Curvature Piecewise constant Smoothly and continuously
(composed of arcs with fixed [changing at every point.
radii).

Foci Does not have foci in the Defined by a pair of foci.
sense of an ellipse's
definition.

Symmetry Usually has at least one axis [Always has two axes of
of symmetry. symmetry (major and minor).

Relationship  ['In geometry, an oval is often|"A specific, precisely defined
defined as a curve similar to [curve."
an ellipse that is not an
ellipse.”

Tab. 1: Comparison between an oval and an ellipse

We focus on two authors who, in their works, presented many interesting
constructions of ovals as well as ellipses that were used in technical practice in
the past and remain of interest even today. These shapes are not just decorative
— they reflect a time when geometry and aesthetics were deeply intertwined.
At the heart of this period stood Franz Sales Meyer, who saw ellipses as key
to ornamental harmony, and Nicolae Fialkowski, who approached them as
powerful tools for geometric thinking and teaching.

Their constructions reveal more than methods — they offer insight into how
geometry shaped space, beauty, and learning. And even today, these historical
approaches can inspire modern education and design.

2 Nicolaus Fialkowski (1818-1902) and his works

Nicolaus Fialkowski was an Austrian educator, architect, and author of
textbooks on technical drawing and descriptive geometry who worked in
Vienna during the second half of the 19th century. According to surviving
records, during his lifetime he served as an assistant at the Department of
Descriptive Geometry and simultaneously as a substitute teacher for technical
drawing in the preparatory year at the Imperial and Royal Polytechnic Institute
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in Vienna. He was also a professor of mathematics at the Gumpendorfer
Realschule secondary school [8].
At the same time, he held the position of full instructor in geometry,
architectural design, and related drawing, and he acted as the custodian of the
Geometrical and Architectural Teaching Collection (Kustos der geometrischen
und architektonischen Lehrmittelsammlung)[7].
In official directories he is listed as residing in Mariahilf, Kirchengasse No.
138, Vienna [7]. He authored more than 30 works, for example (according to
historical notes [1] and archival sources [10]):
e Das Dezimalrechnen mit Rangziffern(1863)
e Zeichnende Geometrie (1879/1880/1882)
e  Praktische Geometrie (1892)
e Lehrbuch der Geometrie und des Zeichnens oder die geometrische
Formenlehre (1864/1872/1882)
e Analyse des Zeichnens nach der Anschauung nebst Angabe einiger
neuerdachter Modelk (1856)
e Der Zeichner und Rolorist nebst den dazu gehdrigen
Zeichenrequisiten und Materialien. Praktische Anleitung [...] fiir
Real- und Gewerbeschulen, wie auch fiir den Selbstgebrauche fiir
jeden Zeichner, insbesondere fiir technische Zeichner. Wien:
Wendelin 1857
o Lehrbuch der Planimetrie, L Teil (Zweiter Cursus der Geometrie)
Wien/Leipzig: Klinckardt 1882 (5. Auflage).
o Lehrbuch der Planimetrie, IL Teil (Dritter Cursus der Geometrie)
1882 (5. Auflage).

Although he was primarily an educator, some sources also mention him as
an architect and designer, which is probably related to the fact that after the
marriage in 1899 of his daughter Adele (1866—1945) to the much older builder
Josef Prokop (1836—1904), he most likely worked in Prokop’s firm [8]. This
combination of practical experience and theoretical knowledge is reflected in
his textbooks, which demonstrate the connection between geometry and
technical drawing, as well as architectural construction.
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2.1 Zeichnende Geometrie [2]

The book Zeichnende Geometrie (3rd edition) is an extensive and meticulously
elaborated work whose aim is to provide students of secondary and commercial
schools, as well as technicians and technical draftsmen, with a complete
collection of feasible and accurate methods for all types of geometric
constructions. The author emphasises practicality and precision, thus creating
a handbook that connects the theoretical principles of geometry with the needs
of technical practice.

The completeness and scope of the book are evident from its rich visual
content — on 138 pages of text, it contains approximately 1,800 figures, which
represents nearly four times as many as comparable works of the time. Such
a vast collection of illustrations arose because the author included not only
well-known constructions but also a large number of new ones, based on
contemporary research and extensions of geometric methods. The book also
incorporates constructions that rarely appeared in other sources but were of
great practical importance for technical drawing — for example, the plotting of
required shapes within given figures, determining centroids, or the geometric
construction of architectural ornaments.

A significant contribution of the work lies in approximately one hundred
new constructions created by the author himself, which supplement previously
missing areas of geometry. Interestingly, in the second edition from 1872, the
author introduced sixty new constructions. Among the most remarkable
innovations, according to Fialkowski, are the general construction of angles in
degrees and the determination of the magnitude of drawn angles, as well as
both general and special methods of angle division, the determination of
diagonal points in the construction of an ellipse, and new constructions of
ellipses — including the first strictly geometric construction of the so-called
Eilinie (egg-shaped curve) in two variants. With these new methods, the author
not only expands existing knowledge but also strives for a systematic
completion and unification of geometric procedures, thereby making his work
the richest and most comprehensive of its kind

Special attention should also be given to the thoughtful layout of the book,
which demonstrates the author’s careful planning. On one page, the illustrations
are placed, while on the opposite page, the corresponding text is printed. This
arrangement brings a number of practical advantages, and the author himself
highlights this feature in the prologue as a groundbreaking approach. The
distance between the text and the diagrams or constructions is minimal, which
facilitates orientation and speeds up the search for the relevant information.

Interestingly, Fialkowski also considered the reader’s comfort in studying
and teaching, noting that this layout makes the learning process more
convenient and clearer than in works using traditional woodcut illustrations.
Moreover, this arrangement saves space on the working or drawing table,
which is essential for practical work with drawing instruments.
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Each exercise follows a similar structure (see Fig. 1):

® Numbering and title — each task is numbered and linked to a specific
construction (e.g. Tafel 24, Fig. 381...). If it is an original construction
by the author, this is indicated with the note (Vom Verfaffer) (see Fig.
2).

® Assignment — a clear geometric requirement (e.g. “Divide the angle into
three equal parts™).

® Procedure — a step-by-step verbal guide with continuous references to
the construction.

® Notes and applications — practical tips, alternatives, and examples of use
in practice (e.g. in architecture).
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Thanks to its systematic structure, clarity, and practical orientation,
Fialkowski’s Zeichnende Geometrie represents not only a significant milestone
in the development of geometry education but also a valuable source for all
those engaged in geometric constructions in technical and architectural
practice. Owing to the author’s diligence and dedication to his field, the book
was published in several editions, which he regularly expanded with additional
constructions and exercises. In its time, it was a highly respected publication
not only in Europe but also abroad; as early as 1886, it was included among the
recommended textbooks for instruction in the United States in the Bibliography
of Education by G. Stanley Hall and John M. Mansfield of Boston, which is
available in the archives of the Library of the University of California, Los
Angeles [3].

3 Franz Sales Meyer (1849 — 1927)

Franz Sales Meyer was a German professor, author, poet, and painter from
Karlsruhe. During the 19th century, he did not appear as a revolutionary design
theorist but rather as a masterly systematiser and educator. His principal
contribution lay in the creation of a lasting, practical, and comprehensive
framework for the study and application of historical ornament.

From 1866 to 1868, he attended a seminary in Meersburg, which indicates a
classical education, and subsequently continued his studies at the Polytechnic in
Karlsruhe, where he graduated in 1871 in the field of “industrial art education.”

In 1873, he joined the faculty of the Grand Ducal School of Applied Arts
(GroBherzogliche Kunstgewerbeschule) in Karlsruhe. In 1878, he was
appointed a full lecturer and received the title of Professor of Ornamentation.
His entire professional life was centred in Karlsruhe, where he also passed
away after a short illness on 6 November 1927 and where he had remained
active for the rest of his career. Meyer was a multifaceted personality; besides
his main professional activities, he was also an accomplished painter and poet,
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attesting to his broad cultural outlook. Nevertheless, his primary and enduring
legacy was his pedagogical and publishing work in the field of ornament
theory.

A HANDBOOK
OF ORNAMENT

witn
AvOU
THE

Fig. 3: Left: Page of the book, Right: Picture of Franz Sales Meyer [6]

His most significant work, Handbuch der Ornamentik, became an
international standard, whose journey began in Germany. It was first published
in German in 1888 under the title Systematisch geordnetes Handbuch der
Ornamentik.

3.1 Handbook of ornaments [6]

The structure of the book represents a carefully designed pedagogical system.
In the first part, Elements of Decoration, Meyer categorises all ornamental
motifs according to their source:

® Geometric elements
® Natural forms (plants, animals, humans)
® Artificial objects (trophies, symbols, etc.)

i

D

L

&

Fig. 4: Example from the first part — Elements of Decoration [6]
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In the second part, Ornament Applied to the Elements, Meyer classifies
ornament based on its structural or compositional purpose:

® Bands (borders)

® Free Ornaments (finials)

® Supports (columns, brackets)

® Enclosed Ornament (panels, fillings)

® Repeating Ornament (patterns)

Fig. 5: Example from the second part — Ornament Applied to Elements [6]

The third part, Decorated Objects, contains case studies in which the
principles from the first two parts are applied to real objects. This section
demonstrates synthesis in practice and provides students and craftsmen with
direct examples of how to decorate specific objects in accordance with their
shape, material, and function. The analysed categories include:

® Forms of vases and vessels
Metal objects (gates, grilles, candlesticks)

Furniture (chairs, tables, cabinets)
Frames (for pictures and mirrors)
Jewellery and personal ornaments
Heraldry

Lettering, printing, and bookbinding art

Fig. 6: Example from the third part — Decorated Objects [6]
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The book contained approximately 3,000 illustrations on 300 plates, making
it one of the most comprehensive visual collections of its time. It was translated
into several languages and is still sought after as a reference and source of
inspiration in the field of design and ornament history, today perceived as
a bridge between art history and modern design.

The section most relevant to our study, Geometric Elements, begins with
the most abstract forms created through the rhythmic arrangement of points and
lines, angle division, and the combination of geometric shapes. It deals with
constructions of ellipses (Plate 20, pp. 31, nos. 2—6) and constructions of ovals
(Plate 20, pp. 31, nos. 7-12), which can be suitably used for approximating
ellipses. Meyer also presents well-known Serlio’s oval constructions (Plate 20,
pp- 31, nos. 7 and 9), which we have discussed in more detail, for example, in

[4].

THE Eruipse. (Plate 20.) u | sy

The Ellipse is a figure, whose radius of curvation is continually
changing. It has the peculiar quality that, if any point on the
circumference be joined with the two foei, the sum of the two con-
necting lines is invariable, and always equal to the longitudinal axis.

The three-centred arch is an approximate construction to an
elliptic curve. It is composed of a number of arcs, which is not
possible in the case of the ellipse. As regards beauty of line it can
never be a substitute for the Ellipse; but its easier construction bas,
notwithstanding, caused it to be used for many putposes.

he expression “Oval” for the ellipse, is erroneous. Oval is
derived from “ovum” (egg), and therefore means an egg-shape.

The Ellipse is of comparatively late appearance in art, the con-
struction presupposing a certain knowledge of Geometry, which was
not possessed by primitive peoples. Afterwards it became of common
application, as will be seen from many passages of this Handbook
The Ellipse is a very popular shape for ceilings, panels, boxes, and
dishes. Figure 15 affords hints as to the manner of subdividing it.

Piate 20. Tue Evurse, &e.

1—2.  Construction by means of 8 points. 3
When the square with its diagonals and transversals is projec-
ted as an Oblong, the circlo described in it becomes an Ellipse.

Fig. 7: Example from the first part — Geometric Shapes [6]

4 Historical Constructions of Ellipses and Oval

Both Fialkowski and Meyer understood the ellipse, based on its foci, in the
standard way — as the set of all points in a plane for which the sum of the
distances from two fixed points (the foci) is constant. Meyer explicitly states:

“It has the peculiar quality that, if any point on the circumference be joined
with the two foci, the sum of the two connecting lines is invariable, and always
equal to the longitudinal axis.” [6]

Although Meyer was primarily an ornamentalist, he recognised and directly
pointed out that the ellipse has a curvature that changes continuously at every
point. Fialkowski, in turn, described the fundamental properties of the ellipse,
which he illustrated with drawings — particularly the relationships among the
foci, tangents, and radii vectors. He also provided a construction for finding the
foci when the lengths of the major and minor semi-axes are known.
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Fig. 8: Illustration of the properties of an ellipse [2]

Both authors also described the ellipse as a special case of the projection of
a circle inscribed in a square when projected into a rectangle. Meyer explicitly
stated that there exists a construction of eight points of an ellipse: “When a
square with its diagonals and transverse lines is projected as a rectangle, the
circle within it becomes an ellipse.”[6]

Fig. 9: Construction of the ellipse using eight points.
Left: according to Meyer [6], Right: according to Fialkowski [2]

Since Fialkowski’s book was primarily intended for students of technical
schools, it contains around thirty different constructions of the ellipse. Meyer,
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on the other hand, presented six basic constructions in his book — mainly those
that could be drawn easily and quickly, as he later used ellipses in his
ornamental designs.

Regarding the construction of ovals, Meyer explicitly states that calling an
ellipse an oval is incorrect, as the term derives from ovum, meaning “egg-
shaped curves.” Fialkowski, however, dedicated a separate chapter to
approximate constructions of ovals, focusing only on curves resembling the
shape of an egg.

If we consider an oval to be a closed convex curve composed of smoothly
connected circular arcs, then even these constructions are labelled by Meyer as
“Der Korbbogen” [5], which were erroneously translated into English as
“ellipsoids” [6], while Fialkowski referred to them as “approximate
constructions of the ellipse” [2]. In both cases, we find constructions
corresponding to Serlio’s ovals.

>

5

Fig. 10: Examples of ovals Left: according to Meyer [6],
Right: according to Fialkowski [2]

/4

4.1 Fialkowski pp. 92, no.787 [2]

Fialkowski based this construction on the main vertex circle and an auxiliary
rectangle in which the ellipse is inscribed. His assumption is that the centre of
the ellipse and all its main and minor vertices, labelled A, B,C, and D are
known. The author then selects an arbitrary point J on the main vertex circle
and constructs a circle centred at the principal vertex B passing through point J.
The required point of the ellipse then lies on the diagonal of the rectangle
formed from the originally circumscribed rectangle of the circle and the line
CL.This is an interesting construction that does not appear in modern textbooks
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and is not based on the focal definition of the ellipse. In today’s context, with
tools such as GeoGebra, it is easy to verify that the determined point M indeed
lies on the ellipse.

105%. 2. Art. (Bom Berfajjer.)

Man verlangere (Fig. 787) die gegebene grofe
Are ABitber B hinaus, befdreibe aus O mit BO
cinen freisbogen Bu, nefme in bemjelben einen
belicbigen PLunft J an, fidlle von biejem auj 4B
cine Normale JK und jdhneide die Verlangerung
der AB aus B mit BJ in Lein. Berbindet man
nun € mit L und F mit K dburd) eine Gerabe,
fo crfolgt M al3 Clipfenpunft, — Den forve-
jponbdirenden Punft N findet man, indbem man
L mit D und G mit K verbindet, Die anbern
2 Punfte P und @ findet man, indem man
KO=KO madt u. i. w.

Fig. 11: Construction according to Fialkowski [2]

Fig. 12: Construction of the ellipse according to the instructions
with verification

Fialkowski pp. 94, no. 809 [2]

Fialkowski most likely adopted construction No. 809 from unknown sources,
but it deals with an approximate construction of an ellipse — in our case, an
oval — that possesses the property that its eccentricity is equal to the length of
the minor semi-axis. To find the centres of the circular arcs that approximate
the neighbourhood of the vertices, he used a 3:4 ratio based on the length of the
segment Al, which represents half of the remaining distance from the focus to
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the vertex. It is a very well-designed construction, as the green circular arcs
closely follow the red ellipse. From an analytical point of view, Fialkowski
attempted to approximate the ellipse given by the equation

xZ y2 _

wty =1
whose radius of curvature at the vertices A and C differs slightly from that of
the constructed circles but comes very close — a similarity that, in the technical
practice of the time and using contemporary drawing tools, would have
appeared nearly identical.

X E 2 o
1083, 2, wet. (3ig. 509.) Madse co = co, Balbire vie * i J"\.K L /Dﬁ
s : .
a

Differeng ae in 7 und trage diefe Halfte vou o auf ab bei- 1 C ]
betfeitd 8mal, und auf cd ebenfallé 4mal auf, woburd man  : . — -
¢: h, 1, k al8 dbie 4 Cinfappuntte erhdlt. ~ %

Fig. 13: Fialkowski’s approximate construction of the ellipse [2]

Fig. 14: Construction of an oval using four circular arcs and an ellipse e = b
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4.2 Meyer Plate 20, pp. 31, no. 8 [6]

This is a modified version of the well-known Serlio construction (see [9]), in
which three circles are drawn with radii equal to half the length of the major
semi-axis of the given ellipse. The second arc of the approximating oval has its
centre at point K, as shown in Fig. 16. Meyer placed the centre of the second
circle so that the triangle S1S,P is equilateral. Therefore, this construction is
suitable for ellipses whose ratio of the major to minor axis is

a/b = (V3 +3)/3,

and the ratio of the radii of the circles defining the oval is 1:3.

VINAD ST B ATwu W DU BWUW.
8. escribe two circles touching each other, and with the point of
contact as centre, describe a third circle of the same diameter.
These three circles cut each other in four points. Join these to
the external centres as shown on the figure; and the resulting
four straight lines will again mark-off the four arcs which are
then to be described from the points indicated by the small dots.

Fig.15: Description of the construction from the book [6]

Fig. 16: Left: Meyer’s construction in the book [6], Right: Meyer's
construction (green colour), Serlio’s construction (c) (red colour)

4.3 Meyer Plate 20, pp. 31, no. 10 [6]

We construct a line segment AC and apply the length a-b from the point C to
this line segment and we get a point Q. We mark the center of the line segment
AQ as a point L. We draw the perpendicular to the line AC through the point L.
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This line intersects the major axis at a point S; and the minor axis at a point S,.
See Fig. 18.

uva.

10. Construct a rectangle with sides equal to the transverse and
longitudinal axes respectively; draw the two transversals (the
transverse and longitudinal axes) and join their ends in one of
the quarters. Cut-off from this line, beginning from the point of
junction with the conjugate axis, the difference of half the trans-
verse and half the conjugate axis; on the centre point of the re-
maining piece draw a icular and the three more similar
lines; these four lines will then show the limits of the arcs which
are then to be drawn from the points marked by small dots.

Fig. 17: Description of the construction from the book [5]

Fig.18: Left: Meyer's construction in the book [6],
Right: Meyer’s construction (blue colour), ellipse (red colour) [4]

4.4 Meyer Plate 20, pp. 31, no. 11 [6]

We take half the difference between the semi-major axis and the semi-minor
axis of the ellipse. From the center S we apply this distance three times to the
major axis and four times to the minor axis.

The Ellipse, &c. — The three-centred Arch. 83

1,  Construct an Oblong with sides equal to thé transverse and
longitudinal axes ively, and draw the two transversals.
Measure the half of transverse axis half the itudinal
axis, and ascertain the difference; halve difference. half
difference must now be hkufouﬁnudu&’:otrmm
axis trom the centre point of the Ellipsoid, and times along
the longitudinal axis, The four required points will thus be ob-
tained. The straight lines connecting them will give the pointa
of junction of the arcs.

Fig. 19: Description of the construction from the book [5]
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o
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Fig. 20: Left: Meyer’s construction in the book [6],
Right: Meyer’s construction (blue colour), ellipse (red colour)

4.5 Meyer Plate 20, pp. 31, no. 12

Let us consider an ellipse with a given major and minor axis. We construct its

. . . .. b? 2 .
osculating circles with radii r, = |AS;| = = |CS,| = %. Their

centres are S;, Sy, as shown in the Fig. 22. Next, we draw circles centred at
points S;, S, with a radius of (7 — ri)/2. The intersection of these circles
determines point O;. The third circle, which smoothly connects the
hyperosculating circles, is the one shown in green in the Fig. 22 and has its
centre at point O;.

W gusswuavas wa  waaw e e

12 Construction from eight centres,

Construct an Oblong whose sides are equal to the major and
minor axes respectively; draw the transversals, and join their ends
in one of the quarters. From the nearest angle, draw a -
dicular to this diagonal; the &:inh where this perpendicular cuts
the two axes will be two of required centres. Two more are
obtained by symmetrical transference. From these four points
describe circles with a radius == 1/, (CB-DA); the points where
they cut each other internally will give four more centres. If the
centres thus found be joined by means of lhiet lines, as shown
on thuﬂgn‘r:& the latter will mark the points where the eight

. ares will m : :

Fig. 21: Description of the construction from the book [6]
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Fig. 22: Left: Meyer’s construction in the book [6], Right: Meyer's
construction (green colour), ellipse (red colour)

5 Conclusion

The comparative study of Fialkowski’s Zeichnende Geometrie and Meyer’s
Handbuch der Ornamentik demonstrates that historical geometric constructions
are far more than technical exercises — they represent a bridge between
mathematical precision, artistic creativity, and cultural heritage. Both authors
used ellipses and ovals not only as abstract curves but as instruments for
understanding spatial harmony and proportion.

Fialkowski’s systematically organised methods, focused on accuracy and
pedagogical clarity, provide a foundation for modern approaches to teaching
descriptive geometry. His emphasis on visualisation and constructive reasoning
aligns with today’s goals of fostering spatial imagination and problem-solving
skills through dynamic geometry software such as GeoGebra.

Meyer’s contribution, rooted in the synthesis of geometry and
ornamentation, shows that mathematical forms have enduring aesthetic and
functional value. His geometrically structured design system can inspire
contemporary STEAM education, bridging art, mathematics, and digital design.
The study of ellipses and ovals thus becomes not only a mathematical challenge
but also an exploration of pattern, structure, and proportion in visual culture.

From an interdisciplinary perspective, these constructions find practical
applications in architecture, optics, acoustics, and industrial design — from the
reflective properties of ellipses used in telescopes and medical devices, to the
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oval ground plans of amphitheatres, galleries, and urban spaces that enhance
visibility and acoustics.

Revisiting these 19th-century sources through modern tools demonstrates
how historical geometry can be revitalised in the context of contemporary
education, digital modelling, and artistic practice. By reconnecting with the
intellectual legacy of Meyer and Fialkowski, we reaffirm that geometry is not a
closed historical chapter but a living language linking science, art, and
technology.
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Abstract. The lecture consists of reflections on teaching descriptive
geometry to prospective teachers of the subject. As my background
is in mathematics, I will try to offer a viewpoint of an outsider. I
will inform about implementations of the observations into the current
transformations of the course at our faculty.
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Klhi¢ové slovd: vyuka deskriptivnej geometrie

1 Uvod

Vedomosti a zru¢nosti, ktoré st predmetom deskriptivnej geometrie, si na
trhu prace ziadané. Napriek bezproblémovému uplatneniu pocet Studentov
deskriptivnej geometrie na vysokych skoldch dlhodobo a vytrvalo klesa.

Problémy s geometriou na Skoldch sa ale za¢inaji omnoho skor nez
pri vyuke deskriptivnej geometrie na univerzitach. Od studentov vieme,
ze geometriu uz na strednej skole nemaju prili§ v laske, a to aj ti, ktori
maju matematiku inak radi. Ako dévody okrem problémov s priestorovym
videnim uvadzaju aj, Ze geometria je mélo algoritmickd: nestaéi naucit sa
vzorec (ako napriklad pre pocitanie korenov kvadratickej rovnice) ¢i po-
stup vypoctu (rdtanie s percentami). Pri skdman{ problémov v geometrii
musia nahliadat na ttvary a ich vzfahy a snazit sa medzi nimi najst tie,
ktoré ich dovedu k rieseniu.

Okrem toho nas studenti, ktori sa venuju stredoskoldkom zicastiiuji-
cim sa matematickych stfazi, upozornili, Ze z vysledkov medzindrodnej
matematickej olympiddy je zjavné, ze slovenski Studenti maju oproti os-
tatnym tcastnikom vyrazne vicsie problémy prave s prikladmi z geomet-
rie. Teda fakt, ze absolventi strednych $§kol od geometrie bocia, nie je
sposobeny len samotnou povahou discipliny. Nie¢o nie je v poriadku s vyu-
kou geometrie uz na slovenskych strednych skolach.
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2 Geometria pre budtcich uc¢itelov matematiky

Chcela by som sa preto najprv struéne venovat priprave budicich uéitelov
matematiky z geometrie.

Kvoli trendu redukcie odbornych predmetov v prospech pedagogickych
a didaktickych ostali z povodne piatich semestrov geometrie dnes iba tri, aj
z nich iba dva povinné, treti povinne volitelny. Pred ¢asom som postupne
prevzala vyuku celého tohto kurzu geometrie a vd'aka tomu som ziskala
vhlad, ¢o sa v fiom deje. Stru¢ne by som situdciu zhrnula tak, Ze kurz
sa rozhodne nestihal prispésobovat postupnému krateniu asovej dotécie.
Struc¢ne nacrtnem, ako som vyuku geometrie nastavila.

2.1 Analyticka geometria

Cel4 analytickd geometria je pokrytd jedinym semestrom. Nagtastie ne-
jakt linedrnu algebru studenti uZ za sebou maju, takZe netreba zaéinaft
tplne od nuly. Obsahovo semester pokryva afinné priestory a ich podpries-
tory (linedrne variety), vzédjomné polohy, metrické dlohy, afinné zobraze-
nia, vlastné ¢isla a vektory, samodruzné body, priamky a roviny (posledné
len na trovni definicie), na zéver zhodnosti roviny a ortogondlne matice.

Kvoli kratkosti casu sa obmedzujeme na vypocty v dvoj- a trojrozmer-
nom priestore, viacrozmerné situdcie sa uvedu len pre ilustraciu. Cielom
je, aby sa §tudenti naucili pouzivat metédy analytickej geometrie, trans-
formovat geometricky problém do siradnic a ndjdenim rieSenia rovnic
najst odpoved na otazku.

2.2 Axiémy rovinnej geometrie

Druhy semester je venovany konstrukénej geometrii.

Pri jeho navrhovani som zvazovala, ¢i sa zamerat na axiomaticki
vystavbu planimetrie, alebo sa so znalostami stredogkolskej geometrie ve-
novat §tudiu zaujimavejsich a pokroéilejsich tém ako Feuerbachova kruz-
nica, kruznicové inverzia, Apolléniove tilohy a podobne, ked'ze obidvoje sa
rozumne stihnit nedalo. Po diskusidch s niekolkymi uéitelmi na strednych
skolach a po zistovani, ako vyzerd geometria na strednych skoléch v za-
hrani¢i, som sa rozhodla pre axiomatiku, pricom sa jej Studenti venuji
aj na cvicéeniach. Cielom je, aby sa Studenti zdokonalili v dokazovani ma-
tematickych tvrdeni, aby sa nauéili korektne argumentovat a svoje argu-
menty zapisovat.

Podla niektorych vyjadreni Studentov sa zrejme dari vytyceny ciel
aspoil ako-tak dosahovat: viacer{ studenti s nadsenim konstatujd, ako sami
nasli dokaz nejakého tvrdenia. Niektori tiez nahliadli, ze sice samotny ob-
sah predmetu vo svojej ucitelskej praxi nepotrebuji, no schopnost doka-
zovat, ktorud ziskali, oceriuji. Verfm teda, Ze rozhodnutie zamerat sa na
axiomatiku na ukor pokrocilejsich tém planimetrie bolo v danej situacii
dobré.
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Obr. 1: Hladanie uhla vizieb molekuly metdnu.

2.3 Stereometria

Aby som pokracovala v tradicii, ze kazdy semester je zamerany na nejakd
zruénost, ktort zdokonaluje, celkom prirodzene tu vyvstalo priestorové
videnie. Naozaj ho povazujem sa zruénost, ktord sa pestuje a zdokonaluje
trénovanim. Urcite, ze niekomu sa dari viac a inému menej, ale tak je to
predsa s kazdou zruénostou.

Ak by som mala struéne popisat obsah tohto predmetu, snazila som sa
najst také témy, ktoré studenti vidia ako relevantné pre svoju skisenost.
Tak grupy symetrii maji velmi pozitivny ohlas u tych studentov, ktori
riesili matematické olympiddy a nebocia od abstraktnych pojmov. Tvary
a geometria chemickych molekiil (stereochémia) oslovuji budicich uéitelov
chémie. Konstrukcia scény renesancnych obrazov pomocou linearnej per-
spektivy snad’ je zaujimavou pre milovnikov vytvarného umenia. Budici
ucitelia geografie vzdy ocenia geometriu sféry a vlastnosti kartografickych
zobrazeni.

Uvedomujem si, Ze pestrost a pritazlivost predmetu ide trochu na
tkor hibky a doslednosti: nez by sa naozaj nauéili nieo solidne poéitat
sa Studenti skor dozvedia, kde vSade sa geometria nachadza, a ziskaja
tusenie, ze existuji metddy (véetne tych analytickych!), ktorymi sa tie-
ktoré problémy daji vyriesit. A to bol v podstate moj ciel: chcem, aby si
podla moznosti kazdy student nasiel v stereometrii nieo, ¢o mu je blizke,
a odniesol si tak z tejto §koly ku geometrii pozitivny vztah, lebo len tak
ho méze posuniit d'alej svojim Ziakom.

3 Deskriptivna geometria

Predchadzajica kapitola myslim dostatocne ilustrovala, ako som pristu-
povala k prepracovavaniu kurzu geometrie: najprv sa pozriet na material,
ktory je kurzom pokryty, a nasledne sa zamyslief nielen nad obsahom
vedomosti, ktoré m4 kurz priniest, ale aj nad zruénostami, ktoré si kladie
za ciel rozvijat.
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3.1 Uvodné tvahy po pohlade na kurz

Jadrom discipliny, ktord sa nazyva ,deskriptivna geometria“, sa javia
byt zobrazovacie metédy. Na nasej gkole st v priprave budiicich uéitelov
deskriptivnej geometrie zobrazovacim metédam venované Styri semestre
s vydatnou ¢asovou dotéciou Styroch, pripadne az piatich hodin za semes-
ter.

Prvy pohlad do obsahu predmetu ma velmi rychlo priviedol k pre-
svedéeniu, Ze deskriptivna geometria je terminologicky pretaZens discip-
lina a navy$e ju jej terminologickéd zétaZ znaéne izoluje od ostatnej ma-
tematiky. Mohutny terminologicky aparat tvori stenu, ktora odradza pri-
padnych zaujemcov z pribuznych odborov. Ako priklad by som spome-
nula ,stimiestne a nestimiestne rovinné polia“. Rozumiem tomu tak, ze
pojmom ,rovinné pole“ (namiesto jednoduchého a zndmeho ,rovina®)
sa zrejme nemysli len mnozina bodov roviny, ale aj vSetky objekty ro-
viny, s ktorymi pracujeme (priamky, trojuholniky, ...). Avsak je otdzne, ¢i
kvoli tomuto faktu zavadzat novy pojem. Ja tiez pod ,rovinou® chipem
nielen jej body, ale celii bodovo-vektorovii struktiru, ktori v nej viem
v zaujme svojej pohodlnej prace vybudovat. Dokonca je v matematike
zvykom realnu afinni rovinu oznacovat R?, teda presne tak isto ako vek-
torovy priestor nad redlnymi c¢islami. Podobne pojem ,homolégia“ ma
chvilku miatol, kym som zistila, Ze neodkazuje na postupnost dbelovskych
grip priradenych komplexu, ale na osovit kolinedciu roviny (ktord ma
v deskriptivnej geometrii este aspon d'alsie dve mend: stredové kolinedcia
a perspektivna kolinedcia).

Pripistam, Ze ide o nedorozumenia, ktoré sa rychlo vyjasnia, avsak
ak je takychto zakopnuti pri vstupe k deskriptivnej geometrii vela, po-
tencidlneho adepta to skor odradi namiesto toho, aby sa citil vitany a po-
vzbudzovany vstupit.

Viem o d'alej matematickej discipline, ktord m4 mohutny a odstrasu-
juci jazyk: algebraickd geometria. Adept potrebuje kvalitné doktorandské
studium, aby zacal jej jazyku aspon trochu rozumiet. Avsak algebraicka
geometria si moze tento luxus dovolit, st v nej totiz vyzvy a zaujimavé
otvorené problémy, ktorymi k sebe ako magnet pritahuje impresivne ma-
tematické mozgy.

Deskriptivna geometria vSak paletu otvorenych problémov nepontka.
Odréza sa to aj na fakte, ze deskriptivnu geometriu (na rozdiel od fy-
ziky, informatiky, chémie, biolégie, ...) nie je mozné studovat ako vedeckii
disciplinu. Naozaj, u¢itelské stiidium deskriptivnej geometrie je to najob-
siahlejsie stidium tohto odboru, aké univerzity poniikaji. Takze ako sa
odbor (napriklad matematika) pestuje a posiva dopredu so Studentami
odborného studia, tak sa deskriptivna geometria pestuje so Studentami
uéitelstva tohto predmetu.
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Ked sa ale pozriem bliZsie, ¢o na nasej kole znamend ,pestovat des-
kriptivnu geometriu®, pozorujem, Ze aj tu disciplina vyrazne trpi tym,
ze je uzavretou vednou disciplinou: stretdvam sa s pomerne kompliko-
vanymi definiciami elementdrnych pojmov (vnitorny ¢i vonkajsi bod plo-
chy sa opiera o mohutny terminologicky aparat, dotyénica kuzelosecky
sa pre kazdy typ definuje zvlast pomocou jej Specidlnych vlastnosti v
kazdom z pripadov) a ndsledne sa vyslovia a vycerpavajico dokazujui ich
casto pomerne evidentné vlastnosti. Akoby sa disciplina po tom, ako pre-
stala expandovat a generovat nové poznatky, obrétila dovnitra seba samej
a svoju aktivitu nasmerovala na dokladné dokazovanie v podstate az na
droven axiom. Zda sa mi nepatricné, aby sa s takymto systematickym
a uinavnym dokazovanim stretali studenti v prvom ro¢niku.

Na druhej strane, v opacnom extréme, by som spomenula moj oblibeny
priklad: konstrukcia obrazu kruznice v osovej afinite v sebe de facto ukryva
krasny geometricky dokaz o singularnom rozklade matice pre dvojroz-
merny pripad, ¢o je zaujimavé tvrdenie v linearnej algebre. Deskriptivna
geometria ale v zamerani sa na drobné detaily akoby stratila takyto glo-
balnejsi ndhlad a prezentuje tento fakt len ako névod na konstrukciu.
Tym chcem ilustrovat, Ze je sice pravda, Ze deskriptivna geometria je do
istej miery viac remeslom nez vednou disciplinou, niekedy je vsak tymto
smerom zatisnutd hlbsie, nez je primerané.

3.2 Ako uéit zobrazovacie metédy inak?

Bohuzial v tomto smere som len na zaéiatku a vela odpovedi nemam.
Mam ale mnoho otdzok a pozorovani, ktoré sa mi zdaji byt vhodné do
diskusie a som velmi vd'a¢né, ze som dostala moznost ich na tomto fére
predniest a hned som ziskala aj mnoho postrehov, ndzorov a skiisenosti.
Riesit teda chcem dve stranky:
e obsah, ktory kurz prinasa,

e zruénost, ktord mé kurz trénovat.

3.3 Obsah uvodu kurzu

Isté zmeny v Struktire materidlu som uz urobila, avsak domnievam sa, ze
to boli len prvé a pomerne jednoduché upravy.

Pomedzi zobrazovacie metddy sa Studenti zoznamovali s osovymi afi-
nitami a kolinedciami, no vnimané boli (pouzijem re¢nicku hyperbolu)
hlavne ako ,nieco, s ¢im sa pracuje takto“ a stracal sa matematicky
vyznam tychto tried transformécii. To mi prigla byt §koda, preto prva
Uprava spocivala v tom, ze Studenti sa v ivode systematickejsie zoznamia
s transforméciami roviny.

Najprv prestudujeme zhodnosti roviny. Uk4Zeme, ako osové simernost
generuje celt grupu izometrif, a je prilezitost stretnif sa aj s posunutou
sumernostou. Pridanfm rovnolahlosti grupu zviésime na podobnosti.
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Obr. 2: Osova kolinedcia je rovnobeznym priemetom stredového premie-
tania medzi rovinami.

Nésledne sa pomerne dokladne venujeme afinitdm roviny. Pri tomto
pristupe sa osové afinity ukdzu ako vyznamné nielen pre deskriptivnu
geometriu ale aj pre jej teoreticky zaklad ako generatory celej grupy afinit.
Za dolezité pre neskorsie konstrukcie povazujem chapanie osovej afinity
ako rovnobezného priemetu rovnobezného premietania medzi dvoma ro-
vinami. Znaént pozornost venujeme elipse. Ukdzeme, Ze obrazom kruznice
v akejkolvek afinite je elipsa (spominany singuldrny rozklad matice).

Nakoniec pristupime ku kolinedcidm. Tu sa uz zameriavame Specidlne
na osové kolinedcie, vSeobecnejsia tedria je pokrytd predmetom Projek-
tivna geometria. Podobne ako pri afinitach, dolezitym je nahliadanie na
osovi kolinedciu ako na rovnobezny priemet stredového premietania medzi
rovinami.

Prirodzene tak prechiddzame k tedrii kuzeloseciek. Tato téma sa mi
zdala v tomto kurze vzhladom na jej dolezitost znaéne zanedban4.

U vsetkych typov kuzeloseéick sa studenti obozndmia s metrickou de-
finiciou kuzelosetky, odvodime rovnicu v kanonickom tvare — kanonicky
tvar je v tejto faze bohate postacujici. Pomocou QD-viet sa studenti pre-
svedéia, ze kuzelosecky definované metricky st skuto¢ne rezmi kuzelovej
plochy. A asi za najdolezitejsie povazujem chépanie kuzeloseéiek ako obra-
zov kruznice v kolinedcii. Toto vnimanie je totiz bezkonkurenc¢ne uzitoéné
pre zavedenie zakladnych pojmov ako vnttorny a vonkajsi bod, dotyc¢nica
a pre zdovodnenie ich zakladnych vlastnosti.

Tu méme za sebou takmer jeden a pol semestra. Narotnd ¢ast trans-
formacie kurzu je ale stdle pred nami. Az teraz prichadzaji na rad samotné
zobrazovacie metédy. Aby som sa s témou vedela zmysluplne popasovat,
potrebujem stale zvazovaf, o ¢om zobrazovacie metédy vlastne st.
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Obr. 3: Hyperbola ako obalka svojich dotycnic.

3.4 Vyznam zobrazovacich metéd

Predpokladam, ze zobrazovacie metody sa vyvinuli, pretoze bolo potrebné:
e reprezentovat a ulozif /archivovat modely priestorovych objektov
(zastarany, dnes uz neaktuédlny dovod),

e komunikovat dizajn modelu (stdle aktudlna motivécia).

Evidentnou zruénostou, ktors sa v minulosti pestovala zobrazovacimi
metédami, bolo klasické rysovanie kruzidlom a pravitkom. Pochopitelne
je to zruénost, ktort, chceme & nechceme, musime ak nie nahradit, tak
aspoii doplnif pouzivanim CAD-systémov.

Prirodzene sa moézme pytat, ¢ vobec nielen rysovanie, ale dokonca
klasické zobrazovacie metédy potrebujeme. Nebudeme objekty pomocou
poéitacov modelovat priamo v troch rozmeroch? A vtedy aj ak pre aké-
kolvek dévody potrebujeme jeho rovinné zobrazenie, ide o jasné zadanie
pre pocitac, v ktorom je objekt vymodelovany.

Avsak ak sa prizriem pozornejsie, vidim, ze ,zastarané umenie“ ryso-
vania zobrazeni modelov je velmi tizko prepojené s d’alsimi zru¢nostami,
ktoré, predpokladdm, povazujeme za dolezité aj dnes, konkrétne:

e znéizornenie objektu pomocou zobrazovacej metédy pomédha men-

talne uchopit trojrozmerni situdciu z jej rovinnych obrazov,

e rieSenie incidenénych a metrickych tloh posilituje schopnost zruéne
manipulovat s priestorovymi tvarmi.
Ide tak o excelentny ,learning by doing® pristup pre 3D kompetenciu.

3.5 Zobrazovacie metédy v deskriptivnej geometrii

Zobrazovacie metédy st z pohladu matematiky vybavené definiciou a z4-
kladnymi vlastnostami rovnobezného a stredového premietania. V pro-
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jektivnom priestore dokonca aj tieto dva typy premietania splynid do
jedného. Mnohé nasledné tsilie deskriptivnej geometrie sa dotyka vztahu
sturadnicovych sustav priestoru na jednej strane a priemetne na druhej.
Obsahom kurzu zobrazovacich metéd u nds su [3]
e kétované premietanie,

e Mongeova projekcia,

e kolmd axonometria,

o sikmé premictanie, !

e kosouhld axonometria,

e stredové premietanie.

Kazda z metdd sa studuje ako samostatny celok. V kazdej sa najprv
riesi obraz zakladnych utvarov, potom inciden¢né a nésledne metrické
tilohy.

Stredové premietanie z nasledujtcich tavah vynechdam a budem sa veno-
vat rovnobeZnym premietaniam. Z nich §pecidlnu poziciu by som prisudila
Mongeovej projekcii. Chcela by som tu spomentit, Ze ked som sa studentov
ucitelstva matematiky po absolvovani kurzu geometrie pytala, ¢o im po-
mohlo v precvi¢ovani si priestorového videnia, odpovedali mi, ze uzitoéné
bolo konstruovanie rezov telies, ale najviac im pomohla praca s Monge-
ovou projekciou. Uz toto samé je pre mia dostatoény dovod na to, aby sa
Mongeovej projekcii venovala zvlastna pozornost, ani nehovoriac o tom,
7e pre technické ticely ide o zvl4ast dolezité zobrazenie.

Kétované premietanie sa mi javi ako modifikdcia Mongeovej projekcie,
ktora je vhodnd pre viaceré aplikdcie. AvSak venovat sa jej zvlast a s rov-
nakou preciznostou vidim ako nehospoddrne nakladanie s ¢asom, ked'ze
vSetky postupy, s ktorymi sa Studenti v suvislosti s kétovanym premie-
tanim stretnd, si de facto len képiami metéd Mongeovej projekcie.

Ostatné metddy rovnobezného premietania by som v zaujme lepsieho
nadhladu predstavovala sithrnne ako ,axonometriu“. Pohlkeho veta sa
vztahuje na vsetky z nich, ba dokonca zahffia aj situdcie, ktoré Sikmé
premietanie, kosouhld ani kolméa axonometria nepokryvaji. Navyse inci-
dencné tlohy sa riesia vo vSetkych tychto zobrazeniach rovnako. Preto az
po zvladnuti incidenénych problémov by som predstavila sikmé premie-
tanie a kolmu axonometriu ako Specidlne pripady, ktoré prinasaju kazda
svoje efektivne metddy pre rieSenie metrickych tloh — rozumiem tomu

IMimochodom, zas oproti tandardnej terminolégii v matematike dochiddza k po-
sunu. Napriklad ,sikmé premietanie“ v deskriptivnej geometrii neznamend len to, ze
smer rovnobezného premietania nie je kolmy na priemetnu, ale aj fakt, ze siradnicové
osi priemetne splyvaji s dvoma zo siradnicovych osi priestoru. Pojem ,izometria“
v deskriptivnej geometrii sa nevztahuje na vlastnost zobrazenia, ale vypoved4 nieo
o vztahu premietania a stiradnicovej stistavy priestoru.
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tak, ze presne toto je dovodom pre aktudlny vyrazny déraz na rozliSenie
tychto metdd.

Omnoho zdsadnejsia otdzka, ktori si vSak kladiem, je: potrebujeme
vobec riesit metrické tlohy priamo povedzme v kosouhlej axonometrii?
Ked' si zalistujem aj v starsich uc¢ebniciach deskriptivnej geometrie [4], tak
vidim, ze uz pred desiatkami rokov boli studenti povzbudzovani k tomu,
aby vzdialenost bodov zobrazenych v Mongeovej projekcii zistovali radsej
vypocétom nez konstrukéne! Preco teda dnes tak velmi trvdme na kon-
strukénych metédach pri rieSeni metrickych tloh?

Navrhla by som namiesto elementarnych tloh s komplikovanymi rie-
Seniami (napriklad vzdialenost bodov zobrazenych v spominanej kosouh-
lej axonometrii) viac ¢asu venovat rovnobeznému premietaniu vieobecne.
Studenti nech dékladnejsie porozumejii vztahu medzi siradnicovymi sis-
tavami priestoru a priemetne. Nech vedia manipulovat s premietanim viac
sposobom, ako sa to robi v poéitacovej grafike, a nie si limitovani tym,
7e vedia pracovat az vtedy, ked maji zadané priemety siradnicovych osi
priestoru. Cielom je naozaj daf studentom ¢o najviécsi nadhlad, aby boli
aj v budicnosti ¢o najflexibilne;jsi.

Tymto by Studenti mohli byt pripraveni na to, aby vedeli pracovat
s axonometriou vSeobecne. Sikmé premietanie vedia potom nahliadnut
ako jeden z pripadov axonometrie. A v neposlednom rade kolmd axono-
metria by ziskala vyrazné postavenie vd'aka svojim z viacerych aspektov
vyhodnym vlastnostiam.

3.6 Zruénost trénovana zobrazovacimi metédami

Prejdem naspéit k zruénostiam, ktoré chceme u §tudentov posilnit. Ako sa
postavit k rysovaniu s kruzidlom a pravitkom? Je to zastarald zruénost,
ktort treba ju nahradif modernymi nastrojmi? Kazdy z protichodnych
postojov ma svoje opodstatnené dovody:

e preco by studenti mali rysovat:

(i) vdaka dokladne precviéenému rysovaniu si studenti triifnu pred
triedou na tabulu ¢értat (budici ucitelia deskriptivnej geomet-
rie),

(i) aby studenti zvladli prdcu s CAD systémami, musia toho mat
najprv dost odrysovaného (budici inZinieri),

(iii) rysovanie predstavuje fyzicky kontakt s predmetom §tiidia a je
mozné, ze tento kontakt je pre cloveka dolezity.

e preco by sme nemali na rysovani trvat:

(iv) mame tu éru CAD a dokonca aj generativnej AT v tejto situdcii
je dolezité rysom rozumief a nie ich ruéne vytvarat,
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(v) je pochopitelné, ze kultiira rysovania u studentov upada: ved
preco by studenti mali rysovat, ked ani ich uéitelia uz tolko
nerysuju?

K bodu (v): ked tvorfme uéebné materidly ¢i rozddvame Studentom pra-
covné listy, zriedka obrazky rucne narysujeme, spravidla siahame po digi-
talnych ndstrojoch. Studenti (nielen deskriptivnej geometrie) tiez obrazky
pre svoje zaverecné prace nerysuju, ale ich vytvaraja elektronicky, zvy-
¢ajne (takmer vyluéne) pomocou GeoGebry.

Kym GeoGebra mé svoje neodskriepitelné vyhody (ndzornost, dyna-
mické konstrukcie), pri ndro¢nejsich konstrukcidch, ked cielom je presne
zobrazit modelovany objekt, nardzame na jej hranice (nepresnost, nesta-
bilita, zdfhavosﬁ). Ja osobne na druhej strane svoje obrazky vytvaram
pomocou asymptote. Studentov mam vsak problém na asymptote naho-
vorit, pre jeho pouzitie totiz potrebuji dve netrividlne zruénosti:

e vyjadrovat sa jazykom analytickej geometrie,

e programovat.

Analyticki geometriu vrameci stidia zvladnu na dostatoénej irovni, s prog-
ramovanim sa viaceri pocas Studia nestretnid. Ini sa aj stretnd, no rychlo
to zabudnti a neskor od programovania boéia. Potrebujeme tiito zruénost
promptne podchytit a d’alej rozvijat.

K bodu (ii): bez ohladu na to, ¢o si myslime na tému ,rysovat alebo
nerysovat®, na studiu uéitelstva deskriptivnej geometrie u nds je praca
s CAD-systémami vyrazne zanedband. Neskor v §tidiu sa sice Studenti na
niektorych predmetoch s tymito systémami stretni, no je to prilis neskoro.
Myslim si, Ze by sa tieto systémy mali vyuzivat hned, ako sa Studenti
zatnl so zobrazovacimi metédami zoznamovat. Prave CAD-systémy z
mojho pohladu v sebe spdjaji aj ndzornost GeoGebry (jednoduchy ob-
rdzok sa dd proste ,naklikat“), aj presnost, aki dosiahneme pri prog-
ramovani. Kurz zobrazovacich metéd na zaciatku stidia je vynikajicou
prilezitostou zozndmit sa s jednoduchsimi, 2D CAD systémami. Pre kva-
litné zvladnutie systému potrebujeme nasledne ucit studentov v CAD-e
programovat skripty a tym ich viest k pozitivnemu vztahu k programo-
vaniu.

K bodu (iv): Vidim to ako velku otdzku pre didaktiku deskriptivnej
geometrie: ako ucit studentov rozumiet rysom? Myslim, Ze to nebude cel-
kom mozné bez toho, aby Studenti aspon nie¢o nerysovali ru¢ne. Treba
zrejme najst rozumnd hranicu: aké mnozstvo ruéného rysovania je po-
trebné a kedy je to uz len neuzitotna a pracna robota?

V tejto stvislosti by sme mohli diskutovat uz o tom, & aj na strednych
§koldch rysovanie v zdujme modernizdcie nenahradit pracou napriklad
v GeoGebre, ktord je pre tieto skoly uréend. Co je vlastne téelom kon-
strukénych tiloh na strednych gkolach? Je cielom
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e trénovat pracu s pravitkom a kruzidlom? V tom pripade najpod-
statnejou castou riesenia je vykonanie konstrukcie.

o ucit sa hladat riesenie problému? Vtedy by najpodstatnejsou éastou
rieSenia bol rozbor konstrukénej tlohy.
Prizndm sa, Ze sama sa zdraham namiesto kruzidla a pravitka dat Ziakom
GeoGebru. Aby som samu seba presvedéila k modernejSiemu pristupu, od-
hodlala som sa viest na tito tému bakaldrsku pracu [1]. Moje pochybnosti
v tomto smere bohuzial nerozptylila.

T isti otdzku ako pre skolské konstrukéné tlohy si mozme poloZit
aj pre konstrukéné ulohy v stereometrii, s ktorymi sa stretdvame v des-
kriptivnej geometrii. Tiez vidim dva ciele, na ktoré tieto tlohy mieria:

o cvic¢it sa v rieSeni problémov,

e posilitovat svoju 3D kompetenciu.
Obidva ciele st dolezité. Mohli by sme skusit diskutovat o tom, ako naj-
lepsie naplnit ciel trénovat priestorové videnie. Aj priamo na konferencii
som sa nie len raz stretla s vyjadrenim, ze tlohy v stereometrii treba
riesit v Mongeovej projekcii, a s tymto nazorom sihlasim: riesitelovi to
d4 v tomto smere podstatne viac nez ked zaiitho urobi velkt ¢ast prace
3D modelovaci software.

To viak neznamend, Ze Studenta nebudeme oboznamovat s tym, aké
metédy modelovaci software pouzival

4 Zaver

Deskriptivnu geometriu ako outsider vidim ako disciplinu, ktora sa kvoli
svojej vedeckej uzavretosti a tieZ izolovanosti zacala akoby ritif sama
do seba. Ak sa chceme vyhnif tomu, aby sa tymto zritila aj do minu-
losti a zabudnutia, musi sa z mojho pohladu otvorit d'alsim disciplinam.
Sami vidime, ze by bolo prinosné, keby sa Studenti stali digitdlne gra-
motnej$imi, otvorenejsie sa stavali k programovaniu a nielen formélne ale
realne pouZivali analytickd geometriu. Mali by mat viési nadhlad nad
svojim predmetom a ten im vedia poskytnif iné geometrické discipliny.

Uvazujem, ¢i by bolo mozné, aby deskriptivna geometria samu seba
poiiala ako multidisciplindrnu oblast. Ako napriklad kognitivna veda, ktora
je dialégom velmi pestrej zbierky disciplin (filozofia, psycholégia, neuro-
veda, informatika a umeld inteligencia). Pripadne ako sme aj na tejto kon-
ferencii poculi, ze architektira v sebe kombinuje geometriu, vytvarné ume-
nie, psycholégiu, sociolégiu aj ekonémiu [2] a presne to robi architektiru
zivou a pritazlivou. Vedela by deskriptivna geometria najst a aktivne
vyzivovat kontakty s inymi vedami?

Obdvam sa, ze ak deskriptivna geometria ostane uzavretou a izolova-
nou, bude sa musief zmierit s tym, Ze dlhodobo neprezije.
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Na zaver by som uviedla slova, ktoré boli sice vyslovené v tiplne inom
kontexte, ale neviem si predstavit vystiznejsiu charakterizaciu aktudlneho
stavu deskriptivnej geometrie:

,Uzavrety systém speje k entropii. Len otvoreny systém moze rast
a vyvijat sa.“ (Ilia Delio)

Pod akovanie
Autorka je podporovand grantom KEGA 038UK-4,/2024.
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Aesthetic curve families in computer - aided design

Péter Salvi

Budapest University of Technology and Economics
Budapest, Hungary
email: salvi@iit.bme.hu

Abstract. The beauty or "fairness" of geometric models is of central
importance in computer-aided design, especially in areas such as the
design of car body panels. In the usual workflow, models are created
based on 2D sketches containing feature curves of the object. The quality
of these curves exert consequently a large influence on the overall shape,
so we need them to be "aesthetic".

But what do we mean by aesthetic curves? In this talk, we will explore
this question by revisiting classical curves generally regarded as
beautiful. This will lead us to families of aesthetic curve representations,
with a deeper look into so-called log-aesthetic curves and their variations.
We will also examine their intriguing connection to Archimedean spirals,
offering insights into possible applications

Editor's comment

Full extended text of this article has been published recently in the scientific
journal G - Slovak Journal for Geometry and Graphics, No. 43, Volume 22, 2025,
pp- 5 - 24, and it is available on-line at the address:
www.ssgg.sk/G/Abstrakty/indexa.html
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Abstract. This contribution is a response to the discussion on the
current state of descriptive geometry in the Czech and Slovak Re-
publics. We will draft the current problems that descriptive geometry
encounters in the field of education, applications, and research. We
will identify the original motivations as fixed elements accompanying
the subject since its foundation. The aim of the lecture is to propose
projections of these motivations to the current time into two interre-
lated projection planes: descriptive geometry as a part of mathematics
and as an application in other subjects of not only technical but also
general education.

Keywords: descriptive geometry, education, curriculum

1 Introduction

“Enough! Just enough of this cold,” Etienne muttered to himself as he
finally approached his drafting desk in Méziéres. The pain in his frozen,
cramping fingers was inhuman as he spread out the nearly finished plan of
the Cherbourg fortification on his drafting table. “Just a few more lines
to keep the Godons in their soup,” he urged himself on, while the heat in
his forehead spread across his chilled face.

“Really? Not again!” exhaled Maria desperately when her home Wi-Fi
was interrupted by provider maintenance. Now I’ll spend half the day
blueprinting these matrices myself, she muttered, pressing the button on
the espresso machine. “Okay, okay, focus — this is important,” she said,
calming herself as she sat back down at her laptop with a fresh coffee.
She began to type, self-confident and a little impressed by her progress,
determined to present the software refinements for graphical cancer diag-
nostics at the consortium tomorrow.

Both Etienne — a military engineer working on the project in 1782
— and Maria — a postdoc at a medical visualization company in 2025
— work on important tasks involving geometric visualization. They both
need to visually imagine the results of their work, understand geometric
properties and transformations, and use appropriate representations to
present their projects. However, their tools and representations differ
significantly.
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The parallel above illustrates the changing perspective on descriptive
geometry. On one hand, the competencies that must be developed remain
invariant; on the other hand, the specific content, tools, and applications
change dramatically over time. Yet, the teaching of school geometry and
descriptive geometry has remained largely untouched—from elementary
school to the university level. Consequently, descriptive geometry with
obsolete content becomes obsolete itself. We will further develop these
thoughts and attempt to outline some conclusions in the following lines.

2 Initial motivations

As descriptive geometry spread in the 19th century, it naturally absorbed
various motivations, aims, and methods. We hypothesize that these shifts,
when not re-evaluated, led to the obsolescence and disappearance of de-
scriptive geometry in most countries. Hence, for our reflection, it is essen-
tial to revisit the initial conditions and goals stated by Gaspard Monge [?].
We encourage the reader to examine Monge’s motivations and first steps
in his Programme through the eyes of a 21st-century student, teacher,
engineer, or researcher.

e to direct national education toward the knowledge of objects that
demand exactitude —something which has been entirely neglected
until today—and to accustom the hands of our artisans to the use of
instruments of every kind which serve to bring precision into works
and to measure its various degrees. ...

e to make popular the knowledge of a great number of natural phe-
nomena, indispensable to the progress of industry ...

e to spread among our artisans the knowledge of artistic processes,
and of machines whose object is either to reduce manual labour, or
to give the results of work greater uniformity and greater precision

Later in the text, Monge stated the objectives of descriptive geometry

as follows:

e to represent with exactness, upon drawings which have only two
dimensions, objects which have three, and which are susceptible
of rigorous definition. From this point of view, it is a language
necessary to the man of genius who conceives a project, to those
who must direct its execution, and finally to the artisans who must
themselves execute its different parts.

e to deduce, from the exact description of bodies, everything that
necessarily follows from their forms and their relative positions. In
this sense, it is a means of seeking truth: it offers perpetual examples
of the passage from the known to the unknown; and because it is
always applied to objects susceptible of the greatest evidence, it
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must be included in the plan of national education. It is not only
suited to exercising the intellectual faculties of a great people, and
thereby contributing to the improvement of the human species, but
it is also indispensable to all workers whose aim is to give bodies
certain determined forms.

From the previous lines, we can identify three interconnected essences
of descriptive geometry: the theoretical framework and language based on
the exact mathematical representation of objects and methods; the use of
suitable available tools to obtain the best results; and the application of
constructive methods and visualizations to contemporary problems.

It is important to note that Monge did not intend to separate synthetic
and analytic geometry; on the contrary, he emphasized their interrelation:
It is not without purpose that we compare descriptive geometry to alge-
bra here; these two sciences have the most intimate relations. There is no
construction in descriptive geometry that cannot be translated into anal-
ysis; and when the questions do not involve more than three unknowns,
each analytic operation may be regarded as the written transcription of
a spectacle in geometry. It would be desirable that these two sciences
be cultivated together: descriptive geometry would bring to the most
complicated analytic operations the clarity and evidentness which are its
hallmark, and analysis, in turn, would bring to geometry the generality
which is its own.

Although the subject of descriptive geometry is built on solid aims and
motivations, it is losing its struggle with time. A good overview of the
decline of descriptive geometry in various countries is given in [?]. We will
briefly describe the two most common ways in which descriptive geometry
has disappeared.

First, descriptive geometry became purely mathematical and theoret-
ical. One of the positive outcomes of this shift was its evolution into
projective geometry. Let us recall the words of Cayley [?, p. 90], where
“descriptive” is used in the sense of “projective”: Metrical geometry is
thus a part of descriptive geometry, and descriptive geometry is all ge-
ometry. Consequently, projective geometry began to be treated through
algebraic representations, disconnecting itself from the cumbersome lan-
guage of descriptive geometry. The strength of analytic representation
overruled the intuitiveness of visual constructive methods. The language
of descriptive geometry became obsolete and useless for further mathe-
matical exploration.

On the other hand, descriptive geometry became a purely technical
subject focused on applications. In other words, it transformed into tech-
nical drawing. However, such a subject can remain relevant only if its
content adapts to new tools and applications. In most cases, the curricu-
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lum of descriptive geometry failed to do so, continuing to rely on outdated
examples, tools, and methods.

Returning to Monge’s initial ideas, we conclude that descriptive ge-
ometry can be successful only if it keeps pace with current applications
and tools while employing appropriate mathematical representations.

3 Reflection on the current state of descriptive geom-
etry education in the Czech Republic

Descriptive geometry in the Czech Republic is built upon a strong tra-
dition developed primarily by technical universities. For many years, it
combined drafting precision with a solid theoretical framework derived
from mathematics and projective geometry. However, it did not adapt
to the technological progress of the late 20th century. The content and
methods of descriptive geometry at high schools have changed very little
since its beginnings in the second half of the 19th century. The main
focus remains on methods of projection and the goal of creating precise
hand drawings. At some point, descriptive geometry became a subject
relying exclusively on synthetic constructions while avoiding analytic rep-
resentations. This approach is illustrated by Sobotka [?]: Deduction in
descriptive geometry is based mainly on methods of projection and in a
purely geometrical way .... The emphasis on precision also became an
educational goal—sometimes taken to extremes, as seen in [?]: Descrip-
tive geometry leads pupils by its nature to precision, clarity, order, and
discipline.

We take the liberty of outlining several critical points regarding the

regression of descriptive geometry education:

e The content based purely on methods of visualization is obsolete for
both mathematical and technical purposes. If visualization methods
once served as the primary medium for producing precise represen-
tations in practice, they have now been surpassed by 3-D computer-
aided modeling and continuous technological development. There-
fore, the curriculum must be adapted to reflect this shift. The theo-
retical aspects of projection remain essential for understanding, but
their applications vary depending on the tools used.

e The applications used in descriptive geometry must reflect current
tools and topics and be regularly re-evaluated.

e The emphasis on purely synthetic methods and manual drawings
disconnects the subject from real-world applications. Instead, ana-
lytic and synthetic representations should complement one another,
with attention given to their appropriate and effective implementa-
tion.
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e Descriptive geometry is not an exclusively technical subject. While
technical universities employ its instrumental side for engineering
applications, the competencies developed through descriptive geom-
etry are highly relevant to many other fields— from mathematics,
physics, and computer science to art, medicine, etc. . Therefore,
secondary school education in descriptive geometry should be more
broadly oriented and not viewed merely as preparation for techni-
cal universities. This consideration also applies to teacher training,
where the number of graduates is extremely low. Clearly, if most
high school graduates of descriptive geometry proceed directly to
technical universities, who will study to become teachers of descrip-
tive geometry?

4 Conclusion

The muse of descriptive geometry (Figure ?7?) is sinking deeply into the
mud. Having been preserved for decades, she has become fragile. We
have attempted to show that she is worth saving and the aims and com-
petencies developed through descriptive geometry are universally valu-
able—regardless of time.

Fig. 1: The muse of descriptive geometry.
Source: Al generated in ChatGPT.

An example of a successful transition can be found in the Austrian
curriculum. It reflects not only technological advancement in its content
but also the reformed educational system based on competence-oriented
teaching [?]. Of course, such a document would remain merely a piece
of paper for teachers if it were not supported by other interconnected
activities, including workshops, journals [?], and textbooks [?]. Let this
serve as inspiration for our further steps.
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It is important to note that the discussion about the innovation of
descriptive geometry in the Czech Republic has already begun. There
are specific tasks to be undertaken in the near future. First, we must re-
evaluate the content—from the perspective of technical universities and
their modern applications and tools; from the perspective of teacher train-
ing, to ensure it develops the necessary competencies; and from the per-
spective of high school teaching, both at general gymnasiums and special-
ized technical schools, to make the subject useful, modern, and attractive
for contemporary needs. We must rebuild communication channels among
all these levels, especially ensuring the transfer of current applications and
modern tools from universities to high schools. Curricular changes must
also be supported by a solid didactic framework.

Hand in hand— theory and application, visual and symbolic, hand-
drafted and computer-modeled—descriptive geometry encompasses it all.
Therefore, we hope that this is not the conclusion of our contribution, but
rather a continuation of our work.
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Abstract. In this article, we present a comprehensive view of the
Feuerbach hyperbola through a historical overview, geometric charac-
terization and visualization of its fundamental properties. The material
may serve as an introduction to the rich field of triangle geometry. The
language of the article is intentionally kept accessible, aiming to engage
and inspire interest in the topic among secondary school students.
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1 Predslov

Trojuholnikova geometria zazivala svoju prvi ”zlati éru”v druhej po-
lovici 19. storocia, ked matematici ako Emile Lemoine, Henri Brocard
¢i Joseph Neuberg objavovali a skimali mnozstvo novych bodov, pria-
mok a kuzZeloseéiek spojenych s trojuholnikom. Zaujem o trojuholnikovi
geometriu v8ak ¢asom postupne klesol, ciastotne kvoli vnimaniu pred-
metu ako elementarneho a vizualne naro¢ného, ako aj pre konkurenciu s
inymi atraktivnymi témami geometrie. Po obdobi utlmu v priebehu 20.
storocia nastal koncom storoc¢ia novy rozmach zaujmu, vyrazne podporeny
rozvojom pocitacovej geometrie. V jeho popredi stoji najmé Clark Kim-
berling, autor rozsiahlej Encyclopedia of Triangle Centers (d'alej oznaceny
skratkou ETC [1]), ktord systematizuje a spristupiuje vysledky sticasného
vyskumu a prispieva k renesancii tejto oblasti geometrie.

Medzi najzndmejsie trojuholniku opisané hyperboly (teda hyperboly,
ktoré prechddzajd vrcholmi trojuholnika) patria Kiepertova, Feuerbachova
a Jefdbekova hyperbola. V naSom prispevku sa zameriavame na bohatu
histériu Feuerbachovej hyperboly a jej geometrické vlastnosti. Ukazky
roznych konstrukcii a vlastnosti si dostupné v interaktivnej Geogebra
knihe: https://wuw.geogebra.org/m/ahbugdjb
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2 Struény prehlad trilinedrnych stiradnic

Na analyzu stredov a kuzeloseciek spojenych s trojuholnikom je mozné
vyuzit viacero stiradnicovych systémov, medzi ktoré patria trilindrne, ba-
rycentrické a polarne. V ramci tejto kapitoly sa zameriavame na tri-
lindrne (normalové) sdradnice a poskytujeme ich struény prehlad.
V dalsej éasti prispevku pod stiradnicami budeme rozumiet trilinedrne
siradnice. Elegantnost tejto stiradnicovej stistavy spoéiva v proporciona-
lite, vd'aka ktorej sa zjednodusuje pocitanie so stradnicami. Pri rieseni
problémov sa zidu zndme vztahy, ako sinusova veta, kosinusova veta, Pyta-
gorova veta a trigonometrické vzorce. Pri opise sme sa inSpirovali clankom
o Kiepertovej hyperbole, napisany matematikmi Eddy a Fritsch [2] a kni-
hou od Sommerville [3].

Nech mame dany vSeobecny referen¢ny trojuholnik ABC' s dizkou
stran |BC| = a,|CA| = b,|AB| = ¢ a velkostou uhlov |/BAC| = A,
|/ABC| = B, |/BCA| = C. Na oznagenie polomeru vpisanej kruznice bu-
deme v d'alsom pouzivat znak r a polomer opisanej kruZnice je oznaceny
ako R.

. b=(xy2)
,+)

Obr. 1: Orientovanost trilinedrnych stiradnic.

Lubovolny bod P m4 (trilinedrne) stiradnice (x,y, z) vzhladom na re-
feren¢ny trojuholnik, ak plati

r:y:z=dg:dp:d,

kde d, je orientovand vzdialenost bodu P od strany BC'. Orientovanost
znamens, ze vzdialenost je kladna, ak bod P leZ v tej istej polrovine
od strany BC ako stred vpisanej kruZnice a vzdialenost je zdpornd, ak
lezi v opacnej polrovine. Analogickym sposobom urcéime vzdialenosti d
od strany AC a d. od strany AB (obr. 1.). Vrcholy trojuholnika majd
suradnice A = (1,0,0), B =(0,1,0) a C = (0,0, 1). Skutoéné vzdialenosti
bodu A od stran je d, = c- sinB, d, = 0, d. = 0, odkial vznik4d pomer
T:y:z=dg:dp:d.=1:0:0. Stvis medzi trilinedrnymi siradnicami
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bodu P a skutoénymi vzdialenostami tohto bodu od stran referenéného
trojuholnika je dany rovnicou

do dy d. r(a+b+c)

r y oz ar+by+cz

Stred vpisanej kruznice mé trividlne siradnice X (1) = (r,r,r) =
(1,1,1).

Stradnice ortocentra trojuholnika st X (4) = (=15, —15, —-5). Vzdia-
lenost ortocentra od strany a je d, = |A,X(4)] a dostaneme ju z po-

dobnych trojuholnikov X (4)BAj, a CAA, (Obr. 2.), teda z pomerov

do  b-cosC

c-cosB~ b-sinC’

analogicky pre vzdialenosti d, a d.. Pomer vzdialenost{ bodu X (4) od
stran referen¢ného trojuholnika je teda

cosBcosC : cosAcosC' : cosAcosB =

Sin

TiY:z=

111
cosA ~ cosB "~ cosC’

Obr. 2: Vyska trojuholnika.

Trilinedrnu suradnicu ortocentra moézeme napisaf aj v struénom tvare
X(4) = (¥ ey ), ked'ze suradnice vyhovuju reprezentécii f(A, B,C) :
f(B,C,A): f(C, A, B). Ortocentrum je teda stredom trojuholnika (pod-
robnejsie v [4]).

Stradnice d'alsich stredov trojuholnika sa nachidzaji uz v spomenutej
ETC, je ich uz vyse 70000.
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Pri praci so siradnicami v tomto prispevku vyuzijeme aj kollinearitu
bodov. Tri rézne body s trilinedrnymi stradnicami (21, y1, 21), (22, Y2, 22)
a (z3,ys3, 23) su kollinedrne, ak plat{

1 Y1 2z
To Y2 Z2| = 0
T3 Ys =23

3 Feuerbachova hyperbola - historicky prehlad

Po velmi struénom zavedeni trilinedrnych siradnic sa zameriavame na
historicky vyvoj Feuerbachovej hyperboly a prostrednictvom geometrickej
charakterizacie predstavime sposob préace s trilinedrnymi siradnicami.
3.1 Lemoinov opis

Vobec prvy ¢lanok o tejto hyperbole ndjdeme v prispevku Contributions
a la géométrie du triangle z roku 1889 napisany matematikom Emile
Lemoine [5]. Lemoine sformuloval vetu:

Nech si dané styri body My, A, B, C rovnoosej hyperboly E. Pity
kolmic z bodu My na strany BC, CA, AB si A,, By, C1. Nech Ay, Bs,
C5 su opacne orientované inverzie bodov A1, By, C1, kde My je stred a p je
polomer. Potom trojuholniky ABC' a A3 BoCo st v perspektivnej kolinedcii
so stredom na hyperbole E pre vsetky hodnoty p. (obr. 3.) (Pozndmka:
opacne orientovand inverzia je v povodnom ¢lanku oznacend ako trans-
formé&cia reciproénych licov a perspektivna kolinedcia ako homoldgia.)

Obr. 3: Trojuholniky v perspektivnej kolineacii.
Ak M, je fazisko, E je zhodna s Kiepertovou hyperbolou. Ked M; je
stredom vpisanej kruznice, rovnica hyperboly je
cosB — cosC n cosC — cosA . cosA —cosB

=0, (1)

ktora je dnes uz znama ako Feuerbachova hyperbola. Stredom hyperboly je
bod dotyku vpisanej kruznice s kruznicou deviatich bodov, a ma suradnice

T Y z
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sin?( :-+-:++. (Pozn.: Kruznica deviatich bodov je Feuerbachova
kruznica.) Ak M; je stred jednej z vonkajsich dotykovych kruznic, rovnica
hyperboly je

B;C)

cosB — cosC  cosA + cosC n cosA+cosB 0
T y z

(2)

a stredom hyperboly je bod dotyku tejto kruznice s kruznicou deviatich
bodov. Pre d’alsie stredy vonkajsich dotykovych kruznic st rovnice analo-
gické. V pripade, ze M; je ortocentrum, hyperbola sa redukuje na tento
bod.

3.2 Boutinov opis

Podrobnejsi opis sa nachadza v ¢lanku Sur un groupe de quatre coniques
remarquables du plan d “un triangle z roku 1890 napisany matematikom
Auguste Boutin [6].

Nech su O, 1, I, Is, I3 stredom opisanej kruznice, stredom vpisanej kruz-
nice a stredmi vonkajsich dotykovijch kruznic referencného trojuholnika.
Izogondlnou transformdaciou priamok OI, OI,, Ols, Ol3 dostaneme Styri
pozoruhodné kuzelosecky, oznacime ich By, By, , By,, Br,. Tieto kuZelosec-
ky su opisané referenénému trojuholniku, prechddzaji ortocentrom H, siu
to teda styri rovnostranné hyperboly.

Rovnica hyperboly By je v predchddzajicej ¢asti napisand rovnica (1),
hyperboly By, je (2), a analogicky pre By, a By,. Priamky OI, OI;, Ol a
OI3 st dotyénice k prislusnym kuzeloseckdam. Boutin uvadza aj stiradnice
stredov hyperbol Ct, Cy,, Cr,, Cr,. Tieti Styri stredy sa nachddzaji na
obvode Feuerbachovej kruznice trojuholnika ABC, aj na priamkach Ogl,
Ogly, Ogly, Ogls, kde Og je stredom Feuerbachovej kruznice.

Boutin nasiel aj d'alsiu konstrukciu kuzelosecky By:

Nech st body Ay, By, C1 bodmi dotyku vpisanej kruznice so stranami troj-
uholnika ABC. Ak na I Ay, 1By, IC, prenesieme v rovnakom smere dl,zvky
IAs = IBy = 1Cy = d, tak priamky AAs, BBy a CCs sa pretinaji v jed-
nom bode Q4. MnoZina bodov Qq s meniacou sa hodnotou d je kuZelosecka
Bj. Pre stredy vonkajsich dotykovych kruznic je konstrukcia analogickd.
Trilinedrne siradnice bodov As, By a Cs st

As=(d—r, d-cosC+r,d cosB+r),

By=(d-cosC+r,d—r, d cosA+r),

Cyo=(d-cosB+r ,d-cosA+r,d—r).
7 predpokladu kollinearity bodov A, Qg, As

1 0 0
X Yy z :05
d—r d-cosC+r d-cosB+r
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a podobne z kollinearity bodov B, @4, B2 a bodov C, Qg4, Co dostaneme
trilinedre siradnice bodu Qg

1

Ry E

Eliminaciou parametra d dostaneme rovnicu hyperboly (1).

Hyperbola Bj prechadza aj bodmi v pévodnom ¢lanku oznaéenych ako
v, I', I, Jo. Boutin uvddza hodnoty parametra d, ktoré zodpovedaju tymto
bodom, ich oznagenie predstavujeme aj v podobe, ako ich mézeme néjst
v ETC (obr. 4.):

¢ pre A’B’C je d= 7c07.;A’7co‘TsB’7co7‘;C;

e pre I = X (1), stred vpisanej kruznice, je d = 0;

e pre I' = X (7), Gergonne-ov bod, je d = r;

e pre H = X (4), ortocentrum, je d = oc;

e pre v = X (8), Nagelov bod, je d = —r;

e pre J; = X(9), Mittenpunkt, plati & + 5= + 1 =0;

e pre ¥ = X (21), Schifflerov bod, plat{ é + % + % =0.

Obr. 4: Niektoré stredy nachadzajice sa na Feuerbachovej hyperbole.

3.3 Mandartov opis

V casopise Mathesis z roku 1893 je d’aldi hlavny ¢lanok o tejto hyper-
bole a bol napisany z rucne pisanej pozndmky pana H. Mandart [7].
V poznamkach je uvedeny, ze Feuerbachovu hyperbolu si vsimol pan Le-
moine a pan Boutin. V ¢lanku hyperbola uz nesie meno Feuerbachova
hyperbola a je uvedend jej dalsia konstrukcia:

Nech mdame body Ta, T a To také, Ze Ta sa nachddza na osi strany
BC, Ty na osi strany CA a Tc na osi strany AB, nech vzdialenost tyjchto
bodov od prislusnich strdn je t a mech su orientované rovnakym smerom
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vzhladom na trojuholnik. Kolmice z bodov A, B, a C na zodpovedajiice
strany TgTc, TcTa a TaTp maji prdave jeden spolocéniyj bod, oznacme Q.
S meniacou sa hodnotou t je mnozina tychto bodov Feuerbachova hyper-
bola.

Obr. 5: Znazornenie sivislost{ pri hladan{ stiradnic bodu Q.

Pri hladan{ trilinedrnych siuradnic bodu Q; (obr. 5.) vyuZijeme, Ze vzdia-
lenost bodu Q; od strany AC je |AQy| - sin/Q;AC, od strany AB je
|AQ:| - sin/Q:AB. Uhly Q;AC a Q;AB si kolmé na zodpovedajice uhly
OTpTc a OTcTR, z toho vyplyva pomer

dy _y sin/QiAC  sin/OTgTc  OTc  ReosC +t

de 2z sinl,QAB  sin/OTcTg OTg  RcosB+t

Parameter ¢t ma kladné znamienko, pretoze body T4, Ts a T st namerané
od stredu opisanej kruznice smerom von z trojuholnika. Z tychto pomerov
ziskame trilinedrne siradnice bodu Q;

p— 1 . 1 . 1

"~ RcosA+t RcosB+t RcosC+t

(3)

Elimindciou parametra ¢ z rovnice (3) dostaneme rovnicu hyperboly (1).

Mandart si vSimol, ze medzi parametrami ¢ a d je nepriama Umera.
Vztah medzi parametrami ziskame z predpokladu Qg = @ a kollinearity
bodov A,A5 a Q;, teda

1 0 0

d—r dcosC+r dcosB+r| =0,
1 1 1
RcosA+t RcosB+t RcosC+t

T:iyY:z

7 ¢oho dostaneme

d=—.
t



60 Po stopach Feuerbachovej hyperboly: historicky prehl'ad a geometrické

7Z konstrukcie trojuholnika T4 T T je hned zrejmé, Ze smery asymptot
hyperboly st dané predpokladom, ked st body T4, Tg a T¢ kollinedrne.
Kollinearita nastane pre hodnotu parametra

_ —R+VR?-2Rr
- 5 )

t

3.4 Gibertove zovSeobecnenie Feuerbachovej hyperboly

V roku 2004 pan Gibert [8] analyzoval t-Mandartove trojuholniky TATpTc
a Feuerbachovu hyperbolu charakterizoval na zdklade Mandartovych vys-
ledkov. Zovseobecnil Mandartovu konstrukciu - pri konstrukeii bodov T,
Tp a Tc nahradil stred opisanej kruznice vieobecnym bodom P = (u, v, w)
(obr. 6.):

Nech je dangj trojuholnik ABC' a lubovolny bod P. Na kolmice z bodu P
na strany trojuholnika ABC' zostrojme v rovnakom orientovani body T4,
Tp a Tc tak, Ze vzdialenosti bodov T'a od strany BC, Ty od strany AC a
Tc od strany AB si t. Kolmice z vrcholov A, B a C na prislusné strany

trojuholnika TaTpTc sa pretinaji v jednom bode QQ = (m, vy,
kde A je obsah trojuholnika. S meniacou sa hodnotou t mnoZina bodov
Q je trojuholniku opisand hyperbola, ktord je izogondlnou transformdciou

priamky IP. Rovnica hyperboly je

a(cv — bw) N blaw — cu) N c(bu — av)

T Y z

Obr. 6: Zovseobecnena Mandartova hyperbola.
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3.5 Kourilova a Roschel

V roku 2013 pani Koufilovéa a pan Réschel [9] napisali d'alsiu konstrukciu
Feuerbachovej hyperboly:

Na jednej strane trojuholnika ABC zvolme bod Uy, nech je na strane
BC a vo vzdialenosti m od vrcholu B. Stredovou stimernostou bodu Uy cez
stred tejto strany dostaneme bod Uy. Osovou simernostou bodu Uy cez os
uhla C dostaneme bod Us. Stredovou simernostou bodu Us cez stred strany
AC dostaneme bod Us, atd. Cyklicky sa dostaneme k pévodnému bodu
Uy. Priamky U Us, UsUy a UsUy definuji trojuholnik Ay B1Cy. Priamky
AAy, BBy a CCy sa pretinaji v jednom bode, a s meniacou sa hodnotou
m mnoZina tychto bodov je Feuerbachova hyperbola (7. obr.).

Obr. 7: Konstrukcia cez stredové a osové stimernosti.

Autori skumali aj analégiu tejto hyperboly na sférickom trojuholniku, jej
opis v8ak presahuje rozsah tohto prispevku.

4 Zaver

Koncom 19. storoc¢ia bola trojuholnikovd geometria vnimana ako ele-
mentdrna a vizudlne naroénd. Bariéra vizudlnej ndroénosti dnes l'ahko pre-
koname s volne dostupnymi grafickymi softvérami a kvoli elementarnosti
riesenie problémov moézu byt zvlddnutelné aj stredoskoldkmi. Feuerba-
chova hyperbola sa ukdzala byt vsestrannym objektom trojuholnikovej
geometrie s viacerymi roznymi konstrukciami, preto je vhodnym prikladom
na demonstraciu prace s trilinearnymi stradnicami.

Pod akovanie

Tento ¢ldnok vznikol za podpory projektu KEGA 004UJS-4/2025 ”Online
interaktivne vzdeldvacie prostredie na podporu pripravy studentov uéitelstva
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Modeling 3D environments for virtual reality
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Abstract. The work focuses on creating a virtual environment, in which we
demonstrate the use of various types of geometric surfaces in architecture. A key
output is an interactive application. It allows users to view the 3D form of
architectural concepts that are often perceived only in 2D. This 3D visualization
contributes to more efficient learning and a better understanding of the spatial
properties of the studied surfaces. The work also includes a description of the
development processes and optimization of VR applications in the Unity
environment. Although we primarily focus on the Meta Quest 2, the described
principles are also applicable to other modern VR headsets. Given the rapid
development and wide use of virtual reality, it is important to become familiar
with the specifics of development for this platform.

Keywords: Unity, virtual reality, Meta Quest

1 Virtual reality

Virtual reality (VR) is a computer-generated, simulated experience that creates
an immersive, three-dimensional (3D) environment. Using specialized hardware,
like a head-mounted display (HMD) and motion controllers, it replaces your real-
world view with a digital one. The goal is to trick your brain into believing you're
physically present in the virtual world.

VR systems work by stimulating a user's senses to create the illusion of being
in a different environment. This is achieved through a combination of hardware
and software.

1.1 Components of VR headset

Today's widely available VR headsets (or VR goggles) consist of a head-
mounted display (HMD) and a pair of controllers. Inside the HMD, there are one
or more often two screens that project stereoscopic images. Another essential
component of the headset is a series of lenses, as the display is located too close
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for a person to focus on it. The headset contains various sensors to determine the
user's head position and tilt. This typically includes gyroscopes (to detect
orientation and tilt), accelerometers (to detect displacement), and cameras. The
headsets include built-in speakers near the ears or headphones with stereophonic
playback, also known as spatial audio, to simulate various real-world sounds.
Adjustable straps, soft padding, and good weight distribution of the device.
Controllers or gloves for tracking hand movements and capturing user input.

{
A

) —— - (Y

© oculus  QuesT2
B adinl]
e
| !
AT

Fig. 1: VR headset

\

From the perspective of their connection to another device, we can divide them
into two main types:

*  Headsets that require a connection to a computer or a game console.
*  The second category consists of standalone headsets.

1.2 Use of Virtual Reality and XR

The most common applications of virtual reality (VR) and XR are in video
games, in medicine - offering surgery simulations for surgeons, in real estate
sales, architecture, and interior design - allowing for a realistic preview of a room
or building, in the training of police officers and soldiers - using simulations of
crisis situations, allowing them to try them out "in real life" without risking
health, life, or property [1], in aviation - advanced augmented reality systems are
used when piloting fighter jets to simplify machine control. During the Covid-19
pandemic, "virtual tourism" expanded, meaning visiting various places and
monuments without leaving one's residence. These technologies already have
their place in many industries today, and this list continues to expand. [1]

1.3 The history of VR headsets

The absolute beginning can be considered the invention of the stereoscope by
Charles Wheatstone. This device placed a slightly different two-dimensional
image in front of each eye. The brain processed them into a single three-
dimensional sensation, creating the illusion of depth. While not virtual reality in
the modern sense, it was the first step toward tricking the senses to create a 3D
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experience. The American cinematographer Morton Heilig designed and later
built in 1957 a device called the Sensorama. This machine was designed to
stimulate multiple senses at once—sight, sound, smell, and even touch through
a vibrating chair. Although it wasn't a headset, it was an important concept
focused on fully immersing the user in an experience. The Sword of Damocles
by Ivan Sutherland in 1968 is considered the first true VR headset. The device
was so heavy that it had to be suspended from the ceiling and hung in front of
the user (hence the name "Sword of Damocles"). Although it only displayed
simple wireframe models, it tracked head movement and changed the view,
creating the first interactive 3D experience. In the 80s, NASA was developing
the Virtual Interactive Environment Workstation (VIEW), which was intended
for training astronauts. It included a headset and a pair of gloves used for
interacting with the environment, and it applied the LEEP system with some
modifications.

2 Unity

There are multiple environments available for developers of VR applications.
One of the best-known and frequently used is Unity, which is used for developing
games for various platforms. It offers tools for creating 2D/3D environments as
well as XR environments, along with many existing models freely available for
download in the Unity Asset Store.

2.1 Unity User Interface

When we open a new project in Unity, we are presented with the user interface,
as shown in Figure 2.

Fig. 2: Unity

The interface consists of 4 main windows: Scene - this is the main
workspace where the game content is displayed and edited. Hierarchy - here,
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we can see the objects that are currently in the scene. This refers to the
Hierarchy window in Unity. Inspector - when you click on an object, its
details are displayed here. You can then edit its properties or add the
components mentioned previously. Project — it is used to browse all the files
that are currently in the project. Here we will get to the models, materials,
scripts and everything else that we have downloaded, created or was
provided by Unity to build the game.

Then, proceed as follows:

1.

Open a new project using New project and select the 3D core
template.

In this project, in the Edit tab, select Project Settings and then choose
XR Plugin Management, where you will click Install Plugin
Management.

In the XR Plugin Management window, select the computer icon and
check OpenXR. Do the same for the Android icon. In the newly opened
OpenXR window, you need to add Oculus Interaction Profile under
Enabled Interaction Profiles.

Finally, when you want to build the application, in File > Build Profiles
under the Android section, click Switch platform and then select Quest
2 under Build Device. This step can be skipped if you want to run the
result from your computer.

Clicking Build and run will compile the project (compilation, scene assembly,
generation of the executable package, e.g., .apk or .exe etc.), save it to the
selected location, and run.

3 Blender

Blender is open-source software used for modeling and animating 3D objects and
environments. It is available for free, and its mission was to make 3D modeling
accessible to everyone. Using the Python programming language, it is possible
to create custom scripts within it to automate tasks or create objects.
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3.1 Import models from Blender
1. We can download the models from Blender in formats such as .fbx or .obj.

2. This file can then be inserted into the Project window in Unity, and from there
we can place it into the scene.

3. When we place the building into the environment: We delete unused elements
(especially lights and cameras) and adjust its position by
scaling/rotating/moving. Then we assign a Box Collider or Capsule Collider
component in the Inspector and check the Provide Contact box, so that the player
cannot pass through the walls. In the case of more complex geometry, we
directly select the object that should have contact and assign it a Mesh Collider.
For the object, it is worthwhile to select Extract Materials in the Inspector
section, which will allow us to manipulate its materials directly in Unity.

Fig. 3: Unity with objects from Blender

4 Conclusion

In this work, we focused on creating a standalone application that can be run on
VR headsets. The resulting application offers a virtual tour of several buildings
from around the world, showcasing the use of geometric surfaces in architecture.
This work contributes to a better understanding of geometric surfaces in
architecture through an interactive VR visualization. It allows for a more intuitive
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perception of the spatial properties of these surfaces, which is often limited in
traditional 2D sketches.
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Abstract. We present a web-based application designed to develop students’
spatial reasoning skills. In this task, students are required to determine which of
the presented 3D components can be assembled into a given target shape. Both
the individual components and the target shape are visualized in a 3D interactive
environment. Students can rotate the pieces, but only one piece is visible at a
time, and the preview offers no orientation clues. This design encourages
learners to actively engage their spatial imagination, requiring them to mentally
manipulate, retain, and integrate visual information to assess whether and how
the components can form the complete structure.

Keywords: spatial skills, 3D interactive web, mental 3D manipulation

Klicova slova: Prostorova predstavivost, interaktivni trojrozmérnd scéna,
mentalni manipulace v prostoru

1 Prostorova predstavivost

V literatufe najdeme rizné definice pojmu ,,prostorova piedstavivost, napt. [1].
Obvykle se jedna o vycet uréitych schopnosti jako jsou vnimani prostorovych
objektti, mentalni manipulace a orientace v prostoru. Prostorova piedstavivost
je nezbytna pro kazdého ¢lovéka (i zvife), aby se dokazal orientovat ve svété
kolem sebe, ale jako ucitele geometrie nas zajima jako schopnost vyuzivana
k feseni problému a uloh.

Vytvafeni softwarovych nastroji na podporu arozvijeni prostorové
predstavivosti se vénujeme uz dlouho, viz [2], [3], [4], a v tomto textu chceme
predstavit dalsi z nich, ktery jsme pojmenovali ,,Slozenka*.

2 Navrh aplikace na procvi¢ovani prostorové predstavivosti

Nasim cilem bylo vytvofit aplikaci, kterd by uzivatele (zéky) vedla k tomu, aby
si pfedstavovali a pamatovali trojrozmérné objekty a jejich transformace.

Takova aplikace by piedstavovala urcité dané prostorové objekty a kladla
by uzivateli otazku, zda slozenim téchto objekti (dvou nebo vice) muze
vzniknout pozadovany vysledny objekt. Napfiklad mé&jme objekty slozené ze tii
slepenych krychlicek (Obr. 1):
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Obr. 1: Vychozi objekt ,,L*

Takové objekty mtiizeme libovoln¢ otacet a posouvat a ptame se, zda z nich
1ze slozit krychli rozméru 2x2x2.

Odpovéd na tuto otazku nevyzaduje mnoho prostorové piedstavivosti, staci
si spocitat, ze krychle 2x2x2 obsahuje 8 krychli¢ek a zdilkli po tfech
krychli¢kach ji slozit nelze. Ale kdyz se zeptame, zda z danych dilki 1ze slozit
krychli rozméru 3x3x3, odpovéd’ uz tak ziejma neni.

2.1 Pozadavky

Pozadavky na navrhovanou aplikaci byly tyto:

budou pfedstaveny jednotlivé dilky a ukolem bude oznacit vSechny
dilky, ze kterych lze slozit poZzadovany vysledny tvar

dilky i vysledny tvar si bude moci uzivatel libovolné prohlizet,
zvétSovat, posouvat a otacet je, aby si je mohl dobie prohlédnout,
vracet se k nim

...vzdy ale uvidi pouze jeden dilek nebo vysledny tvar, takze bude
nucen si tvary pamatovat, pripadné v duchu otacet

aplikace bude obsahovat vétsi pocet uloh, mezi kterymi si uZzivatel
bude moci vybirat

aplikace bude hodnotit, jestli je odevzdana odpovéd’ spravna

budou oznaceny ulohy, které uz uzivatel vytesil, i ty, které zkusil fesit
a neuspél

informace o feSenych tlohach zlstanou zachovany i pfi opakovaném
spusténi programu

aplikace nebude vyzadovat zadny login, registraci, heslo apod.
aplikace nebude fesit vztah ucitel-zak ve smyslu, ze by ucitel zadaval
ulohy zakiim a mél moznost vidét jejich vysledky; bude si ji moci
pustit kdokoliv a bude pro vsechny obsahovat stejné ulohy

aplikace bude mit tvar webové stranky, takze nebude potieba nic
stahovat ani instalovat a spoustét.
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2.2 Vysledna aplikace

Vysledny program mé& podobu webové stranky dostupné na adrese
https://slozenka.geometry.cz/. Pfi vstupu na tuto stranku se automaticky
vygeneruje unikatni ptihlasovaci kod a uzivatel je pfesmérovan na adresu
s timto kodem. Kdy?z si tuto adresu ulozi do zalozek, dostane se vzdy ke svému
seznamu vyfeSenych loh.

Vlastni stranka aplikace obsahuje nadpis, ktery je zaroven odkazem na
napovédu, seznam uloh s vyznacenim, které tilohy uz byly feSeny a vyieSeny,
a vedle n¢j zadani vybrané Ulohy s tlacitky pro zobrazeni jednotlivych tvard
tvoficich zadani této ulohy. Po vybrani dilku se tento dilek zobrazi v poli
zobrazeni, kde s nim mutze uzivatel pohybovat a otacet (Obr. 2). V poli se
zadanim tlohy muze zaskrtnout dilky, ze kterych lze podle jeho nazoru slozit
vysledny tvar. Po stisku tlacitka ,,Vyhodnot“ se dozvi, zda byla odpovéd
spravnd — a pokud ano, uvidi ve 3D scéné ipozadovany tvar slozeny
z odpovidajicich dilku.
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Obr. 2: Prostfedi aplikace
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2.3 Priklady uloh

Vysledny tvar i dil¢i tvary jsou vzdy viditeln¢ slozeny z ,,jednotkovych® (tj.
zékladnich shodnych) krychlicek, ptipadn€ valct ¢i kouli téze velikosti.

Kromé¢ uvodnich, zamérné¢ velmi snadnych uloh, které jsou uréeny
k seznameni s aplikaci, jsou v seznamu zafazeny dalsi snadné tlohy, k jejichz
vyfeseni stai spoéitat zakladni krychlicky v dilku ¢i posoudit vysledny rozmér
celku. Takové tlohy nevyzaduji pokrocilou prostorovou ptedstavivost. Piiklad
takové ulohy vidime na Obr. 3. Dilky jsou zde slozené z kulicek, coz je pro

Obr. 3: Uloha, v niz k vyfeseni staéi spoéitat kuli¢ky, celek jich ma 12
V dalsi tloze uz pocitani jednotkovych dilkd (zde jsou to valce) nestaci,
vysledny tvar je slozen z deviti zékladnich valci, takze k jediné Ctvetici je tieba
hledat odpovidajici pétici.

Obr. 4: Uloha z dil&ich vélct

V tloze na Obr. 5 mé kazdy dilek 4 jednotkové krychlicky. Vpravo je vidét
vysledny slozeny tvar, ktery zak uvidi po vyhodnoceni spravného feseni.

Obr. 5: Jednotlivé dilky a vysledné slozeni pozadovaného tvaru

V nékterych ulohach je tfeba rozliSovat mezi nepfimo shodnymi dilky.
Ptiklad je na Obr. 6.
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Obr. 6: Obtizna uloha — zeleny dilek je nepfimo shodny s ¢ervenym i zlutym.

3 ZkuSenosti

Slozenku jsme nechali feSit rizné staré zaky a studenty gymnazia: 13leté zaky
sekundy, 15leté zaky kvarty osmiletého gymnazia a studenty maturitniho
ro¢niku kurzu deskriptivni geometrie. Zajimalo nas pfedevsim to, zda pro n¢
budou ulohy obtizné. Rozdily v uspé&Snosti a rychlosti feSeni souvisely spise
s individudlnimi schopnostmi zakul, nez s vékem. Zdatni fesitelé vytesili celou
sadu uloh za 30-40 minut. Nejrychleji, za 25 minut, celou sadu vyfesil Zak
sekundy a v sekundé¢ také vSichni az na jednoho vyfeSili celou sadu béhem
jedné vyucovaci hodiny. Nejvice zaku, ktefi sadu za 45 minut nevyfesili, bylo
Vv kvintg.

3.1 Strategie feSeni

Vzhledem k tomu, Ze dilky jsou ve vychozi poloze riizné otocené (tedy ne tak,
jak patii do vysledného tvaru) a ve scénach nejsou zadné prvky pro orientaci
Vv prostoru, museli si Zaci sami najit zpusob, jak si tvar ¢asti zapamatovat a jak
rozhodnout o vysledku. Star$i Zaci a studenti pocitali zakladni kosti¢ky v dilech
A, B, C, D, coz v nékterych tlohach pro rozhodnuti o vysledku stacilo. Jindy
odhadli dilek, ktery by mohl do vysledku patfit (nejvétsi dilek, pfipadné jen
prvni — dilek A) aurcili k nému dopln¢k. Pokud dopln€k nenasli, postup
opakovali s dal§im kandidatem. Dilky k vybéru jsou vzdy jen Ctyfi, postup tedy
vedl rychle Kk cili.

Zaci sekundy nedokazali slovné popsat strategii feseni, ¢asto uvadéli, Ze si
»pamatovali tvar* (vyuzivali tedy ,, fotografickou pamét™).
z nepiimo shodnych dilkd. Tam Zaci ptiznavali nahodné pokusy.

Celkovée zaci kol hodnotili jako nepfili§ obtizny, po skonceni se vétSinou
necitili unaveni.

4 Odpovéd’ na zavér

Odpovéd’ na uvodni otdzku jsme ulozili do poslednich uloh sady. Z dilka
L krychli 3x3x3 slozit jde. Naptiklad sloZzenim vSech dilkd (v nichz jsou
tvary ,,L* je dobfe vidét) na Obr. 7.
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Obr. 7: Krychle 3x3x3 z dilka ,,L*
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Abstract. The paper provides a reflection on the event Become a
Woman-Scientist for a Day 2025, held on February 11 at the Czech
Technical University in Prague on the occasion of the International
Day of Women and Girls in Science. The event, aimed at highlighting
the essential role of women in the scientific community and promoting
their access to scientific education, attracted considerable interest,
particularly among secondary school students. The authors contributed
to the event with a lecture on engineering applications of envelope
surfaces, followed by a workshop. During the modelling of envelope
surfaces in CAD, the significant didactic potential of a self-created
dynamic 3D model became evident, as it effectively illustrated a rather
complex theory unfamiliar to the participants.

Keywords: Envelope surface, characteristic of envelope surface, CAD
model, Rhinoceros & Grasshopper
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1 Uvod

Akce Stan se na den védkyni pofadand na Ceském vysokém uéeni tech-
nickém v Praze (CVUT) pii piflezitosti Mezinarodnfho dne zen a divek
ve védé (11. dnor) zajistuje jiz nékolikdtym rokem program pro divky
zajimajici se o budouci kariéru ve védé a ukazky védeckych praci, jakymi
se zeny ve védé na CVUT zabyvaji. Behem dne si tcastnice mohly po-
slechnout prednasky odbornic z akademické sféry, na které navazovaly
praktické ukazky a moznost vyzkousSet si védu na vlastni kuzi v ramci
témat, kterd sahala od casticové fyziky a robotiky az po aplikace geo-
metrického modelovani ve strojirenstvi. Na organizaci se podilela Fakulta
strojni spolu s Fakultou jadernou a fyzikdlné inzenyrskou a Fakultou elek-
trotechnickou CVUT.

V ramci ptispévku Fakulty strojni k této akci zaznéla v dopolednim
bloku prednéska na téma Geometrie obalovych ploch a jejich aplikace ve



76 Slozenka. Procviovani prostorové predstavivosti hrou

strojirenstvi, na kterou odpoledne navazovalo cvi¢eni zaméiené na geo-
metrickou aplikaci obalovych ploch v numericky fizeném obrabéni. Stu-
dentky byly sezndmeny s vyzvou, kterou tato tloha predstavuje: urcit
obalovou plochu vytvoienou pohybem obecné rota¢ni plochy neni trivialni
a soucasné CAD (Computer Aided Design) systémy nedisponuji piikazy
pro feSeni tohoto zadani. Proto byla na Ustavu technické matematiky
Fakulty strojni vyvinuta unikdtni metoda modelovani obalovych ploch
zalozend na aplikaci poznatku z diferencialni geometrie. Utastnicim byla
tato metoda vysvétlena a mély poté moznost vytvorit si dle vlastniho
névrhu svij origindlni CAD model obalové plochy v programu Rhinoceros
s vyuzitim vestavéného grafického programatorského prostiedi Grasshop-
per.

2 Obalova plocha

Definice 1: Obalové plocha je ¢dst povrchu E(s, t) télesa B(u, v, t), které
vznikne jednoparametrickym pohybem tvofici plochy S(u,v) po trajekto-
rii T(t), jestlize plati (u,v, s, jsou redlné parametry z uzavienych inter-
vall)
e Obalovd plocha E(s,t) a kazdd wwv-parametrickd plocha télesa
B(u,v,t) se dotykaji podél parametrické s-kiivky plochy E(s,t),
kterd se nazyva charakteristika obalové plochy.

e V kazdém bodeé obalové plochy E(s, t) existuje spole¢nd teénd rovina
této plochy a jediné parametrické uv-plochy télesa B(u,v,t).

e Neexistuje plocha, kterd by byla soucasné ¢dsti obalové plochy E(s, t)
a nékteré parametrické uv-plochy télesa B(u,v,t).[1]

Vétsina vysokoskolskych sylabu obsahuje syntetické feSeni nalezeni
charakteristiky obalové plochy generované piimoc¢arym, rotatnim a Srou-
bovym pohybem roviny, koule a specificky zadané rota¢ni plochy (me-
rididn je tvoren piimkami ¢i kruznicovymi oblouky), viz napt. [2]. Pokud je
uvedeno analytické feseni, je bud redukovéno na implicitni vyjadieni za-
danych utvaru nebo je zvoleno takové zadédni, ze obalova plocha je predem
znama. Piikazy v CAD systémech, které by umoziovaly modelovat oba-
lovou plochu jinak nez jako pfedem zndmy tutvar, neexistuji a v.CAM
(Computer Aided Manufacturing) systémech se obalové plochy generované
pohybem néstroje aproximuji plochami ekvidistantnimi ke jmenovitému
povrchu.

Analyticky pfistup zalozeny na podmince, Ze charakteristika je mnozina
bodu, ve kterych jsou komplanarni te¢né vektory k parametrickym kiivkach
tvotici plochy a teény vektor k trajektorii uvazovaného bodu je uveden
v [3]. Zcela zdsadni vyznam v teorii obalovych ploch zaujimé [4], kde je
pouwzit DG/K (Differential Geometry/Kinematics) pifstup k ziskdni ana-
lytické reprezentace obalové plochy v dostatec¢né obecném pojeti, a sice
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na zékladé podminky, ze obalova plocha je plocha, ktera se dotyka jedno-
parametrické soustavy tvoricich ploch.

3 CAD model rotacéni obalové plochy

Definice 1 uvedend v [1] je zobecnénim piistupu v [3] a [4] v tom smyslu,
ze obalova plocha je plocha v télese generovaném jednoparametrickym po-
hybem (obecnym) tvofici plochy (uréené obecnym merididnem), v jejimz
kazdém bodé jsou komplanarni vSechny tti te¢né vektory k parametrickym
kfivkam tohoto télesa. Z definice vyplyva také dulezita skutec¢nost, ktera
je rozhodujici pro vytvoreni CAD reprezentace obalové plochy: uvazujeme-
li dvé nekonecéné blizké parametrické wv-plochy télesa B(u, v, t), splynou
charakteristiky v téchto polohach v jedinou kiivku, a tudiz charakteris-
tika je prunikova kiivka dvou nekonecné blizkych poloh tvorici plochy,
jak je uvedeno v [2] (str. 37, vlastnost 4). Pfi pfimocarém, rotaénim
a Sroubovém pohybu méa charakteristika neproménny tvar, tudiz staci
vymodelovat jedinou prunikovou kfivku dvou — kvili koneéné presnosti
CAD/CAM systému — dostatecné blizkych poloh tvofici plochy a obalo-
vou plochu poté vytvorit odpovidajicim pohybem takto ziskané charakte-
ristiky [1]. Pi obecném pohybu m4 charakteristika proménny tvar, tudiz
je nutné vymodelovat dostate¢né mnozstvi dvojic blizkych poloh tvorici
plochy a obalovou plochu vytvofit jako plochu prochézejici prunikovymi
kfivkami.

3.1 Modelovani obalovych ploch na cviceni

Princip tvorby CAD modelu rota¢ni obalové plochy v Rhinoceros & Grass-
hopper je ukdzan na obr. 1. Obalova plocha je zde generovand rotaci
valcové rota¢éni plochy kolem osy, kterd je s osou valcové plochy mi-
mobézna. V narysu a pudorysu jsou barevné odliseny dvé blizké polohy
tvofici plochy. Jejich prunikové kiivka jesté neni zkonstruovana, nicméné
jiz z barevného pfechodu obou ploch je jeji tvar zietelné patrny. V iso-
metrickém pohledu je zobrazen hotovy CAD model v poloprihledném
rezimu.

V ukdzkovém cviceni si nejprve ucastnice v pfedem pfipravenych sablo-
néach pro Rhinoceros vytvorily staticky CAD model obalové plochy z obr. 1,
z néhoz si poté v Grasshopperu vytvorily dynamicky model, viz obr. 3.
V dynamickém modelu bylo mozné tvorici plochou pohybovat, a tim
zietelné demonstrovat princip vzniku obalové plochy a jeji vlastnosti. Stu-
dentky se také naucily ménit barvy a vlastnosti objektt a ménit typ zob-
razeni.

V dalsi ¢ésti cviceni nédsledovala konstrukce obecné rotaéni tvorici plo-
chy, kdy merididnem byla B-spline kiivka 4. stupné uréend danymi fidicimi
body, viz obr. 2.
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Obr. 1: Obalové plocha generovana rotaci rota¢ni valcové plochy
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Obr. 2: Obalova plocha generovand rotaci obecné rotaéni plochy

V posledni ¢asti cviceni si ucastnice vytvorily parametricky dynamicky

model rota¢ni obalové plochy v Grasshopperu, viz obr. 4, ve kterém bylo
mozné ménit jak polohu fidicich bodu merididnu tvofici plochy, tak i jeji
polohu vuéi ose rotace. Studentky tuto zdvéreénou ¢ast uvitaly s velkym
nadSenim, nebot dynamicky parametricky CAD model umoziioval uplat-
nit jejich kreativni potencial. Mnohé z nich ocenily toto interaktivni a prak-
tické cviceni, které jim umoznilo seznamit se s problematikou obalovych
ploch. Hlavni duraz pii svém hodnoceni kladly na préaci v Grasshopperu,
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Obr. 3: Dynamicky model rota¢ni obalové plochy

ktera jim poskytla nové dovednosti v oblasti parametrického designu a vi-
zualizace, které jsou v soucasném védeckém a inzenyrském prostiedi stdle
zadanéjsi.
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Obr. 4: Parametricky dynamicky model obecné rota¢ni plochy
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4 Zaveér

9. ro¢niku se celkové zucastnilo pres 140 studentek. V ramci této akce se
béhem cvi¢eni vénovanému modelovéni obalovych ploch v CADu zietelné
projevil zna¢ny didakticky potencidl vlastnoru¢né vytvoreného paramet-
rického dynamického 3D modelu k objasnéni pomérné slozité teorie oba-
lovych ploch, se kterou se studentky stfednich skol dosud nesetkaly. Ziskané
dovednosti a prvni zkuSenost s parametrickym modelovanim tedy mohou
studentky inspirovat k dalsimu vzdélavani v oblasti strojniho inzenyrstvi,
coz je jednim z hlavnich cili zminované akce.
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Clének vznikl za podpory projektu SGS24/119/OHK2/3T /12 Pokrocilé
metody matematicko-geometrického modelovani ve strojirenstvi.
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Abstract. We sketch some basic properties and applications of
isometries within hyperbolic plane. The properties are well known
and the paper stresses the main lines of developmnet of the area. We
also point to some applications not only within the area of hyperbolic
geometry. We would like to point out that many approaches from
various fields of math meet in hyperbolic geometry and therefore it is
a suitable topic where they can be learned following the basics.
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1 Introduction

Non-Euclidean geometry was discovered by N. Lobachevsky and in paral-
lel and in a different way by J. Bolyai around the end of the 3rd decade of
the XIXth century. The key goal was to show that the parallel postulate
of Euclid fails to be dependent on the other postulates. Hence, infinitely
many parallel lines through a point (hyperbolic geometry) or no parallel
line through a point (spherical geometry) might be a case. The goal was
reached and a vast area of research has been revealed. In the hyperbolic
case, the surface representing the plane has constant negative Gaussian
curvature K = —1. The length of a circle grows exponentially with radius
unlike the Euclidean or spherical cases. On the other hand, the isome-
tries have similar structure in comparison with the Euclidean ones when
constructing, though the group of isometries is much more complicated.

Fig. 1: A triangle in hypebolic plane in Poincaré disc model.
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N =(0,0,1)

Fig. 2: Stereographic projection of the 2-dimensional sphere and a real
plane (or complex line).

2 Stereographic projection

Stereographic projection connects points of a sphere and C. This very
useful mapping can be met in many areas as a basic fact/construction.
The connection between coordinates (u,v,w) of a point of a sphere u? +
v? +w? = 1 is mapped to the plane point (x,%,0) so that x(u,v,w) =

w o . ST B -

%, y(u,v,w) = 17 and the inverse mapping is given by u = Tt
— 2 2 . .

v = Hffyﬂlz, u = ﬂTZ@; The mapping preserves angles and it maps

circles on the sphere to circles or lines in the plane (see fig 2).

3 Models of hyperbolic geometry

There are many models of hyperbolic geometry, some of them just local.
The advantage of so many models is that we can easily identify properties
in one model and via isomorphisms use this information within the other
model as well.

The primary model is a hyperboloid model U for q(x,y, 2) = 22 +y* —
2% for z > 0. Using appropriate projections, one obtains other models
such as Poincaré disc model Uppincare (improvement of Klein disc model
Ukiein ), half-sphere model Sf_, halfplane model Upaifplane (see fig. 3, left)
and there is also local pseudosphere model (see fig. 3, right).

All the models except the pseudosphere are interconnected via certain
projections (more-less stereographic).

4 Metrics in hyperbolic geometry

The metrics can be computed by methods of differential geometry from the
hyperboloid model, but for the other models, the formula of the hyperbolic
distance can be easily found in the Klein’s model for points a, b with ideal



Group of isometries of hyperbolic plane 83

Fig. 4: (left) Cayley-Klein metric of a convex figure; (right) Hyperbolic
lines and angles in Poincaré model.

points a’, b’ on the hyperbolic line ab based on Cayley-Klein metric (see
fig. 4, left) applicable in any convex figure using Euclidean distances

dp(b’,a)dp(a’,b)

b) =1 .
du(a,b) N (b, bYdp(al, a)

Connecting projective geometry, Euclidean geometry as well as hyper-
bolic geometry is done not only in an analytic but also in a synthetic
way.

5 Isometries of the hyperbolic plane

Isometries — mappings preserving the distance of all pairs of the mapped
points. They are well-known even on basic school level and used in ele-
mentary synthetic constructions in Euclidean geometry.

In halfplane model, matrices of PSL(2,R) form the group of all orien-
tation preserving isometries. Hence, PGL(2,R) are all isometries. These
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Fig. 5: Isometries (rotation upper row, reflection and glide reflection of a
triangle, lower row) in the Klein and Poincaré model of hyperbolic plane.
The neighboring points on the lines are uniformly distant.
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are all matrices

(a b) ,ad —bc = *+1,a,b,c,d € R
c d

with identification up to a multiple. Hyperbolic line reflections (line in-
versions, circle inversions) are generators of the group.

5.1 Classification of plane isometries

Various classification criteria can be used. Using minimum number of
line reflections to chain, we get similarly to Euclidean plane identity, hy-
perbolic line reflection, hyperbolic translation, hyperbolic rotation (real
point, ideal point), glide reflection (see fig. 5).

Interpreting the elements of PGL(2,R) as Mobius transformation, 1
represents circle inversion in unit circle centered at origin. In general,
fz) = ‘;Zzis or f(z) = ‘gis is a composition of translations, inversion,
reflection in a real line, scaling and rotation for a,b,c,d € C, ad —bc = 1.

Hyperbolic isometries can be represented with a, b, ¢,d € R. Geometry
of complex projective line can be used in description of the hyperbolic
plane. The loxodromic type of Mobius transformation cannot be found
among the hyperbolic tranformations.

5.2 Subgroups of hyperbolic isometries

The structure of subgroups of PSL(2,R) is very rich. A subgroup I' of
isometries of discrete and free type corresponds in some sense uniquely
to a hyperbolic surface of genus g > 2. Fairly heavy algebraic topology
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Fig. 6: Tiling of hyperbolic plane using regular 5-gon (left) and 7-gon
(right).

and/or geometry theory is used for their classification. Such a group cor-
responds to certain tiling of the plane. There is a real (6¢g+6)-dimensional
Teichmiiller space of non-isomorphic hyperbolic surfaces of genus g given
as H?/T.

Number theory studies modular group PSL(2,Z) generated by trans-
forms z + 1 and f%. Hence, many connections of hyperbolic geometry
and number theory naturally appear.

A gateway to study 3-manifolds (see work of Thurston), their classifi-
cation and further properties is the 2-dimensional hyperbolic plane. The
higher dimensional approach is in many aspects similar. The higher di-
mensional transformas can be decomposed into a series of twodimensional
transforms in a similar way to he Euclidean isometries. The results of 3-
dimensional case are used physics for studying possible phenomena in real
hyperbolic space around us.

6 Very few applications
6.1 Tilings and tesselations

The easiest tilings not to be found in the Euclidean setting is a tesselation
by a regular n-gon for any n > 3 (see fig. 6). They can be found in the
artworks of M. C. Escher As mentioned above, the tilings can be produced
using and appropriate subgroup of the isometries. They are called Fuch-
sian groups and their description requires some additional work. The
algebraic/combinatorial /geometric properties are closely interconnected
and explored.

Modern tesselations of surfaces in architecture can be a further exten-
sion in the setting of discrete differential geometry.
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Fig. 7: Pappus Arbelos is a problem which can be easily transfered into
a hyperbolic setting. It can be found in the art of Alfons Mucha.

6.2 Classical geometry problems

Classical problems of Euclidean geometry can be asked in the hyperbolic
setting as well. Some of them have the same or almost same solution
due to the fact that circles in hyperbolic setting can be identfied with
Euclidean circles within the Poincaré model. Lines there are also part of
the circles. Hence Appolonian problems can be solved relatively easily.
The metric problems are however much more difficult.

7 Conclusions

Hyperbolic geometry is a versatile area not only from the research point of
view but also from the teaching point of view. Classical synthetic geome-
try can be used for explaining ideas, whereas analytical computations can
be done in several ways — linear algebra, complex analysis and differential
geometry approaches, even some geometric topology can be used.

Hyperbolic geometry is used in several areas of industry as a under-
lying space or as a tool. However, many classical problems with circles
can be explored as problems of hyperbolic geometry or close areas such
as Laguerre geometry.

Moreover the area generated many novel approaches in geometry,
topology, combinatorics, e.g. the structure of the group of hyperbolic
isometries is non-trivial and still many combinatorial as well as geometri-
cal aspects can be studied.

The value teacher can bring is the synthetic understanding of many
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time very technical approaches used in many different areas. Students
offen appreciate the interconnections and/or start to understand reasons
why certain techniques are proper to use.
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Konvexni pétithelniky v matematickych
soutézich
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Abstract. The paper This is devoted to certain properties of the fun-
damental elements in convex pentagons — namely, the lengths of their
sides and diagonals, the measures of their interior and exterior angles,
and, where applicable, their area — as well as to their applications in
solving specific planar geometry problems.

Keywords: convex pentagon, side length, diagonal length, size of
interior and exterior angles.

Klicovd slova: Konvexni pétidhelnik, délka strany, délka thlopficky,
velikost vnitinich a vngjich dhla

1 Uvod

Ve srovnani s trojihelniky a ¢tyttuhelniky se v nasi matematické lite-
ratufe jen ziidka objevuji ptispévky zaméfené na konvexni pétitihelniky.
Tento prispévek se vénuje jejich zdkladnim vlastnostem — délkdam stran
a Uhlopficek, velikostem vnitfnich a vnéjsich thlu, jeho obsahu — a jejich
vyuziti pfi feSeni planimetrickych tloh.

Uvodem si pripomeiime vétu o souétu velikost{ vnitinich (i vnéjsich)
dhla v konvexnim n-thelniku.

Véta 1
V kazdém konvexnim n-ihelniku (n > 3) je soucet velikosti jeho vnitinich
uhlid roven (n — 2) - 180°.

Duikaz. Zvolme libovolny vnitini bod P konvexniho n-ihelniku A1 A, ... A,,
ktery spojime se vSemi jeho vrcholy (obr. 1 — vlevo). Soucet velikost{
vnitinich thla ve vSech n takto vzniklych trojihelnicich (tzv. triangulace
n-thelniku A A, ... A,,) zmenSeny o plny thel, ktery je souctem velikosti
vnitinich dhla u vrcholu P ve vSech trojuhelnicich se spole¢nym vrcho-
lem P, udéva hledany soucet S velikosti vSech vnitfnich uhlu v tomto
konvexnim n-thelniku. Plati tak

S =mn-180° —360° =n-180° —2-180° = (n — 2) - 180°,

coz jsme chtéli dokazat.
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Obr. 1: Véta 1

Jing dikaz (viz napf. v [4]). Zvolme libovolny z vrcholi uvazovaného n-
thelniku (bez Gjmy na obecnosti napt. A; ), a pomoci viech jeho tihlopiicek
vychdzejicich z vrcholu A; jej rozdélime na n — 2 trojihelnika (obr. 1
— vpravo). Pro souc¢et S velikost{ vSech vnitinich dhlu v konvexnim n-
thelniku A3 A, ... A, tak piimo obdrzime S = (n — 2) - 180°.

Disledek 1
Soucet velikosti vSsech vnitinich dhla v kazdém konvexnim pétitihelniku je
roven 540°.

Disledek 2

V kazdém konvexnim n-thelniku (n > 3) je soucet velikost{ viech jeho
vnéjsich hla roven 360°.

Drikaz. Podle vyse uvedené véty je soucet velikosti n vnéjsich ihla v libo-
volném konvexnim n-tthelniku roven rozdilu

n-180° — (n — 2) - 180° = 2 - 180° = 360°.
V dalsi ¢asti uvedeme osm fesenych tloh o konvexnich pétithelnicich.

Piiklad 1
Je dan pravidelny pétithelnik ABCDFE. Oznatme M stied strany AB a
K prusecik osy tusecky DM s thlopiickou AC. Dokazte, ze AK L DK.

Resend. Trojihelnik ADM je pravothly s pravym thlem pii vrcholu M.
Kruznice tomuto trojuhelniku opsana je Thaletova kruznice nad preponou
AD. Bod K lezi rovnéz na této kruznici, jelikoz je prusecikem osy strany
DM a osy vnitintho thlu pfi vrcholu A. Tedy velikost ihelu AK D je 90°.

Jiné tegeni. Uvazujme bod A’ soumérné sdruzeny s vrcholem A vzhledem
ke stfedu K. Protoze bod K lezi na ose usecky DM, lez{ bod A’ na
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Obr. 3: Priklad 1 — jiné feSeni

rovnobézce s pifimkou AB, kterd prochédzi vrcholem D (Obr. 3). Stiidavé
uhly A’AB a DA’A jsou shodné s tihlem DAC. Tedy trojihelnik AA’D
je rovnoramenny, pricemz bod K je stfedem jeho zdkladny AA’. Odtud
jiz ptimo plyne AK | DK, coz jsme chtéli dokazat.

Priiklad 2

Je dan konvexni pétithelnik, jehoz vSechny vnitini dhly jsou tupé. Dokazte,
ze existuje takova dvojice jeho thlopfticek, ze kruhy uvazované nad témito
uhloptickami (jako pruméry) pokryvaji dany pétithelnik.

Reseni. K dikazu lze vyuzit metodu extremélntho prvku. Bez tjmy na
obecnosti predpokladejme, ze AB je nejdelsi stranou konvexniho pétithelniku
ABCDE, ktery vyhovuje podminkam tlohy. Kolmice k AB, které prochézeji
vrcholy A, B, ozna¢me po tadé p, q. Uvazujme nyni pds omezeny rov-
nobézkami p, ¢ (obr. 3). Vrcholy C a E uvazovaného pétitihelniku lez{ vné
tohoto pésu, nebot thly ABC a EAB jsou tupé. Soucasné vsak vrchol

D tohoto pétidhelniku lez{ uvniti uvazovaného pasu (v opa¢ném piipadé
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Obr. 4: Piiklad 2

by totiz strana AB nebyla nejdels{ stranou pétiihelniku ABCDE). Pata
D1 kolmice z vrcholu D k piimce AB je tedy vnitinim bodem strany AB
uvazovaného pétithelniku.

Oba kruhy sestrojené nad praméry AD a BD tak evidentné pokryvaji
uvazovany pétiuhelnik ABCDE, coz jsme chtéli dokazat.

Priklad 3

Je dén konvexni pétithelnik ABCDE, v némz |AB| = |BC| = |CD| =
|DE|, |LABC| =96° a |/BCD| = |LCDE| = 108°. Urcete, jakou velikost
ma jeho vnitini 1hel pii vrcholu E.

Resend. Oznaéme P prisecik ihlopiicek BD a CE. Ze zadani plyne, ze
trojuhelniky BC'D a CDFE jsou rovnoamenné po fadé se zakladnami BD
a CE. Piitom |/CDB| = |/DBC| = |/ECD| = |/DEC| = 36°. Protoze
|/BCD| = 108°, plati |/BCP| = |/BPC| = 72°. Trojihelnik BCP je
tedy rovnoramenny se zakladnou C'P. Podobné zjistime, Ze i trojuhelnik
DEP je rovnoramenny se zékladnou DP (obr. 5). Diky zadéni plati také
|AB| = |BC| = |BP| = |EP| adale |/ABP| = 96° —36° = 60°. Odtud jiz
bezprostiedné plyne, ze trojihelnik ABP je rovnostranny a trojuhelnik
AEP je rovnoramenny se zdkladnou AFE. Dopocitanim vnitinich whla
v rovnoramanném trojihelniku APE snadno zjistime, ze |ZAPE| = 180°—
72°—60° = 48°, tudiz |LAEP| = 66°, a tedy |LAED| = 36°+66° = 102°.
Velikost tthlu AED dopoéitdme podle véty 1.

Piiklad 4
Je dén konvexni pétidhelnik ABCDE s pravymi thly pfi vrcholech C a
E, kde

|AB| =|CD|=|DE|=1 a |BC|+|EA|=1.

Dokazte, ze jeho obsah je 1.
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Obr. 6: Priklad 4

Regeni. V otoceni se sttedem D a orientovanym tihlem EDC se vrchol E
pétitthelniku ABCDE zobrazi na vrchol C, nebot podle zadani je |DE| =
|CD| = 1. Pravouhly trojihelnik DEA s pravym thlem pfi vrcholu E se
v tomto otoceni zobraz{ na pravouhly trojihelnik DCA’, tj. plati |[EA| =
|CA’|, kde A’ je obrazem vrcholu A. Bod A’ pak lezi na polopiimce BC' za
vrcholem C' (obr. 6). Podle zadédni plati |[BA'| = |BC| + |CA’| = |BC| +
|[EA| = 1. Obsah pétidhelniku ABCDE je tak roven obsahu ¢tyfihelniku
ABA'D, v némz jsou trojihelniky ABD, A’BD shodné podle véty sss.
Trojihelnik A’BD mé ptitom obsah 1/2; proto pétitthelnik ABCDE ma
obsah 1, jak jsme chtéli dokézat.

Priklad 5

Je dén konvexni pétithelnik ABCDE s pravymi thly pii vrcholech B a
E, v némz plati |AB| = |BC|, |DE| = |EA| a |BE| = 10cm. Urcete v
cm? obsah daného pétithelniku ABCDE.

Resend. Oznac¢me F, G priseciky pifmky C'D s kolmicemi k pifmce BE,
které prochézeji po fadé vrcholy B, E daného pétidhelniku (obr. 7). Na
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Obr. 7: Priklad 5

uhlopticce BE uvazujme bod P, pro néjz plati |[BP| = |BF|. V otoceni se
sttedem B a orientovanym thlem —90° je pritom obrazem bodu P bod F
a obrazem bodu A je bod C. Trojihelniky ABP a CBF jsou tudiz podle
véty sus shodné, nebot |/ABP| = |/CBF| a také |/APB| = |/CFB].
Vzhledem k tomu, ze piimky BF a EG jsou rovnobézné, plati (s ohledem
na shodnost trojihelnika ABP a CBF)

|/DGE| = 180° — |/CFB| = 180° — |/ APB| = |/ APE],

tedy trojihelniky DGE a APE jsou také shodné (usu), a proto |[EG| =
|EP|. Navic, prvni z nich je obrazem druhého v otoceni se sttedem F
a orientovanym thlem +90°. Déle plati |BF| + |GE| = |BP| + |EP| =
|BE| = 10 cm.

Obsah daného pétithelniku ABCDE je tak roven obsahu lichobézniku
BFGE se zékladnami BF a GE, tedy 3 |BE|(|BF|+ |GE|) = § |BE|* =
50 cm?.

Priklad 6
Je dan konvexni pétithelnik ABCDE s pravymi thly pii vrcholech B a
E. Dokazte, ze obvod trojihelniku AC'D neni mensi nez 2|BE|.

Reseni. Oznaéme K, L stiedy thlopiicek po fadé AD, AC. Délka lomené
¢ary BLKFE je rovna poloviné obvodu trojihelniku AC D, protoze plati:
|[KL| = £|CD| , |EK| = $|AD| a |BL| = 1|AC|. Tedy velikost tsecky
BE je ostie mensi nez délka lomené ¢ary BLK FE, kterd je rovna obvodu
trojuhelniku ACD.

Pi#iklad 7 (9. geometrickd olympidda I. F. Sarygina, 2013)

Je dén konvexni pétithelnik ABCDE s pravymi thly pii vrcholech B a
E,vnémz |AB| = |AE| a |BC| = |CD| = |DE|. Necht P je prusecik jeho
uhlopticek BD a C'E. Dokazte, ze |PA| = |AB|.
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Obr. 9: Priklad 7

Resend. Dany konvexni pétitthelnik ABCDE je osové soumérny podle osy
AP. Trojihelnik BCD je rovnoramenny se zakladnou BD a plati, ze
|/DBC| = |/BDC|. Déle je ziejmé, ze , protoze |/ABP| + |/PBC| =
$|£CPD| + |/PDC| = 90°. Odtud plyne, ze |/ABP| = |/APB|, tedy
trojihelnik ABP je rovnoramenny se zékladnou BP a |[PA| = |AB|.

Piiklad 8 (XVII. MO juniort — Polsko, 2022, viz [5])

V konvexnim pétithelniku ABCDFE s pravym uhlem pii vrcholu D plati
|AC| = |AD| a |BD| = |BE|. Dokazte, ze trojihelnik ABD a étyithelnik
ABCE maji stejny obsah.

Reseni. Oznaéme K, L po fadé priseciky thlopiicky AD s EC a BD s
EC. V lichobézniku APDE plati, ze obsah trojihelniku FAK se rovné ob-
sahu trojuhelniku K PD. Analogicky v lichobézniku PBC D plati, ze obsah
trojuhelniku PLD se rovna obsahu trojuhelniku LBC. Tedy trojihelnik
ABD a ¢tyiihelnik ABCE maji stejny obsah.

Pozndmka.Clanek vznikl se souhlasem redakéni rady ¢asopisu MFI, nebot
podstatna cast ¢lanku jiz byla zde zvefejnéna.
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Obr. 10: Piiklad 8
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Abstract. In the Grasshopper programming environment, imple-
mented within the Rhinoceros 3D modelling software, scripts generating
CAD geometry in real-time can be created. The interactive nature
of such scripts can serve as a tool for deepening the understanding of
certain geometrical exercises presented during constructive geometry
lectures. One such example is presented in this paper where a simple
program capable of generating and displaying intersections of surfaces
of revolution is made.

Keywords: Interactive modelling, surface of revolution, intersection,
CAD

1 Introduction

In this paper, an approach to creating a simple Grasshopper [1] program
for generating and visualizing the intersections of two surfaces of revo-
lution [2][3] is presented. The Grasshopper programming environment is
a part of the Rhinoceros 3D modelling software and allows for scripting
in a visual node-based environment and for scripting using one of several
implemented programming languages, for which libraries providing access
to Grasshopper commands are provided. These commands allow for gen-
erating geometries from scratch, but also provide tools for manipulating
geometry already present in the main Rhinoceros 3D viewport. One of the
main features of Grasshopper is the real-time nature of the user interface,
where changes to parameters used in the scripts affect the geometries,
virtually, in real-time. The Grasshopper program presented in this paper
shows how several input parameters and geometries can be combined to
form a useful and customizable tool for use in lectures.

2 The program structure

As the goal is to create a program for modelling the intersection of two
surfaces of revolution, several inputs governing the geometry to perform
calculations on are needed. Defining the surfaces of revolution is the first
step and can be done in many ways. Setting the generatrix curves and
axes of rotation were chosen in this presented approach. As Grasshopper
is capable of manipulating geometry created in the Rhinoceros viewport,
the generatrix curves can be modelled directly within Rhinoceros and sub-
sequently modified using the Grasshopper program. With this knowledge,
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(a) First generatrix (b) Second generatrix  (c) Surfaces of revolu-
curve curve tion

Fig. 1: User-defined generatrix curves and their respective surfaces of
revolution

both generatrix curves can be modelled without the relative position of
the two surfaces of revolution being taken into consideration yet, and their
positioning can be carried out later on using the Grasshopper script. As
the geometry can be altered later on in the Grasshopper program, explic-
itly defining the axes of revolution becomes unnecessary. To be able to
gauge the scale of both surfaces of revolution in relation to each other, a
reference axis of rotation becomes beneficial. Both generatrix curves may
be modelled in respect to the same arbitrary axis of rotation, that can
be defined, for example, as one of the world axes, thus not requiring any
user input. In this approach, the world axis z was chosen for this exact
function and both generatrix curves are to be modelled with respect to
it. An example of two generatrix curves modelled in the Rhinoceros 3D
viewport in the zz plane is shown in Figure 1.

These two generatrix curves are now the only two user input geome-
tries required for defining the base surfaces used in the program. All of
the other steps can now take place in the Grasshopper program, as the
sequence of geometry modifications and other operations are going to be
the same for all input geometries one were to define.

2.1 Grasshopper

Next step is to generate and position the surfaces of revolution governed by
the two user-defined generatrix curves and the arbitrarily defined axes of
rotation. This can be done in Grasshopper using any of the implemented
programming language libraries or using the node-based system directly.
In any case — a command for generating a surface of revolution is called
and two input parameters are fed into it — a generatrix curve and an axis
of rotation. Calling the command twice, once for each generatrix curve,
supplying the world axis z as the axis of rotation both times, two surfaces
of revolution are generated, as seen in Figure lc.



Intersections of surfaces of revolution: Interactive modelling 99

U

0 -19457 D
(EEmSRm <o )
_ 0-15476 >

P ——— N

z
K]
§
2
=
=
<
S
E
S
S
3
o
o
$
g
2
t
5
a

Fig. 2: Grasshopper user interface for the presented program

(a) Rotation transforma- (b) Translation applied to the second
tions applied to the second surface
surface

Fig. 3: Transformations applied to surfaces
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Fig. 4: Intersection curves of the two surfaces of revolution

Moving along in the program, next the relative position of the two
surfaces of revolution should be defined. Transformations can be applied
to the Grasshopper-generated geometry using a general Transform com-
mand. This command takes a 4x4 transformation matrix as an input. In
order to set the relative position of the surfaces, one can remain station-
ary, and all of the desired transformations can be applied to the other, in
order to make later adjustments more user-friendly. For the purposes of
this paper, two rotations and one translation are going to be applied to
one of the surfaces, and those will be all the degrees of freedom the user
will have access to in order to define the relative position of the surfaces of
revolution. The transformations will be applied to the red surface, gener-
ated from the second generatrix curve. First comes a rotation around the
world y axis. Second is a rotation around the world z axis. The combined
effect of these two affine transformations can be seen in Figure 3a.

The last transformation to apply is the translation. It was chosen to
take place along the world x axis. Its effect can be seen in Figure 3b.

With all three of the chosen transformations applied, the last step
is to calculate and display the surface intersection curves. Calling the
surface intersection command calculates and returns all intersection curves
present, also handling edge cases. The resultant display can be seen in
Figure 4. In Listing 1 the code for the presented program is shown. The
program was coded in the Grasshopper Python 3 module and uses the
rhinoscriptsyntax library for geometry generation.
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Listing 1: Python code of the program

777 Grasshopper - Surfaces-of - Revolution-Intersection-Script”””
” Author: - Jakub - Kubat”
”Version:-1.17

import rhinoscriptsyntax as rs
import math
Geol = [] # output list for the 1st surface of

revolution and related geometries

Geo2 = [] # output list for the 2nd surface of

revolution and related geometries

Intsc = [] # output list for the intersection curves

At FUNCTIONS Aottt

def

def

def

Tx(x): # transformation matriz for translation
along global =z
tx =] 0, 0, x]
i 01 0]
1
0

L 1]

(1,
[0, 1
[0, o,
[0, o,
return tx

Rx(a): # transformation matriz for rotation
around global =z
¢ = math.cos(math.radians(a))
s = math.sin (math.radians(a))
R = [[1 ) 07 0’ 0] ’
c, =8, O]y
07 s7 C’ 0]’
07 07 1}]

Ry(a): # transformation matriz for rotation

around global y

¢ = math. cos(math.radians(a))

s = math.sin (math.radians(a))

R = [[c,
[0, 1
[s, O
[0, 0

return R

=}
|
w
=}

w#HAH SCRIPT #7%#

surfl = rs.AddRevSrf(rs.coercecurve(Crvl) ,((0,0,0),(0,0,1)))
# creation of 1st surface of revolution

surf2 = rs.AddRevSrf(rs.coercecurve(Crv2),((0,0,0),(0,0,1)))
# creation of 2nd surface of revolution

rs. TransformObject (surf2 ,Rx( AngleVertical)) # rotation of

2nd surface of revolution around global z (angle from
vertical plane)
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44 | rs.TransformObject (surf2 ,Ry( AngleProfile)) # rotation of
2nd surface of revolution around global y (angle from
profile plane)

45 | rs.TransformObject (surf2 ,Tx(Dist)) # translation
of 2nd surface of revolution along global z (distance
between respective initial origins in the XY plane)

46

47 | if Boollntsc = True: # INTERSECTION CALCULATIONS

48 Intersection = rs.IntersectBreps(rs.coercebrep(surfl), rs.
coercebrep (surf2)) # intersection curves

49

50 if Intersection: # appending intersection results to
the proper output list

51 for i in range(len(Intersection)):

52 Intsc.append(rs.coercecurve(Intersection[i]))

53

54 | Geol.append(surfl) # appending 1st surface of revolution to
the proper output list
55 | Geo2.append (surf2) # appending 2nd surface of revolution to
the proper output list

3 Conclusion

An approach to creating an interactive program in the Rhinoceros 3D Grasshopper
environment was presented. Simple steps taken during the development of a teaching
program were summarized, and the underlying decisions were discussed.

The Grasshopper environment provides ways to gather user input and use it di-
rectly as variable parameters in the programs created within. Some of the ways to
input numerical variables in real time include widget-like nodes that remain visible
when viewing the main Rhinoceros 3D viewport, allowing for parameter modifications
to translate into visual changes directly, providing intuitive feedback and allowing for
creative decisions to take place. This is the very reason Rhinoceros and Grasshop-
per were chosen to create this interactive intersection generator for use in lectures,
because modifications to the generated geometry can be made immediately and can
spark discussions between the students and the professor.
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Note on refinement curve length
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Abstract. A refinement curveis generated by repeatedly a pplying a
refinement rule to a coarse control p olygon. In our talk, we discuss the
computation of the length of a refinement curve with a fixed number of
iterations using Chaikin’s algorithm. We also present several practical
examples where the constant length of the refinement c urve n eeds to
be preserved.

Keywords: Subivision, curve length, refinement.

1 Introduction

Subdivision curves are generated by iterative refinement of an input poly-
line [3, 5]. The limited amount of sources are concerned with the length
of such curves [2], although the study of the length of curves in general is
still an attractive topic [4]. In this work, we investigate the computation
of the length of refinement curves obtained by Chaikin’s scheme [1] after
a fixed number of iterations. We also present computational details and
experimental results for the construction of corner roundings, where the
constant length of the refinement curve must be preserved.

2 Chaikin’s Scheme

Let a polyline after k iterations be given by points V¥, V¥, ... VF € R2.
Chaikin’s refinement produces a polyline after k+ 1 iterations with points
Vet vERL L VETL € R?, defined by

3 1 1 3
s vk vk Vk+1 vk vk
2i _ii"’_ZiJrl» 21‘+1_Zi+1i+1'

7k 7k
.‘" i+1 .‘" i+1
k+1 k+1
V2i+ V2(i+1)
k+ k+1
Vai V2(i+1)+1
7k vk
. ‘, k u.. i+2 ..o ‘:A o . i+2

Fig. 1: Refinement step of Chaikin’s scheme.
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For a polyline P with three control points V{, V%, V3, the control
points of the refined polyline after k iterations can be expressed in matrix
form using the information from the previous iteration as

v 310 0 0o o\ [ V!
1% 1 300 00 vt
V) 0310 0 0 vyt
vE | _1lo 1 3 0 0 of]| vk
) 4 .
122’1 0000 -+ 31 Vil
Vi, 0000 - 13/ \yil

vk — ghyk-1 gk ¢ R x5V 42)

By recursively expanding, we obtain
k
i=1
We can express the i-th row of the matrix Hle S’ as

1

47 a; (4k — a; — bz) b1 s

where
(2F —i+2)(2F —i+1) b_(i—l)(i—Q)
2 AR T

Subsequently, we can compute the coordinates of the point V}* as the
affine combination of input control points VP, V{? and V7 as

a; =

k

k_ai 0 4—ai—bi 0 bz 0
2.1 Computation of Polyline Length
To compute the length £ of the polyline Vi, ..., VQIZ 4 after k iterations of
Chaikin’s refinement of the polyline P, we need to sum the lengths of the
vectors given by two consecutive points V¥, Vi’j_l, i=0,..2% i e.

2k

=Y "|VE = VEL

=0
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To express the length ¢ using only the input control points V;', V;? and
VY, we use the matrix Hle S%. Denote by B* and T* the submatrices of
Hle S® obtained by removing the first and last row, respectively. Then
the vectors V;* | — V¥ may be expressed as

k k
Vl — ‘/0 VOO ‘/00 VOO
: =B (V2| -1 V) = (B —Th) | V)
0 0 0
Vzliwrl - VQIZ V2 V2 V2

Zk, i=0,...,2F may be computed as

Since the vector ViE | — V;

—2F 4+ 2k — 2 i

k k

VvH—l - V; = 4k ‘/EJO + Ak Vvl0 + EVQ()a

and if we denote the coordinates of the input coordinates V; = (z;, yi) T,
7 =0,1,2, we can compute the length as

2’(}
1
= T E V{izo + Birr + viz2)? + (cwyo + Bivs + Yive)?,
i=0

where
a; =244 B;=2F—2, =~ =i

3 Corner Rounding with Fixed Length
Consider an input polyline given by points V),V and V3 and fix the
starting point of the rounding S on the segment VPV, Let Wy = V
and let Wy = 25 — W7. Our task is to choose a point Ws, so the refined
curve after fixed number of iterations k with control points Wy, Wy, Wy
has fixed length ¢.

All feasible points Wy = (z,y) T must satisfy the equation g(z,y) = 0,
where

2k
1
g(z,y) = 3 Z V(imo + Bizy +7iw)2 + (euyo + Biys + 7iy)? — L.
i=0

To determine the position of the point W5, we need to find the intersection
of the ray V V3 with the curve g(z,y) = 0, see Fig. 2.

Computationally, it is more efficient to transform the input data into
a coordinate system (0’ e}, e}), where

Ol — ‘/10
VO _ VO
e/ — 2 1 = (x’,y’)T
2w =V

ell = (yla 7x,)T'
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k=9

Fig. 2: Determination of the point W5 on the curve g(z,y) = 0 for k = 9.

In this coordinate system, the = coordinate of the point W5 vanishes. With
xz = 0, we may plug this value into the function g(z,y) and we obtain the
y coordinate as a root of the function

2k

1
90(y) = 9(0,9) = 7 > V(imo + Bizn)® + (asyo + Biyn +7iw)? — L.
=0

For the computation of the root we used the bisection method on the
interval [0, 00). After the calculations, we transform the data back to the
standard coordinate system (O, e, e2).

4 Examples

For illustration, consider the following cases. In the first example, we
set the input polyline to V) = (400,200)7, V{ = (100,100)"7, V¥ =
(100,400) . The number of iterations is set to k = 9, and we fix the length
of the resulting curve to £ = 300. The starting point of the rounding S
is defined to be on the segment VPV, i. e. S = (1 — )V + tV, where
t €10,1]. As we see in Fig. 3, various placements of the starting point S
produce a correct rounding for the input polyline and for the increasing
values of the parameter ¢, the end point of the rounding approaches the
last input point V. As a consequence, for large values of ¢, the rounding
may exceed the input polyline.
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t=0.2 t=0.45 t=0.7
VP =w @ﬁ VP =w
. Wy

,\ \%O \V:OO \%0

. WO

Wo
V[/;? |
Vs vy iz

Wa
Wa

Fig. 3: Corner rounding with fixed length ¢ = 300 with various placements
of the starting point S.

In the second example, the input polyline is given by V¥ = (200,100) ",
VY = (400,300) T, V¥ = (100,600) . Again, we set the number of intera-
tions to k = 9, as seen in Fig. 4. However, now we fix the starting point
as the midpoint S = 0.5V + 0.5V and inspect various lengths of the
refined curve. Similarly as in the previous example, the endpoint of the
rounding approaches the last input point with increasing length and may
overshoot it for sufficiently large lengths.

¢ =200 £ =300 =400
Ve =Wo Vo =Wo Ve =W,
VO =Wy VO =W, VO =W
Wo
vy W v A

Fig. 4: Corner rounding with various lengths.
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5 Conclusion

We have presented a method for computing the length of the refinement
curve obtained by k iterations of Chaikin’s rule. A formula was provided
that avoids multiplication of large matrices. Furthermore, we demon-
strated how to construct a refinement curve of fixed length by imposing
additional constraints. Future work includes formalizing the constraints
to ensure that the curve does not exceed the input control polygon, gen-
eralizing the method to control polygons with an arbitrary number of
points, and exploring different constraints and subdivision rules to gener-
ate refinement curves of fixed length.

Acknowledgements

This work was supported by "Kultirna a edukatnd grantova agentura
Ministerstva Skolstva, vyskumu, vyvoja a mladeze Slovenskej republiky”
under the contract No. 038UK-4,/2024.

References

[1] G. M. Chaikin: An algorithm for high-speed curve generation, Com-
puter graphics and image processing. Elsevier, 1974

[2] V. Herndndez-Mederos, J. C. Estrada-Sarlabous, S. R. Morales, 1.
Ivrissimtzis: Curve subdivision with arc-length control, Computing
86, p. 151-169, 2009

[3] N. Dyn, D. Levin: Subdivision schemes in geometric modelling, Acta
Numerica 11, p. 73-144, 2002

[4] K. Charytanowicz, W. Cie$lak, W. Mozgawa: A new formula for
the length of a closed curve, Beitrige zur Algebra und Geometrie /
Contributions to Algebra and Geometry, p. 465-472, 2020

[5] X. Yang: Point-normal subdivision curves and surfaces, Computer
Aided Geometric Design. Elsevier, 2023



11t Slovak-Czech Conference on Geometry and Graphics 2025

109

A notelet to gyroid: Straight lines invited

Roman Budjaé, Rastislav Duri§, Iveta Markechova, Hana Stipalova

University of Zilina, Research Centre, Univerzitnd 8215/1, 010 26 Zilina, Slovak Republic
email: roman.budjac@uniza.sk

Institute of Applied Informatics, Automation and Mechatronics, Faculty of Material Sciences and

1

Elementary school, SNP 5, 919 43 Cifer, Slovak Republic
email: stupalova@zscifer.sk

Abstract. A triply periodic surface gyroid

and 3D printing technology are, roughly
speaking,  contemporaries.  Technology
experts share an opinion on impossibility to
produce physical model of gyroid before 3D
printing era. An commonly known aesthetical
attractiveness as well as wide technical
applicabilities spectrum of gyroid are
enriched here by our original view on mutual
position of straight lines and gyroid.

Appendices offer some alphabet-like items on gyroid and a many different
experiences with it. E. g. involving gyroid-phenomenon to elementary course
context of mathematics at technical university is educational offer. Also
challenges to meditate on correlation input-output algorithmical hierarchy if
starting point is verbal prompt, for ChatGPT, to sketch of an abandoned large
3D printed gyroid model in the university yard and output looks like ... is it

gyroid? See inside a contribution. And others.

Keywords: gyroid, surface, 3D print, straight line, graphic calculator, ChatGPT,
sustainability, metamaterial, Gaussian bell-curve

Introduction

Technology in Trnava, STU in Bratislava, Jana Bottu 2781/25, 917 24 Trnava, Slovak Republic
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The gyroid is a surface. Triply periodic one. It is aesthetically magical on the
one hand. It is superstar in many art galleries. But it has also various uses from

point of view of mathematics and/or physics. Gyroid can serve as

e an geometrical icon of “open” structures,
e representant of lightweight materials,

e inspiration for metamaterials creating — thanks to existence of its
mathematical representation via implicit equation of three variables in 3D

orthogonal coordinate system,
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o useful and beautiful infill in 3D printing; there are some “odes on gyroid”,
e. g. in [1], as follows, quoted: “gyroid is hands down the best. as a plus, it
looks good on timelapses.”, “I do use gyroid on all translucent prints though.
Can’t beat that cool infill pattern showing through.”, “Gyroid is def the
strongest, [ pretty much use it in 90% of my prints.*

e motivation for architectonic structures [2],

e alternative for al dente-pasta-like in nuclear stars simulations [3, 4, 5, 6],
etc.

In this paper we offer simple as well as original view on a gyroid in
combination with parallel straight lines placed to series of gyroidal holes. We
combine representation of a scene via a) digital simulation, b) photo of physical
model, ¢) mathematical equations.

There is plenty of rational attitudes to gyroid. They agree with Gauss-bell
curve distribution. There are gyroid-bestoids fans, also gyroid-fans — the
enemies of lovers of straight lines.

2 Method

An equation of gyroid in implicit form, in 3D Cartesian coordinate system
(0; x, y, z), looks like sinx cosy + siny cosz+ sinz cosx = 0.

By observing the physical model of the gyroid and straight lines/wooden
skewers, Fig. 1, and with the help of digital visualization of the scene [7], Fig.
2, we came to the following conclusions:

A) the parallel straight lines of one set are skewed (SK: mimobezné) with
ones in next two sets of straight lines; lines of one set are perpendicular to the
cube wall.

B) Four sets of parallel straight lines in one set: lines inside one set are of
body diagonal directions, correspondingly. For positive real number c, these are
yellow (c, ¢, ¢), red (- ¢, ¢, ¢), green (¢, — ¢, ¢) and blue (c, ¢, — ¢) direction
vectors, Fig. 3.

Fig. 1: Gyroid and straight lines/wooden skewers. Sticks of the same direction,
at the right figure, are for the practical simplicity pulled together with a rubber
band.
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Fig. 2: Digital visualization of the scene, Desmos; gyroid alone (left) an gyroid
with set of parallel lines (right).

l el ".l 1 S
> s N P P
et e | SR e | S L
r=(-ccc) g=(,~-c0) b=(c,c,—c¢)

Fig. 3: Direction vectors for ¢ = 1; yellow one, y = (c, ¢, ¢), is not figured here.

3 Discussion

Although not very deep considerations about the gyroid and lines, nevertheless
they have led to the generation of a rich palette of questions, opportunities,
challenges, e. g.:

o multilevel pedestrian communications inside gyroid-shaped-structures.

o cylindrical helixes with appropriate radius instead of straight lines, with
constant/nonconstant thread height,

e instead of straight lines, take e.g. straight cylindrical surfaces (with a
defining line, a circle, etc., but also with some non-closed defining line) or
some suitable translational surfaces and let them pass through a series of gyroid
holes,

e instead of lines/surfaces, take a string and explore the properties of
threading it through the holes of a gyroid,

o field of acoustics: sound amplification by gyroid, diffraction, interference,

o flow of media (liquid, air/gas, light) through a gyroid; could it be used as
a splitter? That is, (for example) light coming from somewhere would be split
into several directions when it exits,
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e intersection of a gyroid with spherical/other — non-planar surfaces (with
a common center (at a gyroid point or in a hole), different R or with mutually
displaced centers and the same R).

4 Conclusion

Suppose we have gyroidal structure placed in cube. We present here figures on
digital simulation, photos and info on skewness (in Slovak: mimobeznost’) of
the straight lines, where they go through the series of holes, perpendicularly on
the cube walls. Similarly, scene with straight lines of the some direction as
a body diagonals have. In this second case lines have an intersection.
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Appendices
Appendix B Beauty. Gyroid — not only Bestoid. Is is also Beautoid, Fig. 4.

Fig. 4: a) Gyroid — Beautoid. Gyroid and its shadows in sunshine,
b) Gyroid geometry offers a multitude of possibilities for tactile sensations.

Appendix C  ChatGPT. Challenges to meditate on correlation input-output
algorithmical hierarchy if starting point is verbal prompt, for ChatGPT, to
sketch of an abandoned large 3D printed gyroid model in the university yard
and output looks like ... see left figure Sa. Is this gyroid? Let the loneliness of
the gyroid deepen, and time leaves a strong mark on its appearance, Fig. 5b.
When we put ChatGPT Abraham's-like-prompt on about "at least one man"
with a sense of responsibility, the Al's graphical response was enhanced with
a water jug and a wooden sign with the warning "Do Not Remove", Fig. Sc.

Fig. 5: a) An abandoned large 3D printed gyroid, b) time leaves a strong mark
on its appearance, ¢) added water jug and a wooden sign with the warning "Do
Not Remove" . ChatGPT Images, Aug 8, 2025.
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Comparation of i) ChatGPT-created gyroid, ii) one generated via graphical
calculator and finally iii) real 3D printed object (Fig. 6) takes together these
findings, these compatibilities vs. incompatibilities:

B e

Fig. 6: a) Is the first, Al-generated object gyroid? Compare it with b) output
from graphical calculator and with c¢) real 3D printed gyroid on photo.

Object on a) is open structure, it has triply periodicity — like the gyroid. Some
kind of twining plant is given but it is not an ivy of common shape.
Discrepancies are in incorrect position of holes in two neighbour cube faces,
long and short paths with no-zero thickness, in 3D print, absent; pronounced,
distinct vertices and edges are not present in real gyroid; finally, the first object
looks more like solid with holes then like a surface.

Appendix GG  Gulliver gyroid. October 3, 2025 is a birthday of Gulliver
gyroid, fig 7. Our colleague DM, with the help of RD from authors team,
finished making a beautiful, relatively large gyroid, with an edge length of 30
cm. Gulliver consists of five layers. Time of 3D printing of one layer was about
the whole 24 hours. So far, approximately one hundred people — some of our
students in Trnava and Dubnica nad Vahom, colleagues and coauthor IM’s
family members have been able to meet the Gulliver gyroid.

Fig. 7: The Gulliver gyroid in various situations

Appendix E Education. One of central tips for involving gyroid-phenomenon
to elementary course context of mathematics at a technical university is
visualisation of gyroid in some of common graphical web calculators [7]. It is
a surface, but it is not a graph of a function of several variables. In this way, the
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gyroid can reinforce the knowledge of the difference between these two types
of graphs. Similarly, HS and IM from authors team found, that handling with
planar sections of gyroid, for variability of plane orientation, Fig. 8, can serve
as the next way of useful training of spatial imagination.

Fig. 8: Three pairs of various planes orientations and positions, and their
intersections with gyroid, correspondingly.

Below, on Fig. 9, are four student’s quick sketches of gyroid, within a few
minutes. Figs are significantly different, but all have in themselves something
“gyroidal”.

Fig. 9: Students’ sketches of gyroid, Secondary Industrial School of Transport
in Trnava, June 2025
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Here are alternatives for involving gyroid-phenomenon into elementary course
context of mathematics at technical university/secondary school:

o trig functions, e curve/line — surface — solid/massiv, e functions of one
variable or more variables, ® function vs. non-function, e explicit or implicit or
parametric way of object description, ® orthogonal projections of something,

e mutual position of ..., e transformations of identity/similarity, ® linear or
nonlinear transformations,  handling with variables/functions, etc.

Appendix P Powder. There are many types of 3D printing, e. g. from
filament, from powder, where special safety attention is required, etc. Flexible
powder-based gyroid (Fig. 10) was ensured thanks to coauthor RB.

Fig. 10: Flexible powder-based, 3D printed gyroid.

Appendix S Spontaneity. It is impossible not to add a spontaneous cry of
amazement at the gyroid of my colleague-friend MM, 2025-07-29: , His eyes!
Jumping nut! I thought it would be easier! :D” (In Slovak: “Jeho oci! Maticka
skakava! Myslela som si, ze to bude daco jednoduchsie! :D*)

Appendix T Trypophobia. It would probably be strange if there was no other
phenomenon, next view of the gyroid than fascination and respect. A Gaussian
bell curve applies. As IM” colleague PS informed, there is a trypophobia in
nature. Maybe, it can be taken as undesirable, although statistically natural,
counterbalance to aesthetic and practical enthusiasm for gyroid.
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On Karteszi type triangle geometry by geometric
(Grassmann-Clifford) algebra
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Abstract. To memory of Ferenc Karteszi I follow his didactical credo. Draw
triangles outward on sides of a given triangle ABC in the Euclidean plane, say
ABC,BCA,CAB, and consider the segments AA,BB,CC. Special starting
conditions guarantee that the above segments intersect each other in a point K,
called Karteszi points to his honour. The later (~1850) strong and very useful
machinery (by Grassmann and Clifford, in analogy of vector cross product) serves
us a unified method and further interesting discussions.

Keywords: Triangle geometry, projective geometric (Grassmann-Clifford)
algebra, absolute geometry by Janos Bolyai, problem solving by geometric
transformation

F. KARTESZI
retired professor of the L. E6tvos University,
member of the
Editorial Board of the Annales Univ. Sci. Budapest, Sec. Math.
died on May 9, 1989.
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Let us recall a well-known school task: I the (Euclidean E?) plane of a triangle
ABC we draw regular triangles outward on sides of ABC, say ABC,BCA, CAB,
respectively. Prove that the segments AA, BB, CC intersect each other in a point
K, that is the isogonal point of ABC and the distance sum AK + BK + CK is
minimal for K among all points of the plane (Fig. 1).

Fig. 1: K is the isogonal (or Fermat-Torricelli) point of triangle ABC
with minimal distance sum KA + KB + KC = AA = BB = CC.

Professor Karteszi noticed that instead of regular triangles we can draw isosceles
ones with all equal base angles, and the above K (called Karteszi point) exists
also in the Bolyai—Lobachevsky hyperbolic plane H? (in the sphere S? as well,
(see also Kalman, 1989 and Sect. 2), the orthocentre, barycentre are specific
cases.

This problem leads also to a more general Yaglom triangle configuration
and to an analogous extremal point K, where the distance sum
aKA4 + BKB + yKC is minimal with given positive real numbers a, 8, y (think of
a=4,p=3,y=2,Figs. 2, 3.).

Moreover, as a new result of our previous paper, an extension onto "absolute
plane" (S?%, E2, H2, Minkowski plane M2, Galilei (or isotropic) plane G?) can be
formulated and solved by three reflections theorem (see e.g. Bachman [1],
Molnar, 1978, [2], and Weiss, 2018, [13]), and geometric (Grassmann—Clifford
type) algebra (Perwass et al., 2004 and Sect. 3, [12]).
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Fig. 2: Segmentation (then Fig. 3: The construction of the
linearization) of aK4 + BKB + yKC |extremal point K = AANBB N CC
(say a =4, B =3, y=2) by rotatory |to Yaglom's problem in Fig. 2.
similarities @, B, ¥ about 4, B, C, |Here a:B:y~4:3:2 (satisfy the
with angles @, B, ¥, respectively triangle inequalities!), and adA =
(sketch). BBB = yCC.

Open problems arise as well. By this we want to follow F. Karteszi's
didactical credo (see also his wonderful book Karteszi 1976, [5] of great
international success):

Start with a natural, elementary, visually well understandable task! Then follow
the manipulations, tools, new mathematical concepts, the technical machinery;
then the solution, occasional theory, further applications, extensions ... .

In the presentation and future papers the projective geometric (Grassmann-
Clifford type) algebra leads us to the “most general” extension of Karteszi point
K to triangle ABC with outward drawn triangles ABC,BCA,CAB and K = AA N
BBnCC.
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Theorem. For the existence of Karteszi point it holds the criterion (if and only
if; now + means the multiplication point):

sinag /sin(a + ag) * sin Bz / sin(B + Bz) * sin yz/ sin(y + vz) =
sin oz / sin(a + ag) * sin Bz / sin(B + Bz) * sin y;/ sin(y + vz)

Here e.g. aj denotes the outward angle at vertex A on the side b, and — for
simplicity — every angle argument falls between 0 and n. Thus K will be in the
interior of triangle ABC, as most important situation. (This is a transcendent
equation, in general!)

In references [6], [11] we recall Ferenc Karteszi as a teacher and scientist
personality.
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Abstract. The construction and analysis of envelope surfaces are of
great interest from both theoretical and practical perspectives. Certain
special cases, such as the envelopes of (truncated) cones undergoing
Euclidean motion, are particularly relevant for applications in CNC
manufacturing. We describe 1-parameter systems of surfaces as curves
in the homogeneous spaces of appropriate Lie groups. Using the Lie
group formalism, we rigorously express the inherent symmetry and
linearity in the computation of the envelope.

Keywords: envelope surface, characteristic curve, Lie group, homoge-
neous space, tangent mapping.

1 Introduction

The topic of this paper is the connection between envelope surfaces and
Lie groups. Lie groups and their homogeneous spaces are two of the most
widely used mathematical concepts, see e.g. [1, 2]. They are useful for
expressing symmetries. Envelope surfaces have been well studied for both
their theoretical aspects and their applications, with some special cases
being studied in geometric modelling, including canal surfaces [3] and
developable surfaces [4]. The envelopes of moving cones are especially
useful for applications in CNC manufacturing.

This paper ties the two concepts together. We apply a Lie group for-
malism to the computation of envelopes, in an attempt to exploit the
symmetries hidden in our system and simplify the computation. The sec-
tion 2 sums up the theory necessary for our approach. Then, in section 3
we showcase some novel examples, that provide insight into the computa-
tion method. Finally, we conclude the paper.

2 Theory

Let us briefly summarize the necessary concepts from Lie theory and en-
velope computation, before tying them together. The resulting compu-
tational methods will follow closely the theory developed in [5], thus the
proofs will be omitted from here and can be found in the aforementioned
paper.

For the sake of this paper, let us consider an implicitly defined object
F embedded in R™ with its implicit equation f. That is

F={xeR"|f(x)=0}.
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We will refer to I as an elementary object. Typically, we will consider F'
to be a surface in R? (e. g. a plane F = {[z,y,2] € R® | 2 = 0}) or a
curve in R? (e. g. a parabola F = {[z,y] € R? | 22 —y + 1 = 0}).

A real smooth manifold G of dimension d with a binary operation o is
called a Lie group, if

e (G,0) is a group,

e the mappings G x G — G: (z,y) w2zoyand G - G: 2 — o~ ! are

smooth.

The tangent space to G at its unit element TG is called the associated
Lie algebra g. See [1, 2] for more thorough introduction.

Example: As the most important example, let us consider the group of
direct isometries of a Euclidean space, also referred to as special Fuclidean
group. In R? the group is denoted SE(2) and has dimension 3, in R3 the
group is denoted SE(3) and has dimension 6.

All direct isometries can be expressed as Ax+ b, where A is a rotation
matrix satisfying AAT = I and det A = 1, while b is a translation vector.
The group can be embedded into the group of (n + 1) x (n + 1) matrices

via "
b
(4,b) = (0...0 1) !
with isometry mapping

()~ (2% V) ()

In our case, we require the group G to act smoothly on R™. This
allows us to define a 1-parametric transformation g; C G for ¢ in some
interval I, which can be applied to our elementary object F', thus defining
a l-parametric system

F=A{q(F)[tel}

Note, that the elementary object F' does not have to lie in F. Also,
observe that each object F; = ¢g;(F') in this system can be also defined by
implicitly as

Fy = {x € R" | fi(x) = 0}, where fi(x) = f(g; ' (x)).

Now, we would like to compute the envelope of our system F;. Using
the characterization by [6, 7], we may define characteristic sets as

0
Xe = {x € B | fy(x) =07 2 () = 0},
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The envelope x of our system will then by the union of these characteristic

sets, i. e.
X = U Xt-
tel

Finally, let us define the linear space of functions Q as follows
Q = span{g:R" — R | g(x) = f(97"(x)),9 € G}

Note, that () contains all implicit equations f; of the system F}, as well as
f = foid. For the sake of notation, we also define a map ¢: G — @, that

to each element g € G assigns the corresponding function ¢(g) = fog~*.

Theorem: Let F be an elementary object in R™ with implicit equation f
and G a Lie group containing 1-parameter system g; for ¢ in some interval
I. Then there exists a preimage set Y¢ such that

Xt = g¢(Xe)-

Moreover, for any to € I, there exists y;, € g such that

Xto = {X eER” ‘ f(X) =0A did¢(’7to)(x) = 0}7

where dig¢: g — @ is a tangent mapping at identity element of our Lie
group G.

The theorem for n = 3 is just a proposition 11 from [5]. Since the
proof in the paper does not depend on dimension, it also applies to this
more general case.

2.1 Finding the envelope

The computation method is as follows. We are given an elementary ob-
ject, defined by its implicit equation f(x) = 0, and the corresponding
transformation ¢g; C G which is part of a suitable Lie group.

Now, we want to compute the preimage sets ;. For this, we need not
only the elementary object f(x) = 0, but also the equation diq¢(7yz,)(x) =
0. To make use of the linearity of tangent mapping, we will need to
evaluate it on the basis of Lie algebra g associated to Lie group G.

Here we need the transformations g¢(t) that generate our Lie group
G. For example, in standard Fuclidean group these will be the rotations
and translations. Differentiating g(¢) with respect to ¢t will yield a basis
element 7 of the associated Lie algebra g. Differentiating ¢(g(¢)) with
respect to ¢ will yield the desired element diq¢p(y), as this is the definition
of tangent mapping.

To obtain the element v;,, we will use the proof of proposition 11 in
[5]. Hence, we first define h(t) := gt_olgt and set v, = h'(tp). Once we
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express 7, in our basis, we are able to use the computed coefficients to
write out the desired equation.

The examples in following section will hopefully make the method
more clear.

3 Examples

Let us now illustrate the procedure on couple of examples. We will proceed
with the case of moving parabola in R?, then move on to example in R3.

3.1 Moving parabola
Let us consider a parabola given by

22 —y+1=0.

This will be our elementary object, with f(z,y) = 22> —y+ 1. Let us also
consider an Euclidean motion g; parametrized by ¢

—2t4¢2 —242t 42
220482 221447
— 2-2¢ —2t+t _ 43
gt oot 2otz Ut
0 1

Applying this motion to our parabola will yield a new parabola for
each t. The implicit equations of our system can be computed as f; =
#(g¢) = f og;*. We obtain

1
(t2 — 2t +2)*
— 5thy 4+ 11t* — 4t32? — 43xy — 14830 — 483y — 1483 + 4222
+ 128%zy + 1482 + 4t%y° 4 10t%y + 12t* — Sty — Stx — Sty?
— Aty — 8t + 4o + 4y* + 4).

fi= (8 — 17 — 2% + 4Pz + 4Py — 3¢5 + t'2? + 4t'x

The resulting motion can be seen in figure 3.1.

Now we want to compute the envelope of our system F = {[z,y] € R? |
fi(z,y) = 0}. As seen from the main theorem, we do not actually need
the equations f;, we only need f and the mysterious equation digp(7:) to
compute the preimage sets. As discussed above, diq¢ is a linear map from
g to Q. As discussed, we first need to compute the images of generators
of g and then express v with respect to said generators.

In our case the Lie algebra g is se(2). Its dimension is 3 just like its
corresponding Lie group, and it is generated by

0 -1 0 0 0 1 0 0 O
Vr = 1 0 0 y Yt = 0 00 y Tty = 0 01
0 0 0 0 0 O 0 0 O
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10

-10 -5 0 5 10

Fig. 1: Motion of parabola for ¢t € (—2,2).

The first basis element is the derivative of rotation, the other two corre-
spond to translations in R?, see [2] for details.

To compute the images of these elements, we need to obtain and then
differentiate the equation of parabola undergoing the specific motion. In
the case of rotation, we pick

cost —sint 0
re = | sint cost 0],
0 0 1

compute the corresponding parabola as ¢(r;) and obtain
(z cos(t) + ysin(t))? 4 z sin(t) — y cos(t) + 1.

Since the unit element of SE(2) corresponds to t = 0, we differentiate the
function at 0 to obtain

diad(7r) = z(1 +y).
Analogical computation for translations yields

diad(Via) = —2,
did¢(7ty) =1

Now, we are only left to compute v, and its coefficients in the basis.
We obtain

7 2 +4t3—2t2—2t+2 —3t* + 613 — 3t2 4 2t
% TR Torr g 2_2tt2 W

292t 42
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Fig. 2: The envelope of system of parabolas with ¢t € (—1,1).

Thus, the resulting equation is

443 — 242 — 2t 4 2 —3t* + 6t — 312 42t

9 0.
T G e TR

x(14y)+

t2 — 2t +2

Solving this alongside f(z,y) = 2% —y+ 1 = 0 yields the preimage set y;.
Applying the transformation g; to the set then yields the characteristic
set and subsequently the envelope x, which will be a parametric curve,
parametrized by t. Its expression is too long to be included here, but you
can see it in figure 3.1.

The most important part of this computation is its great generality. If
we change the motion of our parabola, the only thing we have to recom-
pute are the coefficients of ; (as long as our motion lies in SE(2)). For
Yo = kv (£)vr + k2 (t) Yz + Kiy () vy we obtain the equation

by (D2 (1+ ) — 2y ()2 + kigy (£) = 0.

Expressing y = 22 + 1 from the definition of our elementary parabola, we
are in fact solving the cubic equation

2k, ()2 + (3K, (t) — 2k (1)) + Kyy(t) = 0

with parameter ¢. The resulting preimage set can then be described as a

curve
_ [Tt
Xt n )

where x; is the solution to the equation above and y; = 7 + 1.
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3.2 Moving plane in space

Let us consider a plane in space defined as {[z,y,2] € R® | z = 0}, i.e.
f(z,y,z) = z. Once again we will consider the Euclidean motion, this
time in space. The g; C SE(3) will be given by rotation about vector
(t + 2,3t — 3t + 2,4t + t + 1) by angle arccos((t?> — 1)/(t?> + 1)) and
translation by vector (—t2,1 + 3t, —2t3)T. The resulting 4 x 4 matrix is
too big to be included here.

Now similarly to precious case, we want to compute the preimage
sets. This time the Lie group SE(3) has dimension 6, so we obtain six
basis elements of se(3) — three correspond to rotations about axes xz,y, z
and three to translations in direction of these axes. The resulting basis is

-1

Yrx = Yry =

0
0 —
0 Vrz =
0

o O O
OO = O
O O O O

Yty = Ytz =

o
oo O~k OO0 oo
OO OO O OO
SO OO OO oo
ooooOOC’L
O OO ocooco o

O O OO
O O OO
O O OO
o o= O
OO OO
O O OO

The images of basis elements under diq¢ are

did(b('YTw) =Y, did¢('yry) = -, did¢(7rz) =0,
diad(Vez) =0,  diad(v1y) =0,  diad(7ez) = —1.

Since we are mapping a linear space of dimension 6, we would expect
the image to also have dimension 6. However, this is not the case here.
The zeros which we computed above correspond to the symmetries of
our elementary plane z = 0. Neither the rotation about z axis, nor the
translations in the direction of x and y axes, change the position of our
plane. Thus they do not affect the resulting envelope.

In general case we will get some coefficients a, b, ¢ (depending on t),
that will yield the second equation of the form

—ax —by —c=0,

which is the implicit equation of an arbitrary plane perpendicular to our
elementary plane. Thus the preimage curves will be lines in said plane.
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Fig. 3: The elementary plane (black) along with several planes produced
by equation digp(v;) = 0.

In the case of our motion g; we obtain the equation

1
(t2+1) (52 — t + 3)°

(=12 + 50t — 48t + 160t + 38t* + 4815 + 288t

—60t” +t® + (=10 + 40t — 40t> + 60t> — 30t1) X
+ (22 4 12t + 28t% + 20t*)Y) = 0.

Adding the equation z = 0 allows us to compute the preimage curve. The
parametrization of resulting line is straightforward, but too long to be
included here. The plane z = 0 along with the perpendicular planes used
for computation of characteristic lines can be seen in figure 3.2.

Applying g; to the preimage curves will yield the resulting envelope.
Since it is a union of lines undergoing FEuclidean motion, the envelope is
a ruled surface. It can be seen in figure 3.2.

4 Conclusion

We connected the theory of Lie groups to the description of envelope sur-
faces. Using the theory developed by [5], we were able to define a suitable
computation method in section 2, that exploits the inherent symmetry
and linearity in computation of characteristic sets.

In section 3 we applied this method to new examples. While the
computational concept is not brand new (see [5]), we were able to extend
its use beyond surfaces in R3.

In the future, we would like to apply the method to objects in other
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Fig.

4: Several instances of the moving plane (gray) along with their

envelope (red).

dimensions and extend the research into projective setup. This would be
the first steps in generalizing the method for an arbitrary setting.
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Abstract. In the text we demonstrate a geometry problem that is
closely related to the well-known Wallace-Simson theorem. This prob-
lem turns out to be quite difficult for some software tools incorporated
in the DGE software. The computation of a searched locus by the
software works well in our case, but the problem must be formulated
in a specific way.

In addition to the conclusions attained by DGE software, we present
computer-aided analytical solutions in the second half of paper. It is
shown that the use of non-degeneracy conditions before elimination
leads to a significant reduction of the computation time.

Keywords: GeoGebra, elimination, locus equation, Wallace-Simson
theorem.

1 Introduction

The paper serves as a demonstration of what can be discovered about a
problem through human-computer collaboration, thus easing the path to
a synthetic solution. It is a concrete example of the topic discussed in the
paper. The second goal was to show not only the capabilities of GeoGebra
tools, but also its current limitations. In this paper we present a way how
to construct a locus of point if a Boolean condition has to be satisfied,
which expresses a fact that two lines form an angle of a given magnitude
(we mean here the magnitude of a constructible angle).

Fig. 1: Determine the locus of P such that KN || LM.

As for the computer algebra software CoCoA [3], besides the general
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demonstration of the solution method, two points are emphasized. The
first has to do with the fact that currently a locus equation cannot be
factorized in CAS software without a human activity. The second point
shows the fact that when solving a problem using CAS, prescribing non-
degenerate conditions before eliminating variables has a significant impact
on the computation time, see also [1, 2].

2 Special cases of a problem

A special case of a problem is as follows:

Let ABCD be a quadrilateral and K, L, M, N feet of perpendiculars from
a point P to lines AB, BC,CD, DA. Determine the locus of the point P
such that KN is parallel to ML, see Fig. 1.

Using GeoGebra command LocusEquation(AreParallel(KN,LM),P) we
get a circle ¢; passing through the points A, C, see Fig.2.

Fig. 2: The locus of P is a circle ¢; through the points A, C.

Construction of the circle ¢y :
The circle ¢; must pass through the so called Miguel point (Q which is the

Fig. 3: The circle ¢; is passing through A, C' and the Miquel point Q.
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point, such that feet of perpendiculars from () to the sides of a quadrilat-
eral ABCD are collinear [4]. Now the classical construction of the locus
follows. The circle ¢ is determined by three points A, C and the Miquel
point @, see Fig. 3.

Another special case.

Let ABCD be a quadrilateral and K, L, M, N feet of perpendiculars from
a point P to lines AB, BC,CD,DA. Determine the locus of the point P
such that KN is perpendicular to ML, see Fig. 4.

Fig. 4: Determine the locus of the point P such that KN is perpendicular
to M L.

Using GeoGebra command LocusEquation(ArePerpendicular (KN, LM),P)
we surprisingly get again a circle ¢y through the points A, C including its
equation, see Fig. 5.

Fig. 5: The locus of the point P is a circle c¢s.
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How to construct the circle co classically?
Try the following heuristic: the circles ¢; and ¢ have common points

Fig. 6: Difference of angles is equal to ¢ — v &~ 90°.

A and C, what about comparing the angles which are subtended by the
common chord AC' at points of circles?

It looks like /APC = ¢ ~ 98.61° and /AQC = v = 8.61°, so their differ-
ence is equal to ¢ — v & 90°.

Fig. 7: ¢ =~ + 90°.

Classical construction of the circle ¢o, where we use the formula /APC =
@ =+ 90° for a point P in the circumference of cs, see Fig. 7.

3 General case

Let ABCD be a quadrilateral and K, L, M, N feet of perpendiculars from
a point P to lines AB, BC,CD,DA. Determine the locus of the point P
such that KN makes with ML a given angle w, see Fig. 8.
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Fig. 8: Determine the locus of P such that KN makes with M L a given
angle w.
Using GeoGebra command for w = 30°
LocusEquation(Angle (KN,LM)==30°,P)
gives no output.

Similarly to the previous case, we construct circle ¢g such that ¢ = v+430°
is perimeter angle above segment AC. The construction works as well!

Fig. 9: ¢ =~ + 30°.

Classical construction of the locus circle ¢ if KN makes with LM the
angle w, where

LAPC=p=7v+w (1)

is similar to the previous case. It turns out that the relation (1) is correct,
we proved it classically as well.
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4 Solving the problem by CAS

Why did GeoGebra not react in general case? Let’s try to answer that
question using CAS tools. We enter

Fig. 10: Assignment of the problem.

PK 1 AB< hy:=p—k=0,
L e BC & hy:=ulys+av —aly — vl =0,
PLJ_BC<:>h3 = (p—ll)(u—a)+(q—l2)v:0,
M e CD < hy :=umso + zmq +vw — wmg — uz —vmy = 0,
PM 1 CD < hs:=(p—m1)(w—1u)+ (g—mz2)(z—v) =0,
N € DA < hg :=wng — zn; = 0,
PN L DAs hy:=(p—n1)w+ (q—na)z =0,
Denote /(K N, LM) = w, then by the well-known formula

KN - LM

W= —="T"-=5-

|KN||LM|
we get
L(KN,LM) =w = hg = c*((n; — k)2 +n3)((m1 —11)? + (ma — I2)?) —
((n1 = k)(m1 = b)) +n2(m2 — 12))* =0,
where ¢ = cosw.
Elimination of k,11,l2,m1, M2, n1,ns in CoCoA yields
Use R::=Qla,u,v,w,z,k,1[1..2],m[1..2],n[1..2],p,q];
I:=Ideal(h1,h2,h3,h4,h5,h6,h7,h8);
Elim(k..n[2],I);
in 12 hours and 3 minutes the elimination ideal generated by one poly-
nomial with 4110 terms. After factorization we get the locus equation in

the form
22(av — vw — az +uz)? - M =0,
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with

M = (p* 4+ ¢*)*(E* — H) + 2(p* + p¢®)(uH — EF) + 2(p*q + ¢*)(vH —
EG) —|—pQ(F2 — (u2 + UQ)H) + 2pqFG + (]2(G2 — (u2 + vz)H),

where

E = auw — u? w—l—v w — aw? +uw +avz—2uvz—az +uz

F—au2w—u w + av 2w — ww — auw? —|—uw +v2w2—u2vz—v32—

auz? +u z +v2z2
G = v?ow + v3w — avw2 +au’z —ulz 4 av?z — uwv?z — avzz,

H = (w2 + 22)((u - w)? + (v — 2)2)((u — )2 +2).

We can assume that z(av — vw — az + uz) # 0 otherwise the quadrilateral
ABCD degenerates. Now the locus equation of the point P may be
written in the form

M =0.

To make the elimination process faster, we can apply this non-degeneracy
condition
z(av —vw —az +uz)t—1=0,

where t is a slack variable, before starting the calculation [5].

In 1 hour and 30 minutes we obtain the locus equation directly in the
form M = 0. Now the resulting polynomial M has 901 terms. M =0 is a
fourth-degree equation, but further factorization using a computer is not
possible.

The locus equation M = 0 may be written using CAS and human inter-
vention in the form of a product

(p® = 2ps1 + ¢° — 2qt1) - (p° — 2ps2 + ¢° — 2qt2) = 0,

where
s1 = (c(EF —uH) +vsH)/(2¢(E? — H)),
t1 = (c EG—vH)—usH)/(Qc(E2 H)),
sy = (c(EF —uH) —vsH)/(2¢(E? — H)),
to = (c(EG —vH) +usH)/(2¢(E? — H))

s =sinw, c=cosw and ¢ # 0, B> — H # 0.

We see that the locus M consists of two circles centered at [s1,t1] and
[s2,t2] passing through the points A and C. Note that along with the
prescribed angle w corresponding to cosw, the solution also includes the
angle m — w, which corresponds to — cosw. However, for both angles,
the lines KN and LM form the angle min(w, 7 — w). Thus, the solution
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contains two circles.

Example: For w =60° and a =4,u = 3,v =3,w =1 and z = 2 we have

p* +2p°¢% + ¢* + 6p® — 18p°q + 6pg® — 18¢* — 66p> + 96pg + 6¢° = 0.

Factorization in Maple by AFactor (over constructible reals) yields

P*+4*+(B3+5V3)p— (9+5V3)q) (p* +¢* + (3—5V3)p— (9—5v3)q) = 0,

see Fig. 11. We see that (2) represents two circles.

Fig. 11: Locus of P consists of two circles.
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Abstract. The study of properties of three-dimensional objects and
their mutual relationships often proceeds via planar projections, that is,
two-dimensional representations. For some students, however, such 2D
projections do not evoke an adequate mental model of the correspond-
ing 3D object. The growing accessibility of 3D printing technologies
introduces new opportunities for teaching three-dimensional geometry.
This paper reports research findings demonstrating substantial benefits
of employing 3D pens in the teaching of solid geometry. It also presents
new instructional materials for classroom work with a 3D pen.

Keywords: 3D pen, solid geometry, teaching, education.

1 Introduction

Psychological research indicates that tactile-kinesthetic learning meth-
ods are highly effective for students. Learning is particularly effective
when it includes observation, measurement, and hands-on manipulation
of physical objects, an approach known as embodied learning (Hall and
Nemirovsky [3], Shapiro [11]). Nevertheless, current classroom practice
often provides too few opportunities for such activities. The 3D pen not
only allows students to physically construct models of basic geometric
solids but also enables them to draw directly in space — lines, planes,
and cross-sections of solids — capabilities that were previously unavail-
able. Published findings suggest that using such tools improves students’
conceptual understanding and retention in spatial (solid) geometry.

2 Using 3D pen in Solid Geometry Education

3D printing technology is increasingly used across diverse educational do-
mains. In physics, students can create models of various mechanical de-
vices. In chemistry, 3D printing can be employed to produce molecular
models of chemical compounds. Medical students can also design models
of organs and cells. In geography classes, students can construct topo-
graphic maps and urban planning models. In engineering and technology,
students can prototype designs for technical apparatus, thereby enhancing
their capacity for visualization and experimentation. Volume [2] presents
a synthesis of findings from the International Symposium on 3D Printing
in Mathematics Education.



142 3D pen-supported geometry learning in secondary schools

2.1 The 3D Pen as an Educational Tool

A 3D pen is an innovative technology that enables the creation of spa-
tial objects from thermoplastic materials. The pen extrudes heated plastic
that cools almost immediately into a solid, stable structure, thereby allow-
ing the freehand fabrication of three-dimensional objects. It uses a plastic
filament made of polylactic acid (PLA). Compared with a 3D printer,
the 3D pen is more affordable and requires no software to operate. It
thus makes it possible to produce 3D models in home or school settings
with minimal setup. In the instructional context, it is therefore natural
to employ it for teaching solid geometry.

2.2 Related Work

Several researchers have explored the use of 3D pens in geometry instruc-
tion. Ng and Ye [8] present the first author’s five-year research program
on the use of 3D pens in mathematics classrooms. In the first of these
studies, Ng and Sinclair [6] describe using a 3D pen to teach properties of
graphs of functions. Students learned concepts such as the tangent line
and slope through physical manipulation of the graph of a function. They
then used a 3D pen to draw a curve together with the coordinate axes and
rotated the z-axis, thereby obtaining a solid of revolution and improving
their visualization of how it is formed. The study by Ng and Ferrara [4]
describes a lesson design for teaching and learning the target properties of
prisms, pyramids, and cross-sections of 3D solids using 3D pens alongside
glass solids filled with water, where the water level represented a cutting
plane. The paper by Ng, Shi, and Ting [5] compares differences in geom-
etry learning outcomes in two technology-enhanced environments. Two
groups shared an almost identical lesson procedure except for the technol-
ogy used in class. The first group used 3D pens to explore the properties
of prisms and pyramids, while the second group used a pre-made dy-
namic geometry environment (DGE). This DGE displayed a 3D solid on
the computer screen, allowing students to perform basic transformations
such as rotation and translation.

The findings of this five-year research program can be summarized
as follows: the studies highlight the unity of mind-body and body-tool
interactions in the act of making something (i.e., mathematics learning as
embodied making). 3D pens, as a form of maker technology — together
with embodied making — supported students’ investigation, visualization,
and learning of geometric relationships in significant ways. Students using
3D pens demonstrated better retention of the properties of 3D solids.

2.3 Solid Geometry with 3D Pen

All of the aforementioned studies primarily focused on younger students
(aged 11-12). In contrast, this research also focuses on older students, who
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often experience difficulties when solving more complex problems in solid
geometry. The study of the properties and mutual relationships of three-
dimensional objects often proceeds via planar projections. It is difficult
for some students to realize that not all lines that intersect on paper ac-
tually have a point of intersection in the original three-dimensional space.
The author of this paper supervised several completed theses aimed at
developing instructional materials for teaching solid geometry using 3D
pens in secondary schools.

In Redechové [10], we focused on planar cross-sections of a cube, typ-
ically taught in the seventh year (septima, age 17) of secondary school.
Our objective was to demonstrate the range of polygons that can arise as
the intersection of a cube with a sectioning plane (fig. 1). We deliberately
selected problem statements from textbooks currently used in Slovakia,
aiming to make the teaching method attractive to teachers rather than
burdensome. For these examples, we developed templates for construct-
ing 3D models of cube-plane intersections (fig. 2). Using these models,
students were able to verify the correctness of their solutions and exam-
ine the results from different viewpoints. The ability to perform physical
rotations proved valuable, since mental rotation is often challenging for
students (Bruce and Hawes [1]).

Fig. 1: A set of 3D pen models illustrating the variety of polygons that
can occur as cross-sections of a cube. Source: Redechovd [10], p. 70.

The thesis by Piackova [9] aims to support students’ spatial visuali-
zation in analytic geometry problems involving the computation of line-
segment lengths and angles between planes and lines. This topic is typ-
ically taught in the seventh class (septima, age 17) of secondary school.
The proposed tasks focus on using the dot product, the Pythagorean the-
orem, and the law of cosines. The templates were designed to enable the
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Sablona &. 1

Fig. 2: Step-by-step construction of a cube—plane intersection model using
a 3D pen: from the printed template to the completed 3D structure.
Source: Redechova [10], pp. 67, 69, 70.

constructed models to clearly illustrate the spatial relationships among the
figures whose properties students are expected to determine. Each tem-
plate set includes a paper ruler, allowing students to verify the lengths of
calculated line segments (fig. 3). Because paper is flexible, it is possible
to perform measurements even within the interior of the cube. The mea-
surements are not entirely precise, as the quality of the constructed model
depends on the students’ manual skills. Nevertheless, they are sufficient
to reveal substantial deviations and to assist students in developing an
awareness of the spatial position of the measured line segment. Students
can situate the entire model within a coordinate system.

Trubacové [12] focused on younger students attending the second year
(sekunda, age 13) of secondary school, who were learning their first pro-
jection method — oblique parallel projection. Students learn to draw basic
3D solids, such as cubes, rectangular prisms, and pyramids, in cabinet
projection. Therefore, we created a template containing squares, rectan-
gles, and triangles that can be used to build these basic solids. Thanks
to the hatching on the cube’s faces, the hidden edges are shown clearly
as dashed lines, which is not achievable with traditional paper models
students usually make at school.

Physical models enable students to explore the fundamental properties
of geometric shapes through tactile and visual experience. By manipu-
lating the models, students can literally feel what it means for edges or
planes to be parallel or perpendicular, transforming abstract spatial rela-
tionships into concrete sensory experiences. This multimodal perception
greatly supports the development of accurate mental representations of
solids. The perception of a cube’s face depends on the viewing angle (by
sight one perceives a parallelogram; by touch, a square). Building these
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Fig. 3: Classroom models created with a 3D pen: the left model, together
with its corresponding template, illustrates the perpendicularity of two
planes, while the right model, together with a paper ruler, serves to verify
calculated lengths and areas using the Pythagorean theorem. Source:
Piackova [9], pp. 58, 71, 78.

mental connections is very important at this age (fig. 4).

The thesis also includes proposed communication scenarios that rep-
resent model dialogues between the teacher and the student, designed as
a methodological framework for conducting mathematics lessons that em-
ploy 3D pen technology. These scenarios are structured to foster guided
discovery and student reflection through question sequences that encour-
age independent formulation of geometric concepts, relationships, and
projection rules. They include progressively graded interactions — from
motivational and situational prompts to analytical and verification-oriented
questions that reinforce and apply newly acquired knowledge during task
completion. The dialog structure simultaneously strengthens elements
of the constructivist approach, promotes students’ reasoning and argu-
mentation skills, and creates space for mutual discussion and cooperative
learning.

2.4 Application in the Classroom

All three authors of [10], [9], and [12] were teaching mathematics while
studying, which enabled them to test the designed teaching aids directly
in classrooms.

In Redechovd [10], two parallel classes were involved in the experiment.
Each class was assigned general tasks for spatial imagination. After ana-
lyzing the results of these tasks, the class that achieved weaker results was
identified. This class (11 students) was selected as the experimental group
in which teaching using a 3D pen was implemented. In the second class,
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Fig. 4: Classroom activity on cabinet projection: on the left, students
construct a cube model and use hand gestures to indicate the perpen-
dicularity of its faces; in the center, the completed cube is placed in a
coordinate system — hatched faces make it possible to distinguish visible
and hidden edges; on the right, the worksheet template on which students
supplemented the diagram with visible (solid) and hidden (dashed) edges
to produce the cube’s cabinet projection (left or right view), using the
constructed model for reference. Source: Trubacova [12], pp. 36, 44, 64.

designated as the control group (12 students), teaching was conducted
traditionally, using paper-based drawing. After the end of the teaching,
students in both groups were given further tasks to develop their spatial
imagination, including a written test. Although the sample of students
was too small for a statistically relevant assessment of the effectiveness of
teaching with 3D pens compared to standard methods, the experimental
group demonstrated greater attention, anticipation, and active engage-
ment during lessons.

In Piackové [9], 18 students worked together in groups of three and
took turns using the 3D pen to construct geometric models. According
to their responses in the post-lesson questionnaire, they particularly ap-
preciated the opportunity to verify their calculated results by directly
comparing them with the physical model. The tangible representation
made it easier for them to identify geometric properties, such as which of
the constructed triangles were right-angled, although they subsequently
had to provide a formal mathematical justification. The teacher’s observa-
tions also revealed that even students who are usually passive during math
lessons were actively involved in this collaborative environment. Working
in groups and using the 3D pen stimulated motivation, encouraged stu-
dents to participate in problem solving, explore alternative approaches,
and engage in independent learning — often without realizing it. Based on
the observations, the new approach was perceived as more attractive and
innovative compared with traditional teaching methods and was a good
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complement to paper-based constructions.

The experimental teaching in Trubacovd [12] was implemented in two
student groups comprising 12 and 15 seventh-grade learners (equivalent
to the second year of secondary school). Throughout the sessions, a high
level of engagement was observed, accompanied by spontaneous nonverbal
expression of understanding. Students unconsciously used hand gestures
to represent geometric concepts — for example, illustrating a cube’s face
with the palm of the hand, indicating parallel and perpendicular lines
with appropriately positioned fingers, or marking points with fingertips.
These gestures served as clear indicators of internalized comprehension
of spatial relationships. The use of two-color filaments further enhanced
visual clarity, enabling students to distinguish geometric elements such
as edges and faces more easily. Many students expressed enthusiasm for
working with the 3D pen, noting that they preferred creating geometric
figures in this way rather than with a pencil, as it allowed them to physi-
cally touch and examine their ’drawings’ from multiple perspectives. Even
those who struggled to complete a full model — whether due to breakage
or other technical issues — remained engaged by borrowing models from
classmates and continuing to solve related tasks collaboratively. Students
were evidently more focused and motivated when working with objects
they had created themselves than when merely viewing teacher-prepared
models.

3 Conclusion

Across all conducted studies, the use of 3D pen technology in geometry in-
struction has demonstrated strong potential to enhance students’ spatial
reasoning, conceptual understanding, and engagement. The combination
of tactile manipulation and visual observation enables learners to connect
abstract geometric principles with concrete experience, thereby reduc-
ing misconceptions and improving the accuracy of spatial visualization.
Collaborative group work with 3D pens promotes active participation,
self-directed learning, and peer-to-peer explanation, even among typically
passive students. Teachers have also emphasized the accessibility and in-
tuitive nature of the tool, which requires minimal technical preparation
while offering high didactic value. The results collectively suggest that
integrating 3D pen activities into mathematics education can effectively
bridge the gap between theory and practice. Future research should focus
on long-term impacts and evaluation of the effectiveness of using the pro-
posed teaching aids across multiple schools. We plan to develop additional
teaching materials for other areas of solid geometry and to create a plat-
form where these materials will be freely available for download, together
with usage instructions. All of these measures are aimed at making the
study of geometry and methods of descriptive geometry more attractive.
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Abstract. Surfaces of revolution are frequently used in architectural practice.
This paper presents them as the theme for a team-based graphical project assigned
to students at the Faculty of Architecture and Design (STU Bratislava). The
project's goal was to design a structure composed of multiple types of surfaces of
revolution sharing a common axis. Students were tasked with graphically
developing the design using projection methods based on orthogonal projection,
and then creating a 3D visualization in a virtual environment with appropriate
modeling software. As an optional bonus, students could also complement their
project with a 3D printed model.

Keywords: surface of revolution, Monge’s method, axonometry, 3D digital
model, 3D printed model

Klucové slova: rotacna plocha, Mongeova projekcia, axonometria, digitalny 3D
model, tla¢eny 3D model

1 Vyuzitie rota¢nych ploch v architektuire

Rotaéné plochy maji vyuzitie v architektire pre svoje rozmanité praktické aj
estetické vlastnosti. Casto ich vidime napr. ako zastreSenia rozliénych typov
budov (chramy, planetaria, stadiony) vo forme kupoly (polgul'ova, parabolicka
alebo elipticka). Tvar valca mdzeme vidiet’ na stipoch, veziach, rotundach &
celych budovach tohto tvaru. Ich hladky a obly tvar je vysoko aerodynamicky,
¢im lepSie odolava vetru. Budovy s tvarom kupoly su tiez energeticky
uspornejsie. Oblibenym a efektivnym v modernej architektire je tiez elegantny
tvar jednodielneho rotacného hyperboloidu (chladiarenske veze, rozhladne,
nosné prvky), ktory je mozné postavit’ len pomocou uplne rovnych ty¢i (ked’ze
je to zaroven priamkova plocha) (Obr.1).

2 Rotacné plochy vo vyucbe

Studenti FAD a SvF STU sa s rotaénymi plochami obozndmia v rAmci predmetu
Deskritptivna geometria v casti Plochy technickej praxe. Naucia sa zakladné



150

Aplikacia rotaénych ploch v architektire

Obr. 1: vlavo - Paul Andreu [3], Narodné divadlo, Peking, Cina,
vpravo - Oscar Niemeyer [2], Katedrala v Brazilii

pojmy o rotacnom pohybe a principe vzniku rotaénych ploéch. V ramci ich
klasifikacie sa zoznamia s réznymi typmi rota¢nych ploch ako su: priamkové,
cyklické, kvadratické a vSeobecné. Aplikuji tiez svoje znalosti zobrazovacich
metod a naucia sa zostrojit' ich obraz v kolmom rovnobeznom premietani
(Mongeova projekcia, kolma axonometria).

Vel'mi efektivnou pomdckou pri vyucbe a $tadiu st materialy dostupné ako
online uéebnica, ktoré maju formu PowerPoint prezentacii [1], (Obr.2).
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Obr.2: Ukazky snimok zo Studijnych materialov [1]
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Doplnkom prezentacii st pocitacové modely (*.dwfx), ktoré umoziuju prezerat’
si konkrétny model plochy pri otacani v realnom case. Okrem teoretickych
poznatkov tu Studenti najdu aj mnozstvo prikladov, kde v architektire a dizajne
boli dané plochy aplikované, a ktorymi sa mézu inSpirovat’.

3 Rotac¢né plochy — téma grafickej prace

Stucastou celkového hodnotenia Studenta v predmete je priebezné hodnotenie,
ktoré pozostava z dvoch teoretickych testov a vypracovani dvoch grafickych
prac. Ako experiment sme sa rozhodli graficki pracu na tému Aplikacia
rotaénych ploch v architektire zadat’ ako skupinovy projekt.

Cielom prace bolo vytvorit’ navrh stavby alebo jej Casti, umiestnenej do
zvolenej lokality alebo terénu. Ako hlavny konstrukény a esteticky prvok mohla
byt’ vyuzita rota¢na plocha (celd, alebo len jej Cast, alebo len jednotlivé polohy
rotujiiceho meridianu).

Navrhnuty objekt mal byt kombindciou aspon troch réznych typov rotaénych
ploch, ktoré maju spolo¢nu os rotacie, napr. v§eobecna rotac¢na plocha, rotacny
valec, rotacny kuzel, gula, jednodielny rotaény hyperboloid, rota¢ny elipsoid,
anuloid ¢i iné.

Zadanie malo spifat’ konkrétne poziadavky na grafické spracovanie, ktoré
Studenti mohli vykreslit’ ru¢ne a tiez s vyuzitim grafickych softvérov na Styri
vykresy formatu A4, ktoré nasledne prepoja:

MONGEOVA PROJEKCIA ‘ AXONOMETRIA

LEGENDA

———  MEROAN

LEGENDA

MEROWN

HROLOVA KRUZNICA

———  vison

HRDLOVA. KRUZNICA|

KR.1 FAD 2024/25
KR.1 FAD 2024/25 LAURA CICHA PAULINA CVECKOVA, ZUZANA DURIKOVA

Obr. 3: Ukazka z grafickej prace studentov FAD STU
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1) Zobrazenie objektu v pohl'adoch Mongeovej projekcie (pddorys, ndrys), kde
vo zvolenej mierke zohladnia realne rozmery objektu, ktoré okotuju.
Vyznacia tiez obrysové tvoriace kruznice a aj Specialne rovnobezkové
kruznice ak ich plocha obsahuje, taktiez hlavny meridian, os rotacie
a stradnicové osi (Obr.3 vl'avo, Obr.6 vpravo).

2) Zobrazenie objektu v kolmej axonometrii (dany A XYZ) pomocou meridianu
zhodného s meridianom z Mongeovej projekcie. Mali zohl'adnit’ viditelnost
rovnobezkovych kruznic a zobrazit' meridianovy rez leziaci v jednej zo
stradnicovych rovin. Hotovi axonometriu mali doplnit pauzovacim
papierom, na ktorom bude zvyrazneny a esteticky v okoli dotvoreny vysledny
objekt navrhu (Obr.3 vpravo, Obr.4 vlavo, Obr.6 vl'avo).

3) Spracovanie objektu ako digitdlneho 3D modelu vo vhodnom softvérovom
programe (napr. AutoCAD, Sketchup, Blender a iné.) s vyuzitim jeho
rozmerov a geometrickych vlastnosti, ktory vo vysledku méze byt’ zasadeny
do virtualneho okolia (Obr.4 vpravo).

4) Zaverec¢nou poziadavkou bolo struéne popisat’ navrh objektu, jeho rozmery,
ucel, materidly a pod. Z geometrického hl'adiska uviest’ z akych tipov
rotaénych ploch je zostaveny. TaktieZ popisat’ proces rozdelenia prace v time,
kde sa vyjadri kazdy ¢len, ako a na com pracoval (Obr.5 vlavo).

Bola stanovena aj poziadavka nad ramec zadania, za ktort bolo mozné ziskat’
bonusové body, a to vytvorenie fyzického modelu objektu, idealne 3D tlacené¢ho
modelu (Obr.5 vlavo, Obr.7), ktory tiez mohol byt’ sucast’ou celkového modelu
s okolitou krajinou.

Takto Specifikované zadanie bolo pridelené do 3-4 clennych skupin
Studentov jednotlivych krizkov.

AX O} 3D MODEL

KR.1 FAD 2024/25 LUCIA SONA DOLOBACOVA

Obr. 4: Ukazka z grafickej prace Studentov FAD STU
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MICHAELA
Kr.2  FAD 2024725 HALAGANOVA

MONGEOVA PROJEKCIA

FAD

2024125

AMELIA GUNDOVA

Obr. 6: Ukazka z grafickej prace §tudentov FAD STU



154 Aplikécia rotanych ploch v architektire

4 Zaver

Takto postavené projektové zadanie sa ukdzalo pre Studentov ako vel'mi prinosné
vo viacerych aspektoch. Postva ich zru¢nosti od izolovanych cviéni k rieSeniu
komplexného priestorového problému, ¢o je vlastne podstatou buducej prace
architekta. Intenzivne pritom trénujii priestorovi predstavivost' a schopnost
analyzovat’ zlozitejSie 3D formy. Zaroven sa ucia ako tieto tvary presne,
jednoznaéne a technicky spravne komunikovat pomocou vykresovej
dokumentacie obsahujticej pohlady, rezy ¢i axonometriu. Zaroven si vyskusaja
aj vzajomnu spolupracu v time, pri ktorej si navzajom kontroluju pracu, mézu
diskutovat’ o r6znych pristupoch k rieSeniu a ucia sa prezentovat’ svoje navrhy.
Samotni Studenti sa vyjadrili o takomto type timového zadania vel'mi pozitivne.

Obr. 7: Ukazka 3D tla¢enych modelov ku grafickym pracam Studentov
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On orthogonal trajectories of isoptics
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Abstract. For a given plane curve, consider a one-parameter family
of curves (called isoptics) each of which being the locus of points from
which the given curve is seen at a constant angle. We present a Cauchy
problem, the solution of which can be used to construct the parametric
form of the orthogonal trajectories to isoptics of the given oval.

Keywords: isoptic curve, support function, orthogonal trajectory.

1 Introduction
For a plane curve C' one can consider locus of the points at which the
support lines to C' intersect under the fixed angle m — . The curve C,,
where o € (0,7), is called an a-isoptic, or simply an isoptic [Philippe de
La Hire].

As examples of isoptics given by implicit equations let us recall

e isoptics of the circle 22 + y? = r2:

r2

Ca51’2+y2* :07 (1)

2 a
COs 2

e isoptics of the ellipse 2—; + %—z = 1 derived in [2]:

a2+ b — a2 2
V@2 = a2+ 02)2 £ 220 + a2 — 0%) + ¢yt

(2)

Cy: cosa = —

Another, very convenient way to describe the isoptics is the parametriza-
tion by the support function of the given curve.

Let us recall the definition of the support function p(t) of a given
closed, strictly convex curve C, following [8]. We fix the origin O of the
coordinate system in the interior of C'. Denote by ¢ the angle formed by the
first coordinate axis and the halfline starting from O and perpendicular to
the support line to C. Define p(t) as the distance from O to the support
line of C' perpendicular to e at z(t) € C (see Fig. 1). We can parametrize
the given curve C', by the formula

2(t) = p(t)e™ + p'(t)iet for t € [0,2n).
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t z(t+a),
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Fig. 1: Support function parametrization for an oval and parametrization
of isoptics by the support function of the given curve

For ovals (a simple closed convex plane curves of class C? with positive
curvature) p(t) € C? and the radius of curvature R(t) = p(t) + p”(t)
is positive for all ¢ € [0,27). The notion of the support function has
been recently developed for open curves as well as curves and surfaces
represented by polynomial support functions (see [11], [9]).

For C given by the support function parametrization z(t) = p(t)e® +
p'(t)ie®, an a-isoptic C,, is given by

2o (t) = p(t)e’ + (—p(t) cota + $p(t + a)) ie', t €[0,2m).

For more details about this approach see [1]. It was introduced for a given
closed, strictly convex curve and studied also for a wider class of curves
(see for example [5], [7], [11]).

2 Orthogonal trajectories of isoptics
2.1 Classical approach

Let us recall that the orthogonal trajectory is a curve, which intersects
any curve of a given pencil of (planar) curves orthogonally.

The classical approach in Cartesian coordinates assumes that we have
a pencil of implicitly given curves F(x,y,c) = 0 for which we can write a
first order ordinary differential equation F,(z,y, ¢)+ Fy(z,y,c)y’ = 0 and
simplify it by eliminating the parameter ¢ to the form y' = f(z,y). Then
we can consider the differential equation 3y’ = —m, which is satisfied
by orthogonal trajectories of the given curves.

Examples
7‘2
cos? §

1. For isoptics of the circle Cy: 2% + 3% — = 0 by straighforward
computations we get the following equation for orthogonal trajecto-

ries y' = £ which can be easily solved: y = cx, where ¢ € R.
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2. For an ellipse C': Z—; + z—j = 1, a-isoptics are given by equation (2).
A differential equation for orthogonal trajectories of those curves is

;g (et — a®B 2220 — @) + yha?)
oz (b — a?b? + 2262 + y2(2a2 — b2))

2.2 Parametric approach

Now we are going to derive a Cauchy problem, the solution of which can be
used to obtain the parametric form of orthogonal trajectories to isoptics.
Those results have already been published in [10].

Recalling [1] we can assign the following diffeomorphism to isoptics:

F(a,t) = 24(t) = p(t)e' + (—p(t) cot a + p(t+ a)) ie'

sin o
between the rectangle (0,7) x (0,27) and the exterior of C' without one
halfline.

Now let us consider orthogonal trajectories to isoptics as curves y(«) =
F(a,t(a)), where « € [0, ), each of which starts at a point on the oval C
and have one common point with each isoptic. There ¢(«) is a function
of variable o and allows us to move along the isoptic Cl,.

We are looking for such a curve «, for which the tangent vector v/(«)
is perpendicular to the tangent vector to C in the intersection point of
those curves. This condition can be written in the form

(7' (@), 2 (t(a))) = 0.

To consider the above condition we use standard notation (as seen in
Fig. 2) introduced for isoptics in [1] after the following slight extention,
which we proposed in [10]. For (a,t) € [0,7) x R let us define

Flat) = {za(t) (a,t) € (0,7) xR, )

) (af) € {0} xR
p(t+a) p(t);zsa@ P’ (t) Mna)’ (a,t) € (0,7m) x R, (4)
(a,t) € {0} x R,
— sin o ) Oé,t) € (077T) X R’ (5)
a,t) € {0} xR,

= &

(el = (a,t) € (0,7) x R,

D

1R(t) at)e{O}xR
(p(t)

sin a—p’(t) cos a+p (t+a)) (a,t) c (0771_) <R

sin «

{ )
)

{ p(f) p(t+a) cos a+p’ (t+a) sin o/) (
(
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Fig. 2: Standard notation for isoptics

Limits in (3), (4) and (7) were previously proved in [6].
Since the condition for orthogonal trajectories for isoptics can be writ-
ten in the form (v'(a), 2/, (¢(c))) = 0 and

tade’

V(0) = 2P0, 1(a)) = O (o 1)) + O (o t(0) (@) ()

= Mt 4 (M) pa (@) i,

0 . .
Za(t(a)) = 5 Fla, t(a) = —Ma t(@)e™ ™ + pla, t(a))ie™
it leads to the differential equation for the following function of ¢(«)

(- e te)oles 1)
N2(a t(a)) + (0, )

(9)

Let us define the function
v(e, t)p(a,t)

N (a,t) + p?(a,t)’
1

-3

and H(a,t) = H(—a,t) for (a,t) € (—7,0) x R.

(a,t) € (0,7) X R,
H(a,t) =
(a,t) € {0} x R,

Theorem 2.1 Ifp is a C? function, then H is continuous in (—m,m) x R.

In the proof of Theorem 2.1 (see [10]) we used some version of 'Hopital’s
rule for multivariable functions (see [3] and [4]).

Theorem 2.2 Ifp is a C? function, then for each (ag,to) € (—m,m) x R
the Cauchy problem

t'(a) = H(a,t(a)), «a€(—m ),
{ t(ao) = to, (10)
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has a unique solution.

Theorem 2.3 Orthogonal trajectories to isoptics of an oval C, where C' is
parametrized in terms of the support function p of class C2, are the curves
parameterized by functions ., : [0,7) — R? for 1o € [0,27), defined by

(@) = Fla, t(e)),

where t: [0,7) — R is the solution to the Cauchy problem

t'(a) = H(a,t(a)), «a€ (0,m),
{ £(0) = 7o. (11)

The proofs of Theorem 2.2 and Theorem 2.3 are avalaible in [10].

Remark It can be noticed that the tangent to the orthogonal trajectory
vt () is the line passing through points P(t) and z,(¢) indicated in Fig. 2.
The direction vector of this line is u')' = pe' + Xie'. From (8) and (9) we
have v;(a) = A -, where A = —52 + . The authors would like to thank
Prof. G. Weiss and Prof. H. Stachel for their advice about this fact.

Examples
1. For the circle C: 22 + y? = r? the support function is p(t) = r
and the parametrization of isoptics is z4(t) = re't. We can easily
compute the function H(a,t) = —3 for (a,t) € [0,7) x R and solve
the considered Cauchy problem. The solution is t(e) = —3a +
70, « € [0,7). Thus orthogonal trajectories to the isoptics to the
circle C' are half-lines

1 4
y(a)=F (a,TO — 2a) = COZ%e”O, a€0,m),

starting from z(79) = re'™, where 79 € [0, 27).
2. For the ellipse C: z? + % = 1 the support function is p(t) =

Vcos2t +4sin®t, t € R. The function H is more complicated and
we do not have an analytic solution of (10). Orthogonal trajecto-
ries to the isoptics of the ellipse obtained numerically in Wolfram
Mathematica are presented in Fig. 3 a).

3. The graphs of orthogonal trajectories for isoptics of the curve with
the support function

T, telo,3),
p(t) =< r—17a+ 20acost + 20asint — 16a sin 2¢t—
—4 cos 3t + 4asin 3t + a cos 4t, te[3,2m),

where r = 150, a = 1 are presented in Fig. 3 b).
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Fig.

3: Orthogonal trajectories of isoptics of a) the ellipse, b) the oval

with the support function of class C?3

References

(1]

W. Cieslak, A. Miernowski, W. Mozgawa; Isoptics of a closed
strictly convex curve, Global differential geometry and global analysis
(Berlin, 1990), Lecture Notes in Math., p. 28-35, (1991).

G. Csima, J. Szirmai; Isoptic curves of conic sections in constant
curvature geometries, Math. Commun. 19 277-290, (2014).

G. R. Lawlor, A I’Hépital’s rule for multivariable functions, 2012.
https://arxiv.org/pdf/1209.0363.pdf.

G. R. Lawlor; A UHoépital’s rule for multivariable functions,
The American Mathematical Monthly, 127:8:717-725, 2020. DOI:
10.1080/00029890.2020.1793635.

A. Miernowski, W. Mozgawa; Isoptics of rosettes and rosettes of
constant width, Note de Mat. 15, 203-213 (1995).

W. Mozgawa; Bar Billiards and Poncelet’s Porism, Rend. Sem. Mat.
Univ. Padova, 120, 157-166 (2008).

T. Dana Picard, A. Naiman, W. Mozgawa, W. Cielak; FEz-
ploring the Isoptics of Fermat Curves in the Affine Plane Us-
ing DGS and CAS, Math.Comput.Sci. 14, 45-67, (2020).
https://doi.org/10.1007/s11786-019-00419-2

L. Santalo; Integral geometry and geometric probability, Encyclo-
pedia of Mathematics and its Applications, Vol. 1. Addison-Wesley
Publishing Co., Reading, Mass.-London-Amsterdam, 1976.

Z.r,J. Gravesen, B Jttler; Curves and surfaces represented by polyno-
mial support functions, In Theoretical Computer Science, 392 (1-3)
141-157, 2008. https://doi.org/10.1016/j.tcs.2007.10.009

M. Skrzypiec, W. Mozgawa, A. Naiman, P. Pikuta; Orthogonal tra-
jectories to isoptics of ovals, Beitr Algebra Geom 66, 405-415 (2025).
https://doi.org/10.1007/s13366-024-00747-w

D. Szakowski; Isoptics of open rosettes, Ann. Univ. Mariae Curie-
Sklodowska Sect. A 59, 119-128 (2005).



11t Slovak-Czech Conference on Geometry and Graphics 2025 161

Flexible cross-polytopes with two flat poses
in three and four dimensions
Hellmuth Stachel

Institute of Discrete Mathematics and Geometry
Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Wien
email: stachel@dmg.tuwien.ac.at

Abstract. According to R. Bricard 1897, there exist three types of
flexible octahedra. The octahedra of type-3 are unsymmetric and admit
two flat poses. The n-dimensional analogues of octahedra are called
cross-polytopes. In 2014, A.A. Gaifullin determined with methods
from algebraic geometry all flexible cross-polytopes in n-dimensional
Euclidean, hyperbolic and spherical spaces for n > 3. The goal of this
presentation is a synthetic approach to a particular family, the flexible
3- and 4-dimensional cross-polytopes with two flat poses. These poses
are characterized by two geometric properties, local symmetries and
concurrent axes of symmetry.

Keywords: flexible octahedron, flexible cross-polytope, flat pose.

1 Introduction

In 1897, Raoul Bricard [2] proved that in the 3-dimensional Euclidean
space E3 there exist three types of flexible octahedra, i.e., polyhedra of
the combinatorial type of a regular octahedron with rigid faces and hinges
as edges while self-intersections are ignored. Type-3 octahedra are unsym-
metric and admit two flat poses. Figure 1 shows how a flat pose can be
constructed according to [1, Fig. 8] and also to [3, Fig. 297, p. 330].

The n-dimensional analogues of octahedra are called cross-polytopes.
In 2014, Alexander A. Gaifullin [4] surprised the scientific community
with the complete solution of a long-lasting open problem, namely the
question for flexible cross-polytopes in the n-dimensional Euclidean, hy-
perbolic and spherical spaces for n > 3. Before that, only particular flex-
ible examples in E* where known (see [5]). Based on algebraic methods,
Gaifullin succeeded to classify the flexible types, and he even presented
parametrizations of the flexions in terms of Jacobian elliptic functions.

From the algebraic point of view, the n-dimensional analogues of
Bricard’s type-3 octahedra are the simplest. While Gaifullin showed their
existence in an algebraic way, the goal of this presentation is to analyse
the geometry of these flexible cross-polytopes in E3 and E*. Our novel
approach starts from the existence of two flat poses.

Following the notation in [4], the cross-polytopes C™ in the Euclidean
n-space E™ have 2n vertices coupled into pairs of opposite vertices (A4;, B;),
i = 1,...,n. The 2" hyperfaces (or facets) of C" are the simplices
Xq...X, where X; stands either for A; or B;. The 4(;) =2n(n—-1)
edges of C™ are X;X; for i # j. More general, the k-faces, 1 <k <n —1
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B 3

By

Fig. 1: Bricard’s construction of a flat pose of a flexible type-3 octahedron:
Two given concentric circles kyo, k31 and two points Ay, B; define the
remaining vertices As, ..., Bs and a third contacting circle ko3.

of C" are the 2F*! (kil) simplices with k + 1 vertices X;, ... X;, out of
{Ay,..., Ay, By,...,B,} such that the indices i ... are mutually dif-
ferent. Hence, no k-face contains a pair (A;, B;) of opposite vertices.
Moreover we assume that no k-face is of dimension smaller than &, i.e.,
flat.

According to [4], a polyhedron is called flexible, if we have hinges at
all edges, and the polyhedron can deform while each hyperface remains
congruent to itself. In other words, only the dihedral angles between
neighboring facets can vary. We are interested in nontrivial deformations,
which means that the deformation is not induced by a motion of the rigid
cross-polytope in the ambient space.

When studying the flexibility of cross-polytopes C™, we still follow
the convention in [4] and assume that the simplex Ag := Aq,..., A, is
fixed while the opposite simplex A := By, ..., B, is moving. This means
that the vertex B; can rotate about the (n — 2)-dimensional azis spanned
by Ai,...,A;—1,A;41,..., A, while tracing a circle. Point B; rotates
together with the simplex called wing A; = A;...A4;_1B;A;1... A,
relative to the fixed simplex Ag (note the flexible octahedron in Figure 5
as an example for n = 3).

At flexible cross-polytopes there exist simultaneous rotations of all n
wings Aq, ..., A, such that all (72’) edges of the moving simplex A preserve

their lengths B; B;. We call such a self-movement of C" a flezion.

Below we focus on cases, where during the flexion the cross-polytope
passes through two incongruent flat poses where the moving simplex A is
located in the hyperplane spanned by Ag. When for each vertex B; € A
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the two corresponding positions B, and B} are different, we speak briefly
of a twice-flat flexible cross-polytope.

2 Revisiting Bricard’s type-3 octahedra

Let Ay, By, As, Bs, A3, B3 be the vertices of a three-dimensional cross-
polytope C3.

2.1 Local symmetries of twice-flat octahedra

B:,s

Ao A

49 \

Fig. 2: At a twice-flat octahedron the moving triangle varies between
B{B}Bj; and B{ By BY. The double lines are projections of circular paths
of the moving vertices in the case of a flexible octahedron.

Lemma 1. A flat octahedron with the fixed triangle A1AsAs and the
coplanar moving triangle By B BY admits a second flat pose BY BY B with
Bl # B! foralli € {1,2,3} if and only if at each vertex A; the connecting
lines with the remaining pairs (A;, B;) of opposite vertices have common
azes of symmetry.

Proof. The half-rotation in E? about the axis [A;, A2] sends Bj to BY, and
that about [A1, A3] sends Bj to BY.} Thus, the bisectors of (B}, BY) and
(B4, BY) intersect at A;, while there are equal distances BB} = BY BY.

IThroughout the paper we use [X,Y,..., Z] as the symbol for the affine hull of the
listed points, e.g., [X, Y] for the line connecting the points X and Y, while the symbol
XY ...Z stands for the simplex with vertices X,Y,...,Z, and in particular XY for
the segment terminated by X and Y.
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This implies that Ay is the center of a 2D-rotation that brings B5 B4 to
BY BY. Half of the angle of this rotation is marked in Figure 2 and reveals
that pairs of lines ([A41, As], [A1, By]) and ([A1, B%],[A1, As]) share the
angle bisectors.

Moreover, the flat pose shows that at the flexible four-sided pyramid
connecting A; with the sides of the quadrangle Ay A3 By B3 opposite apex
angles are equal. We speak of an isogonal pyramid; its intersection with
the unit sphere centered at A; gives a spherical isogram (Figure 4) with
opposite sides of equal or complementary length. It is wellknown (see, e.g.,
[6, eq. (9)]) that during the flexion of this pyramid the tangents of the
half dihedral angles 3 along A; As and o along A; A3 are proportional
(note below Lemma 2). O

The found symmetry at Ay occurs similarly at A, and As, and also at
all B’-points since for the existence of two flat poses it is not relevant which
face of the octahedron is fixed. We speak briefly of local symmetries at the
flat pose. It will turn out that these are not sufficient for the flexibility of
a twice-flat octahedron.

2.2 Transmission between adjacent wings

Let the points Ay, ..., B} of a flat pose satisfy the local symmetries. For
obtaining an exact formula for the transmission between wings, we assume
that the fixed triangle A;AsAs is counter-clockwise oriented, and the
directions of the axes of rotations a1, as, az are given, respectively, by the
directed segments Ay Az, A3A; and AjAs. The signed interior angles of
A1 Az Ag are denoted by a1, as, ag (Figure 3).

Fig. 3: The angles in the fixed face and the wings of a type-3 octahedron.
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With v, we denote the signed angle at A; between the lines [Ay, A3],
[A1, B}]. Tt equals the angle between [Aq, As] and [A;, Bf]. We use the
rotation by 1 about A4; to transfer the orientation of as to the line [A;, BY]
and denote with p; the signed distance of A;Bj, and similarly ¢; that of
A1 Bf. An analogous procedure yields the signed angles 72,73 and the
signed distances ps,q2 and ps, g3 at the remaining vertices As and As.
We assume for all ¢ that 0 < «;,v; < 7 and (o + i), (o — ;) # km for
all k € Z.

Lemma 2. Referring to the previous notation, the angles of rotation ps of
the wing A3AlBé about az and @3 of As A1 Bj about az relative to Ay Az As
with t; ;= tan % for i = 2,3 are related by

—siny; £ sinay
sin(y1 + aq)

The cases with the upper and the lower sign are respectively equivalent to

sin Q1—7

sin Sk

a1—7
3 COS

cos alTﬂl

t3 = t2 and tg = — tQ .

Proof. We use a right-handed coordinate frame with the flat pose in the
plane z = 0, with A; as origin and ao as positive z-axis. From points

Fig. 4: The flexion of the isogonal pyramid with apex A; induces on
spheres centered at A; two spherical motions with bifurcations at the
aligned poses.
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in the half-space z > 0 the triangle A; A3 A3 appears counter-clockwise
oriented, as shown in Figure 3. For the sake of brevity, we temporarily
suppress the subscript 1 at a; and ;.

Thus, the circular paths of By and Bs (Figure 5) can be parametrized
as

Cos 7y — €OS (v cOS Y — sin asin 7y cos 3
Bs =p | sinycosps |, Bs=q sin v cosy — cos acsin 7y cos @3
Sin 7y sin @9 sin vy sin @3

The request that the distance By Bs remains equal to BS B in the initial
flat pose with s = 3 = 0 is equivalent to

(pcos~y + qcos acosy + ¢sin asiny cos p3)°
+ (psiny cos pa — gsin a cosy + ¢ cos asin y cos @3)2
+ (psinysin g — gsinysin @3)2 =p? 4+ ¢® +2pgcosa.

It implies

sin avsin y cos y (cos @3 — cos pa) — cos avsin® y (1 — cos g cos p3)
— sin? 7 sin @y sin g3 = 0

and, after the substitution t; := tan % for i = 2,3,

2sinavcosy (t5 — 13) — 2cos asiny (13 + 13) — 4siny otz = 0,

hence
sin(a — ) t5 — sin(a +7) t3 — 2siny tat3 = 0.

This reveals that in the particular case of isogonal pyramid the biquadratic
relation (according to [6, eq. (4)] or [4, eq. (3.3)]) splits into two linear
functions

—siny + \/sin27 + sin®a cos2y — cos2asin®~y —siny +sin«

sin(a + ) 7 sin(a+7)

3= 2.

Thus we obtain either
sin 457 cos 4571
ts=—2 ty or t3=——2 t,.

in @ty aty
S — Cos —5

Both flat poses offer bifurcations between two rational movements. Their
spherical images are depicted in Figure 4. O
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Lemma 3. Let (4;,B]) for i = 1,2,3 be coplanar pairs of points with
local symmetries. Then, referring to Lemma 2, all points S # A1 on one
of the common azes of symmetry between the lines [A1, As], [A1, BS] and
[A1, A3, [A1, BS] satisfy the relation

d(S, 0,2)

la=—o—1t2,

d(sv a3)
where d(S,a;) denotes the signed distance of S to the revolute axis a;
such that for points in the interior of A1AsAs the distances to all azes
are positive.

Proof. Let (i,j,k) by a cyclic permutation of (1,2,3). If one symmetry

axis through A; meets the opposite side A; A, then it includes with the

i % i +7i
and

axes aj and a; the angles o , respectively (note vertex A

in Figure 3). Therefore holds, by virtue of Lemma 2,

i — 7

—siny; +sina; SinT _d(S, ay)
sin(7; + o) sin @t d(S,ar)
2

Otherwise (note points A; or Ay in Figure 3) one of the axes includes the
Ttoi— v T =i+

angles B or 5 and T—% 7" with a; and ay, and we
obtain
: : cos BT
—siny; —sinoy > d(s, a;)
sin(v; + ;) cos XX d(S, ak)
2

This confirms the claim. The absolute values of the distances d(S, a;) are
the radii of the concentric circles ki, kog, k31 in Figures 1 and 3. O

2.3 Necessary and sufficient condition for flexibility

The following theorem rephrases a part of Bricard’s main result in [2].
The new formulation paves the way to higher-dimensional versions.

Theorem 1. Siz coplanar points Ai,..., B} define a twice-flat flexible
octahedron in B3 if and only if at each vertex there holds local symmetry
according to Lemma 1 and one of the axes of symmetry at each vertex
passes through a common (finite or infinite) point S.

Proof. For the sake of brevity we only prove that the condition is sufficient

for finite S: By virtue of Lemma 3, all side lengths of the moving triangle

are preserved, since for the transmissions between the wings’ rotations

from A to Ag, from As to Az, and finally from Ag to Ay holds
d(S,a3) d(S,a2) d(S,a1)

d(S,a1) d(S,az) d(S,az) ="t

This confirms the flexibility. 0
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Fig. 5: Spatial pose of the moving triangle B; By B3 with the corresponding
rotation angles s, @3 of B, B3 and wings Ay A3Bs and A; A; By along
with the respective axes ao and as.

3 Outlook on twice-flat flexible cross-polytopes in E*

Four-dimensional cross-polytopes C* contain four pairs of opposite vertices
(Ay,B1),...,(A4, By). Their 16 facets are tetrahedra X; X5 X3X, where
X stands for A or B. They contain 24 edges X; X}, ¢ # j, and 32 triangles
X, X; X}, with mutually different indices 4, j,k € {1,...,4}.

We still follow Bricard [2] and Gaifullin [4] and study the flexibility of
C* by keeping the tetrahedron Ag := A1, ..., A4 fixed, while the opposite
tetrahedron A := By, ..., By moves. Vertex B rotates together with the
wing A; := Ay A3A4B; about the plane g1 = [As, A3, A4] and traces a
circle in a plane orthogonal to ;. The other vertices By, B3, By € A
move similarily.

We call C* twice-flat if it admits two flat poses with the moving tetra-
hedron placed as B ...B), or BY ...B! in the three-dimensional span of
Ag, where additionally holds B] # Bj’ for all i € {1,...,4}.

The cross-polytope C* is flexible if the four wings A1, ..., A4 can rotate
continuously relative to Ag in such a way that all six distances TBJ are
preserved. During this motion all tetrahedra of C* remain rigid. Only the
dihedral angles between adjacent facets vary.

3.1 Local symmetries of twice-flat cross-polytopes

Suppose that the moving tetrahedron A of C* admits two flat poses
Bi...B} and BY ... B} with B} # B/ for alli € {1,...,4}. Then the sec-
ond pose BY of Bj arises from the first pose B] by a 4D-rotation through
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180° about €1, i.e., by a 3D-reflection in the plane €; within the three-
space spanned by Ag. Consequently, the plane g1 = [As, A3, A4] is the
bisecting plane between Bj and BY. Similarly, e is the bisecting plane
between Bj and Bj. Since BjB; = BYBY, there exists a 3D-rotation
about [As, A4] = 1 Neg with B] — BY and B} — BY.

The rotation about [As, A4] through half angle takes [A3, A4, B]] to
g1 = [As, A4, As] and [A3, Ay, B} to 9 = [A3, Ay, A1]. Thus, the signed
dihedral angles of the wings Ay = A3A4B1As and A1 = A3A,B>A; along
the edge A3zA4 are either congruent or complementary which implies a
local symmetry at AszAy.

Fig. 6: Orthogonal view of C* after projection parallel to the edge AzAy.

Figure 6 shows this congruence after an orthogonal projection X —
X" of E* into a hyperplane II orthogonal to AzAy:

3.2 The transmission of rotations between adjacent wings

We study the transmission from the wing A; to As, when the length
of the moving edge B;Bs remains constant. Aj rotates with By about
g1 = [Ag, As, Ay4], while Ag with By rotates about €5 = [A1, As, Ay].

The two wings are connected by the facet Ao := A3A4B1Bs and by
the fixed tetrahedron Ag. The four tetrahedra A1, Ag, Ao, and A, form
a 4D-pyramid with the one-dimensional apex [A3, A4]. The orthogonal
projection mentioned above sends it to a 3D-pyramid with the apex A} =
A} bounded by the quadrangle B By A7 A%, and for each tetrahedron its
dihedral angle along A3 A4 appears in true size. The flat pose of twice-flat
cross-polytopes, as depicted in Figure 6, reveals that the 3D-pyramid is
again isogonal. Moreover, orthogonal distances to €; and €5 are shown in
true size.

The dihedral angle 1 between the wing A; and Ay is measured
in a plane totally orthogonal to £;. Since e; contains AzAy, the total-



170 Flexible cross-polytopes with two flat poses in three and four dimension

orthogonal plane is parallel to the image-hyperplane II of the orthogonal
projection. Consequently, @1 appears in true size, and the same holds
for o = <AsAp along 2. Thus, the 4D-transmissions between adjacent
wings satisfy formulas analogous to that derived in three-space?, and we
obtain, by virtue of Lemma 3, for the angles of rotation ¢; of the wings

t. = d(Sagz)
7 d(S, aj)

t; where tk:tan%. (1)

The symbol d(S,e) stands for the signed distance of S to the planes e
of the fixed tetrahedron A, such that for points in the interior of Ag the
distances to all faces are positive. Similar to Theorem 1 we conclude:

Theorem 2. Eight points Ay, ..., B} in E? define a flat pose of a twice-
flat flexible cross-polytope C* in E* if and only if at each edge of the fized
tetrahedron Aj ... Ay there holds local symmetry between the connecting
planes with the remaining pairs of opposite vertices, and one of the planes
of symmetry passes through a common finite or infinite point S.

4 Conclusion

A detailed kinematic analysis of Bricard’s octahedra of type 3 paved
the way to a characterization of those four-dimensional flexible cross-
polytopes which admit two flat, i.e., three-dimensional poses. Further
properties of this interesting family of higher-dimensional flexible poly-
topes will be disclosed in a further research.
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Abstract. We can look at sundials from the perspective of history, philosophy,
astronomy, art, but also mathematics and geometry. Sundial dials contain images
of the meridians and parallels of a spherical surface in a gnomonic azimuthal
projection. Images of the meridians show hour lines, with the shadow of the
pointer (called gnomon or style) showing the time during sunny days. Images of
the parallels, here called declination lines, where the end of the shadow falls on
certain significant days of the year, especially on the days of the equinox, summer
and winter solstices. The aim of the paper is to show these connections, to
formulate the constructions of the dial lines of several types of sundials using
gnomonic azimuthal projection. The main contribution of this paper is in the
creation of formulas for determining its parameters in relation to the geographical
location of the dial plane, its orientation and the length of gnomon. In Wolfram
Mathematica software, we demonstrate the rendering of the dials of various
sundials using map equations and relations for determining the parameters of the
gnomonic azimuthal projection.

Keywords: sundial, solar declination, gnomonic projection, gnomon

1 What we need to know about the Earth and the Sun

A sundial tells the time of day based on the apparent position of the Sun in the
sky. Planar sundial dials contain hour and declination lines, they are images of
the meridians and parallels of a spherical surface in a gnomonic azimuthal
projection.

The construction of the sundial depends on the location of the installation
site, which is expressed by coordinates on the reference surface of the Earth.
Reference sphere of the Earth has a constant curvature at every point, its radius
is R. Point M is given by spherical geographic coordinates (Fig.1):

- spherical latitude U: U € (-90°, 90 °).

- spherical longitude V: V € (-180 °, 180 °).

Earth’s parallel has constant latitude U and Earth’s meridian has constant
longitude V.

The position of the Sun in relation to the Earth is expressed by the solar
declination (Fig.1). Solar declination § is an angular distance of the line
connecting the Sun with the center of the Earth from the equator, measured along
the solar declination circle, positive toward the North Pole, negative toward the
South Pole [7]. Solar declination &is approximately the same during the day and
the solar declination angles & are in the interval from the Tropic of Cancer to the
Tropic of Capricorn, hence between £23°2622".
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The Earth rotates around its axis in 24 hours. A rotation is 360°, then the
speed is: 360°/24h = 15° per hour (hour angle).

EARTH

Fig. 1: Relative position of the Earth and the Sun

We can divide the types of sundials [1] as follows (Fig.2):
e Planar sundials — the dial plate is a plane, they are:
- Horizontal sundials — planar plate is parallel with tangent plane to the
reference surface.
- Vertical sundials — planar plate is normal plane to the reference surface:
- direct south sundial,
- declining sundial defined by azimuth A4,
- direct west sundial,
- direct east sundial,
- meridian sundial.
- Inclining sundials — planar plate is not in the direction of the tangent or
normal plane:
- polar sundial,
- equatorial sundial,
- other inclining sundial.
e Non-planar sundials — the plate is not a plane (sphere, cylinder, cone, etc.).

Fig. 2: l'ypes of the sundials
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Figure 3 shows a planar sundial and its components. The dial plate of a planar
sundial is the plane z. The gnomon (so-called ,,style” or ,,pointer*) PS casts a
shadow PS' onto the dial, which indicates the hour line. The gnomon must be
parallel to the axis of the Earth's rotation for the sundial to be accurate throughout
the year. The shadow of the gnomon's endpoint during the day describes the
declination (datum) line which correspond to declination angle & on certain
significant days of the year, especially on the days of the equinox, summer and
winter solstices and when the Sun enters the individual "signs" of the zodiac [5].

SUN

Fig. 3: Components of the planar sundial

2 Gnomonic azimuthal projection

The gnomonic azimuthal projection is the central perspective projection of a
reference sphere I" onto a plane, while the center projection S equals the center
of reference sphere I (Fig. 4) [4].

The author of the gnomonic projection is the Greek astronomer,
mathematician, and philosopher Thales of Miletus (624-547 BC).

The following properties apply in the gnomonic azimuthal projection (Fig. 4):
1t The gnomonic images of the two extreme points of the diameter of the

reference sphere are identical.
2"d The gnomonic image of all the great circles of the sphere T are straight lines.

From the above properties, other properties follow:

3" The gnomonic projection of all meridians, the equator, and the orthodromes
of the reference sphere I'" are straight lines.

4" The gnomonic images of the geographic poles are identical (real point or point
at infinity).

5" Gnomonic images of meridians are straight lines passing through the image
of the poles (a pencil of lines, parallel lines).

6" Gnomonic images of geographic parallels are conic sections, namely ellipses,
parabolas, hyperbolas.
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Fig. 4: The principle and properties of gnomonic azimuthal projection

We know three types of gnomonic projection by position of the projection
plane:

- Normal (polar) aspect — projection plane 7 is perpendicular to the Earth's
axis.

- Transversal aspect — projection plane 7 is perpendicular to the equatorial
plane.

- Oblique aspect — projection plane 7z is not perpendicular to the Earth's axis,
nor the equatorial plane.

The geographical coordinates of the tangent point K of the reference spherical
surface with the projection plane (the so-called cartographic pole and the origin
of the coordinate system) are Uk and Vk. Radius of spherical surface is R and
the map equations of gnomonic azimuthal projection are:
= RsinU cosU, —cosU sinU, cos(V -V, )

sinU sinU,. +cosU cosU, cos(V —V,.)

(1
R cosU sin(V -V,)

y= sinU sinU, +cosU cosU, cos(V -V, )’

3 Gnomonic azimuthal projection on the sundials

The use of gnomonic projection on sundials has been discussed, but we
lacked a simple explanation of why and how. Therefore, we created our own
illustration and explanation of relation between sundial and gnomonic azimuthal
projection (Fig. 5). In the chapter 1, we mentioned, that the position of the sundial
plate and the angle between the gnomon and the plate depend on the geographical
coordinates UL and VL of the installation location. The gnomon PS must be
parallel to the axis of the Earth's rotation. The planar sundial dials contain images
of the meridians and parallels of a spherical surface in a gnomonic azimuthal
projection. Now we will define this spherical surface I'.

Let the solar declination be &, then on this day the Sun's rays have this
direction and pass through point S. Since the declination line is the set of shadows
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of the endpoint S of the gnomon, let us construct a spherical surface I" with center
in the endpoint S of the gnomon and T" is tangent to the dial plane . The spherical
surface I" is homothetic to the reference sphere of the Earth (Fig. 5).

Due to the Earth’s rotation, the declination line is the image of a parallel of
the spherical surface I, where the spherical latitude is the declination &, in
gnomonic azimuthal projection with center S onto a plane 7.

The gnomon lies on the axis of rotation of the spherical surface I, so the
shadows of the gnomon, and therefore the hour lines, are the gnomonic projection
of the meridians. The images of meridians are straight lines and the image of the
local meridian shows noon, i.e. 12 o'clock.

Image of the equator of this spherical surface I" is the straight line. It is the
path of the shadow of the end point of the gnomon during the equinoxes, when
the Sun is on the equatorial plane.

Fig. 5: The principle of using gnomonic azimuthal projection on sundials

3.1 Geometric construction of hour lines and declination lines
on horizontal and vertical direct south sundials

The lines on the dial of horizontal and vertical sundials are images of meridians
and parallels in gnomonic projection in oblique aspect (Fig. 6). The projection
plane is tangent to the spherical surface at point K whose spherical coordinates
are related to the spherical coordinates UL, VL of the sundial’s location.

The image of the equator is a straight line. The base of the gnomon is an
image of the Earth's pole. The image of the local meridian with the longitude ¥
shows 12 o'clock. The other hour lines are identical to the images of the
meridians, whose the angular spacing is in integer multiples hour angle 15° from
the local meridian. The images of the meridians are straight lines passing through
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the image of the Earth's pole and the corresponding point on the equator, which
we construct by rotating the equatorial plane into a projection plane.

Fig. 6: Construction of hour lines and declination lines on sundials by using
gnomonic azimuthal projection

The declination lines are the images of parallels in a gnomonic projection in
an oblique aspect. In the specified range of latitudes (between +23°26'22"), the
image of parallels are hyperbolas. These hyperbolas share a common axis, which
is the image of the meridian perpendicular to the image of the equator.

We determine hyperbolas using their principal vertices "As "Bs and a focus
PF. This focus is constructed as the tangential point of the projection plane and
the spherical surface inscribed in the projective conic surface (in accordance with
the Quetellet-Dandelin theorem).

In the vertical direct south sundials, image of equator equals to horizon.



Sundials and gnomonic azimuthal projection 177

3.2 Geometric construction of hour lines on declining vertical
sundials defined by azimuth A4

The local spherical latitude is UL and P is base point of the gnomon, d is the
length of gnomon. The azimuth of the wall is 4, which is measured for normal
line of the wall from the meridian (the direction of the South in the northern
hemisphere).

9 10 11 12 13

Fig. 7: Geometric construction of hour lines on declining vertical sundials
defined by azimuth A

In the work of [2], the following construction of hour lines on declining vertical

sundials is published (Fig. 7):

- First, construct a right triangle APEH' given: the hypotenuse PE is vertical and
points to 12 o'clock, <(PEH') = UL, <«(EPH") = 90°- UL and |PH’| = d, where
d is the length of gnomon.

- The horizon passes through point H' and the image of the equator passes
through point E. The equator forms an angle @ with the horizon, which we call
declination of sundial and for which:

W= Ai90 —U, .
90°

- The intersection of the equator and the horizon will be marked H".

- We construct point So at the intersection of Thales circle with diameter EH"
and the line perpendicular to equator drawn from point P (where E' is the foot
of this perpendicular).

- From the point So, we construct lines that enclose multiples of the 15° hour
angle with the line segment SoE. We connect the intersections points of these
lines and the equator to point P to get the hour lines on the sundial dial.

2
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3.3 Derivation of the parameters of the gnomonic projection
on a declining vertical sundials defined by azimuth 4

The lines corresponding to specific dates, known as datum or declination lines,
are constructed as gnomonic images of the parallels on the spherical surface. To
achieve this, we first construct an auxiliary view for the gnomonic azimuthal
projection of this spherical surface onto the dial plane 7

At point H” we choose the image of the projection plane z. We derive the
center Sz of the spherical surface from its rotated position So. The angle between
the Earth's axis and the projection plane is 90°- UL, where UL is the local
latitude. The tangential point K (also called cartographic pole) has spherical
latitude of Uk = 90°- UL. As we mentioned in chapter 3.1, in our latitudes, the
images of parallels are hyperbolas with a common axis perpendicular to the
image of the equator. We determine these hyperbolas using their principal
vertices "As , "Bs and focus "F.

When using the map equations of the gnomonic azimuthal projection, we also
need the spherical longitude Vk of the cartographic pole K and the radius R of
the spherical surface. The spherical longitude V1. of the local meridian indicates
noon, so its gnomonic image passes through point E on the equator. The
gnomonic projection of the meridian of the cartographic pole K with longitude
Vk passes through point So, therefore: Vk = VL - <(ESoE").

We derive the angle &= <(ESoE’) as follows:

|E'So|= R sin UL,
|PE'|= |H"K[+|KP'[=R (cot UL + tan UL).

Considering <(EPE") = @ then after substitution:

|EE'|=|PE'| tan @= R tan @ (cot UL + tan UL).

We formulate this angle &:

[EE'| Rtanw (tanU, +cotU, )
ESy| RsinU_
and after editing:

tanw
g=arctan| ——— |,
sin“U  cosU,_

tane =

therefore:

V, =V, —arctan _Zt& . )
sin“U,_cosU,

From the previously mentioned properties, we can derive the radius R of the
spherical surface, depending on the length d of the gnomon. The position of the
equator image depends on the length d of the gnomon, the local spherical latitude
UL, and the angle @, which is also determined from the azimuth 4 of the wall.
The length of the line segment PE in the triangle APEH’ is:
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d

sinU,_

We determine the length of the segment PE' in the triangle APEE’, since
% (EPE") = o, then:

PE| =|PE|cos@ =d 2 “)

sinU

In another way, the length of the line segment PE’ can be determined from
the size and position of the spherical surface, namely from its radius R and local
spherical latitude U, so the following holds:

|PE'|= [H"K[+|KP'|=R (cot UL + tan UL). (5)

IPE[=

1
Fig. 8: Geometric construction of declination lines on declining vertical
sundials defined by azimuth 4

Equating the right sides of the relations (4) and (5), we obtain an expression
for the radius R of the spherical surface:
cosw

_ sinU,  after modification: R=d cos @cos UL.  (6)
tanU,_ +cotU

We can also reformulate this relationship:

R =d cos @cos (90°- Uk). 7
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4 Application of derived parameters to create a sundial dial

The parameters of the gnomonic projection, namely the spherical latitude and
longitude Uk, Vk of the cartographic pole K and the radius R of the spherical
surface, derived in the previous chapter can be applied to the creation of the dial
of horizontal sundials, vertical direct south sundials, and also a declining vertical
sundials defined by azimuth A. Considering the comparison of different types of
sundials, we have created designs of dials for a specific location in Bratislava
with the following spherical coordinates:

UL =48° 8" 53.38",

ViL=17°6'24.26".

4.1 Horizontal sundials

The dial plate of horizontal sundial is parallel to the local tangent plane of the
reference surface and the gnomon is parallel with Earth’s axis and the angle
between the gnomon and dial plate is equal to the local spherical latitude UL.

The projection plane of gnomonic azimuthal projection is tangent to the
spherical surface at the cartographic pole K, whose spherical coordinates are:

spherical latitude Uk = UL,

spherical longitude V= Vi, ®)
where UL and VL are the geographic coordinates of the sundials’s installation
location.

Since in equation (7) for calculating the radius R of the spherical surface,
@ = 0°, then the following applies to horizontal sundials:

R =d cos (90°- UL), 9)

where d is length of gnomon.

Fig. 9: Hour lines and declination lines in horizontal sundial for the Bratislava
location



Sundials and gnomonic azimuthal projection 181

Figure 9 shows a visualization of hour and declination lines on horizontal
sundial for the Bratislava location, which were created in the software Wolfram
Mathematica [8] using the map equations (1) of the gnomonic azimuthal
projection. The parameters Uk, Vk, R of gnomonic azimuthal projection in
oblique aspect were determined using the relations (8) and (9), from spherical
coordinates UL, VL of location Bratislava and from length of gnomon d, which is
shown in the scale of the dial.

Figure 10 shows examples of horizontal sundials, on the left is sundial located
in the center of the village Babind, made in 2010 by folk craftsman M. Baran
from Slia¢ and sundial on the right is located in the park near the Cultural Center
in Bernolékovo. It was made according to the design of Mr. Milan Baran in 2011.

e . o €20 ; . i { 3 )
Fig. 10: Examples of the horizontal sundials located in Babina (left) and in
Bernolakovo (right) (photo by Ladislav Barabas) [3]

4.2 Vertical direct south sundials

Planar plate of vertical sundial is in normal plane to the reference surface, the
gnomon is parallel to the Earth’s axis, then the angle between the gnomon and
the dial plate is: 90° - UL, where UL is the spherical latitude of the installation
site. Vertical direct south sundials have dial plane perpendicular to the tangent to
the south-facing meridian, its azimuth is 4 = 0°.

The projection plane of gnomonic azimuthal projection in the oblique aspect
is tangent to the spherical surface at the cartographic pole K, whose coordinates
are:

spherical latitude Uk = 90° - UL,

spherical longitude V= Vi, (10)
where UL and VL are the geographic coordinates of the sundials’s installation
location.

Since in equation (6) for calculating the radius R of the spherical surface,
@ = 0°, then the following applies to vertical direct south sundials:

R=dcos UL, (11)
where d is length of gnomon.
Figure 11 shows a visualization of hour and declination lines on vertical direct
south sundial for the Bratislava location, which were created in the software
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Wolfram Mathematica [8] using the map equations (1) of the gnomonic
azimuthal projection. The parameters Uk, Vk, R of gnomonic azimuthal
projection in oblique aspect were determined using the relations (10) and (11),
from spherical coordinates UL, VL of location Bratislava and from length of
gnomon d, which is shown in the scale of the dial.

Fig. 11: Hour lines and declination lines in vertical direct south sundial for the
Bratislava location

Fig. 12: Examples of vertical direct south, polar and horizontal sundials

Figure 12 shows examples of sundials. On the left is dial of sundial from
ancient Egypt, Valley of the Kings (1500 BC) [6] and on the center and the right
is vertical, polar and horizontal sundials in the of Brno Observatory and
Planetarium area (photo by Vajsablova).

4.3 Declining vertical sundials defined by azimuth A

Dial plane of declining vertical sundial defined by azimuth A4 is in normal plane
to the reference surface with angle 4 to the tangent to the south plane. The
gnomon is also parallel to the Earth’s axis, then the angle between the gnomon
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and the dial plate is: 90° - UL, where UL is the spherical latitude of the installation
site.
The projection plane of gnomonic azimuthal projection in the oblique aspect
is tangent to the spherical surface at the cartographic pole K with coordinates:
spherical latitude Uk = 90° - UL,
spherical longitude Vk is defined in (3):
Vi =V —arctan _ZIL :
sin“U, cosU,
where UL and VL are the geographic coordinates of the sundials’s installation
location and declination @ is defined by (2):
oA 90°-U, _
90°
Radius R of the spherical surface is defined by (6):
R =d cos @ cos UL
where d is length of gnomon.

Fig. 13: Hour lines and declination lines in declining vertical sundial defined
by azimuth 4 = 10° for the Bratislava location

Fig. 14: Declining vertical sundials on two walls with different azimuth 4 in
Bratislava, Bezrucova [3]



184 Sundials and gnomonic azimuthal projection

Figures 13 shows a visualization of hour and declination lines on declining
vertical sundial defined by azimuth 4 = 10° for the Bratislava location, which
were created in the software Wolfram Mathematica using the map equations (1)
of the gnomonic azimuthal projection. The parameters Uk, Vk, R of gnomonic
azimuthal projection in oblique aspect were determined using the relations (3)
and (6), from spherical coordinates UL, V1 of location Bratislava, azimuth 4 and
from length of gnomon d, which is shown in the scale of the dial. The image of
the equator is a straight line inclined from the horizon by an angle @, which is
determined according to relation (2).

Figure 14 shows two declining vertical sundial defined by azimuth A.

5 Conclusion

Sundials are not just history. In 2022, the Technical Museum in Kosice [3]
published an overview of 245 sundials in Slovakia, an increase of 117 sundials
since 1977.

In the paper, we showed a geometric solution to the dial design, both
constructive and analytical, with a strict connection to the gnomonic azimuthal
projection. Another benefit is the derivation of the parameters of the gnomonic
azimuthal projection with application to several types of sundials. We applied
these parameters when using the map equations of the gnomonic azimuthal
projection in the creating a program for rendering a sundial dial in the Wolfram
Mathematica software environment.
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Abstract. This paper brings examples of curves that are inverse to some
elementary planar curves in the complex plane, through algorithm based on point-
wise operation of Minkowski division of point sets defined in the sense of
Minkowski geometric algebra of complex sets. Pairs of inverse curves are
presented for line, circle, conic sections, spirals and helix, as modelled in the
GeoGebra software environment.
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1 Introduction

Minkowski geometric algebra of complex sets was introduced in 2001 by Rida
T. Farouki and Bahram Ravani and published in paper [1]. Arithmetic operations
of summation, difference, multiplication and division of points in the complex
plane are defined in this paper as standard operations on complex numbers.
Point-wise operations of Minkowski sum, difference, product and quotient of
point sets in the complex plane are then defined as follows.

Let A and B be point sets in the complex plane. Then

Minkowski sumbeset A B={a+b;a€eAAb € B}

Minkowski difference beset A© B ={a—b;a€ AAb € B}
Minkowski product be set A @ B ={axb;a€ AADb € B}

Minkowski quotientbe set A@ B ={a+b;a€ AAb € B,b # (0,0))}

where +, —, x and + are standard operations on complex numbers. Let points a
and b be determined in the algebraic form as a = (a4, a,), b = (b, b,), then

a+b=(a, +by,a,+Db,)
a—b=(a; —bya,—by)
axb = (a;b; —a,b,,a,b, +a,b,)
(a;by + ayb,, a;b; — ayby)
b? + b

a+-b=

Minkowski division of point sets 4 and B might be also regarded as
Minkowski multiplication of set 4 by the inverse set B! to the set B. In order to
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determine an inverse set B! to the set B, the following equation should be
satisfied
BxB™1=B"1xB ={(1,0)}

yielding to the form of the inverse set determination as B~! = —{(11'30)},
whereas for points in the set B~ this leads to the form b™! = (1’.%0) = # .

2 Inverse curves

Let us consider smooth curves in the complex plane as point sets to be multiplied
and divided following the above rules, and let us look at the formula of an inverse
curve to an arbitrary planar curve. Let the curve 4 be defined by its vector
parameterisation A: r(u) = (x(u), y(u)),u € I c R. Then, using the operation
of Minkowski division of point sets, we receive

110 _ r@ _ Gwyw)
rw r@ r@P> @)+ Gw)?*

Looking for pairs of inverse curves, we will start with line, then continue with
circle, ellipse, parabola and hyperbola, spiral and helix. We will investigate the

influence of various positions of the basic curve on the form of its inverse.

r () =

2.1 Inverse to a line

Parametric representation of a line in the form
r(u) = (w,ku+h),u e R k,heR
determines the form of the parameterisation of the line inverse
(u,ku + h)
u?(k? + 1) + 2khu + h?’

Thus inverse to a line not passing through the origin is a circle, while the
inverse is a line for a line passing through the origin, as illustrated in Fig. 1.

riw)= UuERkhER.

Fig. 1: Inverse curves to lines
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2.2 Inverse to acircle
Considering parameterisation of a circle given by vector function

r(u) = (kcosu +dy, ksinu+d,),u €]0,2n[, k,dy,d, ER
there might be derived vector representation of its inverse curve in the form

(kcosu+dy, ksinu+d,)

’ € 0’2 Ik)d ,d ER
k? + 2k(d, cosu + d, sinu) + d? + d? u € 10, 2m[ 1,0

rt(w) =

With respect to the position of the circle, its inverse might be:
a line, if circle is passing through the origin
a circle, in all other positions, see in Fig. 2.

Fig. 2: Inverse curves to circles

2.3 Inverse to an ellipse

Inverse curve to an ellipse represented parametrically by vector map
r(u) = (acosu+dy,bsinu+d,),u €]0,2n[,a,b,d;,d, €ER

is determined by vector function

(acosu+dq,bsinu +d,)
h(u)
where h(u) = a? cos?u + b? sin? u + 2(ad; cosu + bd, sinu) + d? + d3.
Inverse curve might have many different forms, depending on the position of
ellipse. Inverse to ellipse with centre in the origin and axes in the coordinate axes
resemble curves called hippopede of Eudoxus, if the ellipse is passing through
the origin, its inverse curve looks like cissoid of Diocles. There are also many
other forms of inverse curve to an ellipse, one of which might be perhaps also
epitrochoid, in case of certain values of parameters describing the ellipse. Many
other forms might be achieved by general position of ellipse with axes not
coinciding with the coordinate axes and arbitrary centre in the plane, see Fig. 3.

r_l(u) = yu € ]01 ZTE[: a, b; dlle € R;
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Fig. 3: Inverse curves to ellipses

2.4 Inverse to a parabola

Parabola in the basic position in the plane with axis coinciding or parallel to the
coordinate axis y might be represented by vector function

r(u) = (w, ku?+h),u€ R, k,h€R
and its inverse curve has parametric representation in the form
(u, ku® + h)
u2(1 + k2u? + 2kh) + h?’
Inverse curves have the form of hippopede of Eudoxus, cissoid of Diocles, or

even and epitrochoid, with respect to the position of parabola to the coordinate
axes and the origin as illustrated in Fig. 4.

u€ERkheR.

ri(u) =
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Fig. 4: Inverse curves to parabolas

2.5 Inverse to a hyperbola

Parametric representation of hyperbola in the form

a
l‘(u) = (— + dl,b t(u) + dz) ,u € ]O, 1[, a, b, dl’ dz €ER
c(w)
for c(u) = cos((1 — 2w)m), Hu) = tan((1 — 2u)x) yields parametric representation
of its inverse curve
r(u)

r_l(u) = m ,u€ ]Oll[) a, b: dlle € R;

where h(u) = a? c™2(u) + b? t2(w) +2(ad, c"1(u) + bd, t(w) + d? + d2 .

Lemniscate of Bernoulli is inverse curve to equiaxed hyperbola with equal
semi-axes @ = b and axes in the coordinate axis, limagon of Pascal (epitrochoid)
is inverse to properly shifted equiaxed hyperbola, the inverse curve might be also
Cartesian oval or even cissoids of Diocles if the equiaxed hyperbola is passing
through the origin, as this was the case also of other conic sections, ellipse and
parabola.

These specific forms of hyperbola inverse curves, and also some other
interesting forms of hyperbola inverses, are presented in Fig. 5.
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Fig. 5: Inverse curves to hyperbolas

2.6 Inverse to a spiral
Inverse curve to spiral

r(u) = (kucosu + dy, kusinu + d,),u €10,2n[,k,dy,d, € R
is parameterised in the form

(kucosu+ dy, kusinu + d,)
h(u)
where h(u) = k? u? + 2ku(d; cosu + d, sinu) + d? + d? .

,u€lo,2n[,k,d;,d, ER

r i) =

Various interesting forms of inverse curves to spiral in several specific
positions with respect to coordinate system, determined by presented chosen
values of parameters £, di, and d», are illustrated in Fig. 6.
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Fig. 6: Inverse curves to spirals

2.7 Inverse to a helix

Applying the same formula for definition of an inverse curve to a space curve
determined parametrically by formula

r(w) = (x(w),y(w),z(w),u €I c R,
there might be derived parametric form of such inverse as
_ (x(w), y(w), z(u))
rw) )+ w)*+ zw)* '’

Considering helix in the form

ri)=

u €l cCR.

r(u) = (kcosu + dy, ksinu + d,,vu),u € 10,2n[,k,d,d,, v €ER,
its inverse curve is defined by formula

(kcosu+dy, ksinu + d,, vu)

) = )

,k,dqy,d,, v ER,
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while h(u) = k% + 2k(d, cosu + d, sinu) + d? + d3 + v?u?.

Inverse curve to a helix in the basic position is another helix, generally, it is
a space curve, see Fig. 7.

4

\

<

Fig. 7: Inverse curves to spirals

3 Conclusion

Curves inverse to basic planar curves were presented, based on Minkowski point
set operations defined according to Minkowski geometric algebra of complex
sets. Examples of pairs of inverse curves are presented for line, circle, all conic
sections - ellipse, parabola, hyperbola, and spiral, while always the parametric
representations of these inverses are derived, and a short analyses of the inverse
curves forms with respect to the special positions of the basic curves is provided.

Well-known curves like hippopede of Eudoxus, cissoid of Diocles, limagon
of Pascal or cardiod (epitrochoids), or even lemniscate of Bernoulli and Cartesian
ovals might appear as inverse curves to conic sections, if these are in special
position to the coordinate system. These interesting findings should be studied
further on carefully, in order to find relations between various forms of inverses
with respect to transformations of scaling, shifting and probably also rotation of
the basic curve in the complex plane. There might be found some connections to
M@bius transformations of the complex plane.

An example of possible definition of an inverse to a space curve, namely
helix, is presented, too, while more investigations should be paid to this problem.
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Abstract. The paper deals with the changes in the teaching of
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1 Uvod

Deskriptivni geometrie se na VSB-TUO vyucuje uz od jejich pocétki,
které sahaji do poloviny 19. stoleti, kdy se jesté jednalo o banské ucilisté
v Piibrami.[2] Katedra matematiky a deskriptivni geometrie vznikla jako
samostatny dstav v roce 1899 a dosud zajistuje vyuku matematickych
pfedméti a deskriptivni geometrie.!

Promény vyuky deskriptivni geometrie budeme sledovat zejména s po-
moci ucebnic a skript vydanych na VSB-TUO. Nejstarsim skriptem je
Deskriptivni geometrie autora Véclava Stépanského z roku 1953. Vychozi
pro nas je rok 1957, ve kterém vyslo skriptum Deskriptivni geometrie II,
jehoz autory jsou Véclav Stépansky, Oldfich Hajkr, Jan Hebelka a Josef
Lénicek. Toto skriptum je nejstarsi zdroj, o ktery se ¢lanek opira.

1V soucasnosti spolu s dalsimi katedrami matematiky pisobicimi na rtznych fa-
kultach univerzity.
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2 Vyuka

Jednim z ukazatelil toho, jak se ménila vyuka deskriptivni geometrie,
je urcité i casova dotace pridélend predmétu a zpusob jeho zakonéeni.
Prehled nize prezentuje situaci na Hornicko-geologické fakulté, kde se
deskriptivni geometrie vyucovala po celou dobu sledovaného obdobi. Roky,
které nejsou uvedeny se nepodafilo dohledat.

Témer od pocatku sledovaného obdobi az do roku 1976/77 byl pocet
hodin konstantni, ménil se jen zptisob zakonceni predmétu.? Od roku
1977/78 ale zacal pocet hodin postupné klesat, kromé tfech okamzik,
kdy doslo k narustu. Prvnim byl rok 1987/88, kdy se z jednosemestralniho
predmétu stal opét dvousemestralni. V roce 1990/91 pribyla navic ve
druhém semestru jedna hodina prednasky, diky ¢emuz méla vyuka stejny
rozsah jako v roce 1977/78. Poslednim navysenim bylo v roce 1996/97
pridani jedné hodiny predn&sky.

1958/59 3+2 zk 2+2 kl.zap+zk
1959/60 — 1963/34 3+3 zk 2+2 kl.zap+zk
1965/66 — 1966/67 3+3 zk 2+2 zk+pr
1967/68 — 1976/77 3+3 zk 242 zk
1977/78 2+2 zk 2+2 zk
1980/81 442 zk

1984/85 — 1985/86 3+3 zk

1987/88 — 1989/90 2+2 zk 1+2 zap
1990/91 - 1991/92 2+2 zk 2+2 zk
1993/94 — 1995/96 2+3 zk

1996/97 — 2003/04 3+3 zk

2004/05 - 2007/08 242 zk

2019/20 — dnes 2+2 zap+zk

Obr. 1: Casovd dotace v jednotlivych akademickych rocich spolu se
zpusobem zakonceni. [5]

3 Skripta

Béhem sledovaného obdobi vyslo velké mnozstvi skript, podklad tohoto
¢lanku tvoif 24 z nich.[4]® Porovndvat mezi sebou jednotlivd skripta by

2zk — zkouska, zap — zapocet, kl.zap — klasifikovany zdpocet, pr — projekt
3Jejich seznam lze na vyzadani zaslat.
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bylo nepiehledné a piilis naroéné, proto je rozdélime do skupin, z nichz
kazda tvori zdanlivy celek. Pojicim prvkem skupiny je napiiklad totozny
autorsky kolektiv nebo ndvaznost jednotlivych skript na sebe atp. U kazdé
skupiny uvadime pfibliznou dobu pouzivani skript, resp. rok prvniho a po-
sledniho vydéani nékterého skripta ze skupiny.

1. 1957 — 1989 V. Stepansky, O. Hajkr, E. Plockov4

2. 1990 — 1998 J. Lanicek, E. Plockova

3. Zéklady DG a KG + Sbirka fesenych piikladu z DG
a KG (5 dila)

4. 2006 — 2013 mdg.vsb.cz

5. LMS
Prvni skupina se vyznacuje velkym mnozstvim vydanych knih, ve kterych
se ale témata téméf neménila. Pro skripta druhé skupiny je charakte-
ristické pfevzeti témat ze skupiny prvni a jejich zestru¢néni. Tteti sku-
pina je ucelenou sadou péti skript doplnéng péti sbirkami tloh. Ctvrtou
skupinu definuji materidly §ifené pfedevsim elektronicky, v soucasnosti
shromdzdéné na uvedené webové adrese.[3] Posledn{ a soucasnd skupina
neobsahuje zadné skripta vydana klasickym zpusobem, ale zahrnuje ma-
terialy, které si vyucujici tvori sami a zvefejnuji je ve svych elektronickych
kurzech v LMS.*

Casovéa osa vyznacuje obdobi puisobnosti jednotlivych skupin skript.
Tato doba se postupné zkracuje, coz znamend, ze rychlost proménovani
vyuky se zvySsuje.

1960 1970 1980 1990 2000 2010 2020
XYY Y Y Y@L I XYY Y Y Y Y@L Y YT Y Y Y Y Y @I Y Y Y Y Y Y Y Y@L Y Y TY Y Y T Y Y@ YYYYY Y TY Y@ XYY Y Y Y Y Y@L Y Y Y 1)

Obr. 2: Orientac¢ni ¢asovd osa.

4 Témata

Zmény se nejvice projevuji v probiranych tématech, podivame se tedy na
to, kterd témata autofi do svych skript zafazovali a v jaké mife. Sledujeme
vzdy jedno téma a porovnavame to, jak se mu vénovaly jednotlivé skupiny.
Zaroven musime zohlednit, pro které studijni obory byla skripta urcena.
Ve skupindch 1, 2 a 3 jsou skripta urcend pro viechny obory VSB-TUO,
které mély ve studijnim planu deskriptivni geometrii. Vybér konkrétnich
témat byl pak upfesnén na pfednédskach. Ve skupinach 4 a 5 uz jsou jed-
notliva skripta urc¢ena pro ruzné obory a nedaji se tak snadno porovnat,
napf. proto, ze pro nékteré obory skripta nevznikla.

4Learning Management System.
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Nyni popiSeme, v jaké mife se v jednotlivych skupinach vyskytovala
nejvyznamnéjsi témata a na co kladli autofi duraz. Vse ilustruje pfehled
na konci odstavce. Kapitolu o vyvoji deskriptivni geometrie, stejné jako
projektivni geometrii, obsahovaly pouze skripta z prvni skupiny. Geomet-
rické zéklady jsou zminovany jen v prvni a druhé skupiné a pak ve ¢tvrté.
V prvnich dvou skupinéch se kladl diraz na axiomatiku, ve ¢tvrté skupiné
autofi pripominali také mnoziny bodu dané vlastnosti a tlohy tykajici
se trojihelnikt. Zobrazovacim metoddm se vénovala skripta v kazdém
obdobi, pficemz je zde tfeba upozornit, ze pokud v nékteré skupiné ne-
bylo zpracovano urcité téma, neznamena to, ze by se neprobiralo napf.
s vyuzitim predchozich materidli. Naopak linedrni perspektiva a kosotihlé
promitani se vyskytuji pouze v posledni skupiné, coz souvisi s vyukou
deskriptivni geometrie na Stavebni fakulté od roku 1997. U kuzelosecek
se ve vSech obdobich probirala elipsa, hyperbola a parabola a v prvnich
tFech obdobich také konstrukce fezu valcovych a kuzelovych ploch. Stalym
tématem jsou i kiivky, véetné cyklickych a plochy, jejichz vybér byl vzdy
uzpiisoben konkrétnimu typu studia.® Zpogstku se fesilo i osvétleni a sité
ploch, v poslednich tiech skupinach zustaly jen konstrukce fezu a pruniku.

— N >< > > >
Zaklady geometrie axiomy, definice, axiomy, definice, axiomy, mbdy,
_ = 2 ZS wojihlni <
Zobrazovaci metody KP, MP, KSP, PAX  KP, MP, KSP, PAX, KP, MP, PAX MP, PAX KP, MP, KSP, PAX,
teorie LP
Kuzeloseéky E, P, H, fezy, E, P, H, Fezy, E, H,P E,H,P E, H,P
primét kruznice kolineace fezy
Kfivky a plochy stiny, fezy, sité, fezy, praniky  fezy, praniky fezy, praniky fezy, praniky
praniky

Obr. 3: Piehled témat v jednotlivych skupinach.

5 Zavér

Role deskriptivni geometrie v inzenyrské ptipravé se promeénuje. Diive
to byl nutny néstroj pro spravné zpracovani vykresu, dnes se vyznamné
podili na rozvoji prostorové predstavivosti a umoznuje spravné pochopeni
modernich modelovacich a vizualiza¢nich néstroji. Studium vlastnosti ge-
ometrickych objektu zustdva jejim predmétem stdle.[1]

Pavodni zédmér vyuzit poznatky o proménach vyuky k dalsi moderni-
zaci deskriptivni geometrie se ukazal jako obtizné dosazitelny. Sledované

5Hornictvi, strojnictvi, stavebnictvi, architektura.
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zmény nebyly natolik zasadni, aby bylo mozné postihnout tendenci vyvoje
predmétu. Nelze tedy stanovit trend jeho vyvoje ani v nésledujicich letech.

Shrneme aspon poznatky, které se vyskytly pti studiu zminované pro-
blematiky. Casova dotace se pribézné snizuje, na nékterych skoldch se
od vyuky deskriptivni geometrie upousti tiplné. Témata se neméni kon-
tinualné, spiSe narazové mezi jednotlivymi skupinami. Intenzita zmén
narustd, ale nejsou to zmény zasadni, méni se vétsinou jen dil¢i témata,
piipadné se snizuje naro¢nost. Vyznamnda témata jako jsou zobrazovaci
metody, kiivky a plochy a kuzelosecky zustavaji beze zmén. Do vyuky se
postupné zapojuji nové technologie, napt. POV-Ray, GeoGebra a 3D tisk.

Literatura

[1] D. Dlouhd, V. Votoupal: Od historie pies soucasnost k budoucnosti
aneb jak oZivit deskriptivni geometrii, Sbornik 30. konference Mo-
derni matematické metody v inzenyrstvi. Ostrava, 2025

[2] KMDG: Z historie katedry, [on-line]. [cit. 2025-08-20]. Dostupné z:
https://www.fs.vsb.cz/310/cs/o-katedre/z-historie/

[3] KMDG: E-studovna. [on-line]. [cit. 2025-08-20]. Dostupné z: https:
//mdg.vsb.cz/portal/index.php

[4] VSB-TUO: Skripta z oboru deskriptivni geometrie vydand univerzi-
tou. VSB-TUO, Ostrava, 1957-2013.

[5] VSB-TUO: Studijni pliny a programy Hornicko-geologické fakulty,
VSB-TUO, Ostrava, 1958-2008.






11t Slovak-Czech Conference on Geometry and Graphics 2025

199

List of Participants

BAZzSO Agnes
BEGANOVA Juliana
COCCHIARELLA Luigi
FERDIANOVA Véra
GABKOVA Jana
GERGELITSOVA Sarka
HLAVOVA Marta
HoLAN Tomas
HOLESOVA Michaela
CHALMOVIANSKA Jana
CHALMOVIANSKY Pavel
CHODOROVA Marie
CHVALNY Miroslav
KUBAT Jakub
LAVICKA Miroslav
LINKEOVA lvana
MAKOVNIK Marcel
MARKECHOVA lveta
MOLNAR Emil
MOLNAR Michal
OTRUBOVA Anna
PECH Pavel

POKORNA Barbora
PRASILOVA Monika
RICHTARIKOVA Daniela

Fakulta ekondmie a informatiky, UJS, Komarno
Stavebna fakulta, STU v Bratislave

Politecnico di Milano

Piirodovédecka fakulta, Ostravska univerzita

Strojnicka fakulta, STU v Bratislave

Gymnazium Benesov

Fakulta strojni, CVUT v Praze

Matematicko-fyzikalni fakulta UK, Praha

Stavebna fakulta, Zilinska univerzita v Ziline

Fakulta matematiky, fyziky a informatiky, UK, Bratislava
Fakulta matematiky, fyziky a informatiky, UK, Bratislava
Piirodovédecka fakulta, Univerzita Palackého v Olomouci
Strojnicka fakulta, STU v Bratislave

Fakulta strojni, CVUT v Praze

Fakulta aplikovanych véd, ZCU v Plzni

Fakulta strojni, CVUT v Praze

Fakulta matematiky, fyziky a informatiky, UK, Bratislava
Materialovotechnologicka fakulta STU so sidlom v Trnave
Budapest University of Technology and Economics
Matematicko-fyzikalni fakulta UK, Praha

Gymnazium Jana Keplera, Praha

Pedagogicka fakulta, Jihoceska univerzita

Fakulta matematiky, fyziky a informatiky, UK, Bratislava
Strojnicka fakulta, STU v Bratislave

Strojnicka fakulta, STU v Bratislave

RUCKSCHLOSSOVA Tatiana Stavebna fakulta, STU v Bratislave

SALVI Peter
SKRZYPIEC Magdalena
SLAVIK Antonin
STACHEL Hellmuth
SZARKA Jan
SZARKOVA Dagmar
Sir Zbyn&k
SKORPILOVA Martina

Budapest University of Technology and Economics
Maria Curie-Sklodowska University, Lublin
Matematicko-fyzikalni fakulta UK, Praha

Vienna University of Technology

SSGG, Bratislava

SSGG, Bratislava

Matematicko-fyzikalni fakulta UK, Praha
Matematicko-fyzikalni fakulta UK, Praha



200

11* Slovak-Czech Conference on Geometry and Graphics 2025

VAJSABLOVA Margita
VELICH llja
VELICHOVA Daniela
VOTOUPAL Viclav
VRSEK Jan

WEISs Gunter
ZAHONOVA Véra
ZAMBOJ Michal

Stavebna fakulta, STU v Bratislave

SSGG, Bratislava

Strojnicka fakulta, STU v Bratislave

Fakulta strojni, VSB - TU Ostrava, Ostrava-Poruba
Fakulta aplikovanych véd, ZCU v Plzni

TU Dresden & TU Vienna

Strojnicka fakulta, STU v Bratislave
Pedagogicka fakulta UK, Praha




Proceedings of the

11" SLoVAK-CZECH CONFERENCE
ON GEOMETRY AND GRAPHICS 2025

Editors:
Dagmar Szarkova, Daniela Velichova

Published by
Vydavatel'stvo SCHK
Radlinského 9, 812 37 Bratislava

First Edition
Bratislava 2025

ISBN 978-80-8208-170-4 (online)



	Zamboj_45-50.pdf
	Introduction
	Initial motivations
	Reflection on the current state of descriptive geometry education in the Czech Republic
	Conclusion




