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Problémy globalnej variacnej geometrie

Jan Brajercik

Abstrakt

Globdlna variacnd geometria je moderna
matematickd disciplina integrujica poznatky
viacerych oblasti matematiky. ZovSeobeciuje
klasicky varia¢ny pocet, pricom predmetom
jej skumania je geometrickd Struktdra
pozostavajica z hladkej variety a diferencidlne;j
formy na nej definovanej. V tomto prispevku
charakterizujeme zdkladné pojmy globalnej
variatne] geometrie. TieZ rozoberdme
niektoré problémy rieSené metddami globdlne;j
variacnej geometrie.

KTFacové slova: globdlna variacnd geometria,

variacny pocet, fibrovana varieta, jet,
Lagrangian, Eulerove-Lagrangeove rovnice

Abstract
We introduce the global variational geometry
as a modern mathematical discipline

integrating the knowledge of many areas of
mathematics. It generalizes classical calculus
of variations, and its subject is a geometric
structure consisting of a smooth manifold
endowed with a differential form. In this
contribution, basic concepts of the global
variational geometry are characterized. We
also discuss some problems solved by methods
of the global variational geometry.

Keywords: global variational geometry,
calculus of variations, fibered manifold, jet,
Lagrangian, Euler-Lagrange equations

1 Uvod

Globdlna variacnd geometria je odvetvie matematiky, ktoré sa venuje extremalnym problémom,
na rozhrani diferencidlnej geometrie, topoldgie, globdlnej analyzy, algebry, variacného poctu
a matematickej fyziky. Tato disciplina zovSeobeciiuje klasicky variaény pocet v tom zmysle,
ze podkladové priestory, ktorymi su Euklidovské priestory, sa nahradzaju hladkymi alebo fi-
brovanymi varietami, a integrandy variacnych funciondlov, ktorymi si Lagrangeove funkcie, sa
nahradzaja Lagrangeovymi diferencidnymi formami. Predmetom globélnej variacnej geometrie
je Studium extrémov integrdlnych variacnych funkciondlov definovanych pre rezy fibrovanych
variet, prisluSnych diferencidlnych rovnic a objektov invariantnych voci transformdciam pod-
kladovych geometrickych Struktdr.

Zékladné geometrické idey, ktoré umoznili globalizovat klasicky variacny pocet, vychadzaju
z konceptov E. Cartana [2] pre variacny pocet jednorozmernych integrdlov a najmi z prace
Lepagea [14]. K formovaniu globdlnej teérie prispeli hlavne Dedecker [3] (geometricky pristup
k variacnému poctu), Garcia [S] (Poincarého-Cartanova forma a invariantné geometrické opera-
cie), Goldschmidt a Sternberg [7] (Cartanova forma, Hamiltonova tedria), Krupka [11] (Lepa-
geove formy, variacné funkcionaly vysSich rddov) a Trautman [15] (invariancia Lagrangeovych
systémov). Pre ziskanie SirSieho prehladu o globdlnej variacnej geometrii odporic¢ame publika-
ciu Krupka [10].

G — slovensky Casopis pre geometriu a grafiku, rocnik 21 (2024), Cislo 41-42, s. 5 - 18 5



Jan Brajercik

Struktira tohto prispevku je nasledovna. V &asti 2 stru¢ne uvedieme zékladné pojmy klasického
varia¢ného poctu, ktoré su ilustrované niekol'kymi prikladmi jednoduchych variaénych problé-
mov a ich rieSeniami. Cast 3 je venovand popisu topologickych, hladkych a fibrovanych variet.
V casti 4 predstavujeme pojem jetu a jeho vyuZitie na konStrukciu tzv. jetovych prolongacii
fibrovanej variety ako hlavnej podkladovej §truktiiry pre globalnu varia¢ni geometriu. Struktiira
integralnych variacnych funkciondlov je charakterizovand v Casti 5, pricom su v nej zahrnuté po-
jmy ako Lagrangidn a Eulerove-Lagrangeove rovnice. V Casti 6 rozoberdme vybrané problémy
globdlnej variacnej geometrie.

2 Variacny pocet

KTidcovu tlohu vo variatnom pocte zohrdva pojem funkciondlu. Pod funkciondlom mame na
mysli priradenie, pri ktorom kazdému zobrazeniu z danej triedy zobrazeni prisliucha redlne ¢islo.
Variacny pocet sa potom zaoberd hfadanim maxima a minima funkciondlov.

Teraz uvedieme niekol'ko typickych prikladov variacnych problémov, teda problémov, ktoré sa
tykaji urcenia extremalnych hodnot funkciondlov.

1. Ndjdi najkratsiu krivku v rovine spdjajiicu jej dva body A a B; teda ndjdi krivku y = y(x),
pre ktori funkciondl

[ ViR

dosahuje svoje minimum.
Ukazuje sa, ze hfadanou krivkou je dsecka spajajica body A a B.

2. Spomedzi vSetkych kriviek spdjajiicich dva pevné body A = (x4,ya) a B = (xp, yp) ndjdi

taku krivku, aby castici pohybujiicej sa po nej pod vplyvom gravitdcie trvalo ¢o najkratsi ¢as
dostat sa 7 A do B.

Hladdme krivku y = y(z), pre ktord ¢asovy funkcionél

B de
Jef
A TA v

dosahuje svoje minimum. Kedze

=1+ (y)*dz, v=+/2gy,

potom ¢as 1" pohybu Castice z A do B je
/ VIi+W)? +

Hrladand krivka sa nazyva brachistochrona (z gréckeho brachistos - najkratsi, chronos - Cas).

6 G — slovensky Casopis pre geometriu a grafiku, rocnik 21 (2024), Cislo 41-42, s. 5 - 18



Problémy globalnej variatnej geometrie

Ukazuje sa, Ze ide o Cast cykloidy leZiacej vo vertikdlnej rovine, ktord prechddza bodmi A a B.
Tato krivka (obr. 1) je parametricky vyjadrend rovnicami

x=r(0—sinfd), y=r(l-—cosh),

kde hodnota 7 je ur¢end pociatocnymi podmienkami.

Obr. 1. Brachistochrona

Problém brachistochrony bol pdvodne formulovany Johannom Bernoullim v roku 1696 a zohral
dodlezitu dlohu v rozvoji variatného poctu. Okrem Johanna Bernoulliho problém vyriesili aj
Jacob Bernoulli, Newton a L'Hospital.

3. Spomedzi vsetkych kriviek spdjajiicich dané body A a B ndjdi krivku, ktord rotdciou okolo
osi x vytvori plochu s najmensim obsahom.

Ako je dobre zname, obsah plochy vzniknutej rotéciou krivky y = y(x) okolo osi x je Ked'Ze

TR
27?/ yv/ 1+ (y)*de.

A

Hradana krivka je tzv. refazovka prechadzajica bodmi A, B. Nazov krivky pochddza z tvaru,
ktory by zaujala hmotnd refaz ukotvena v bodoch A, B vo vertikdlnej rovine obsahujticej tieto
body pod vplyvom tiaZe. Refazovka je vyjadrena predpisom

$—|—Cl
= (' cosh
y COS C s

pricom konstanty C,C} st uréené pociatoénymi podmienkami y4 = y(za), yp = y(xp)
reprezentujicimi polohu bodov A, B (v pripade Specidlnej polohy bodov A, B rieSenie de-
generuje; pre detailnejsi opis situdcie pozri Gelfand a Fomin [6]).

Rotac¢na plocha vzniknutd rotdciou refazovky sa nazyva katenoid. Tento problém je tieZ zndmy
ako problém minimdlnych ploch abol vyrieSeny Leibnizom, Huygensom a Johannom Bernoullim
v roku 1691.
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TA B

Obr. 2. Refazovka

VSsetky vySssie uvedené problémy sa tykaji integralov, ktoré moZno zapisaf v tvare

b
/ L(z,y,y')dx,

kde funkcia L : V' — R, V C R x R x R sa nazyva Lagrangeova funkcia (alebo Lagrangidn).
Lagrangeova funkcia L definuje na mnozine vSetkych pripustnych zobrazeni y = (x) akciu S
funkcie Lagrangidnu L na intervale [a, b] dand predpisom

b
S:”y»—>/(L0fy)(x)dx€R. (1)

Zobrazenie v, pre ktoré funkcional S nadobida maximum alebo minimum, sa nazyva extremdla
S. Extremdla akcie (1) je rieSenim Eulerovej-Lagrangeovej rovnice

OL d oL
—— —— p— . 2
(0@/ dwé’y’) o= ®

Ako priklad uvazujme Lagrangeovu funkciu L : R?* — R dand predpisom

N
L(t,q.4) = 5md” —mgq 3)
pre kladné konStanty m, g. Prislusnd Eulerova-Lagrangeova rovnica je ¢ = —g a jej rieSenie ma
tvar
L,
q(t) = —§gt + it + ¢ 4)

kde konStanty ¢y, ¢, st uréené pociatoénymi podmienkami. Lagrangidn L (3) predstavuje rozdiel
kinetickej a potencidlnej energie Castice s hmotnostou m v gravitatnom poli s gravitatnym
zrychlenim g. RieSenie (4) reprezentuje volny pad Castice v gravitacnom poli.

Vo vSeobecnosti, ak uvazujeme mechanicky systém s kinetickou energiou 7' a potencidlnou
energiou V', potom extremala variacného funkcionalu definovaného Lagrangidanom L =7 — V'
urcuje pohyb mechanického systému.
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Problémy globalnej variatnej geometrie

3 Variety

Této Cast je venovand zavedeniu jednej zo zdkladnych podkladovych Struktir globalnej variacne;j
geometrie, fibrovanej variete. Najprv opiSeme pojem topologickej a hladkej variety.

Nech X je topologicky priestor. Hovorime, Ze X je topologickd varieta dimenzie n (alebo
topologické n-varieta), ak mé nasledujice vlastnosti:

e X je Hausdorffov priestor, teda kazdé dva body z X je mozné oddelif otvorenymi mnoZzi-
nami z X,

e X je spocitatelny druhého typu, teda topoldgia na X m4d spocitatelnt bazu,

e X je lokdlne Euklidovsky dimenzie n, teda ku kazdému = € X existuje okolie U bodu x
a homeomorfizmus ¢ : U - U zU do U = ¢o(U) C R".

Trividlnym prikladom topologickej variety dimenzie n je R" so Standardnou topoldgiou otvore-
nych gdl. Mnozina S* = {(z,y) € R? | 2% + y* = 1} uvaZovand s topoldgiou indukovanou
Standardnou topolégiou na R? je netrividlnym prikladom topologickej variety dimenzie 1.

Nech X je topologicka n-varieta. Siiradnicovy systém na X je dvojica (U, ¢), kde U je otvorend
podmnoZina X ap : U — U je homeomorfizmus z U do U= »(U) C R™. Priamo z definicie
topologickej variety mdme, Ze ku kazdému jej bodu existuje nejaky suradnicovy systém ob-
sahujuci tento bod. Topologicku varietu je teda mozné pokryf siradnicovymi systémami, ktoré
ndm nejakym spdsobom varietu popisuju. Napriklad, ako siradnicovy systém pre fubovolny bod
x € R™ mozno vziaf globdlny stradnicovy systém (R", idgr~ ). Vo vSeobecnosti, na topologickej
variete nemusi existovaf globdlny sdradnicovy systém.

Na zabezpecenie prechodu z jedného suradnicového systému do iného definujeme pojem hlad-
kosti funkcie. Nech U a V' su otvorené podmnoZiny Euklidovského priestoru R", resp. R'™.
Funkcia I’ : U — V sa nazyva hladkd, ak kazda jej zloZzka ma spojité parcidlne derivacie
vSetkych radov. Ak F' je navySe bijektivna a ma hladké inverzné zobrazenie, nazyva sa difeo-
morfizmus. Zrejme, ak F' je difeomorfizmus, potom n = m.

Nech X je topologickd n-varieta. Dva sdradnicové systémy (U, ¢), (V1) sa nazyvaji hladko
kompatibilné, ak bud U N'V = (), alebo kompozicia 1) o o= : o(UNV) — (U NV) je
difeomorfizmus.

Analogicky snahe popisat povrch Zeme pomocou jednotlivych mép definujeme pojem atlasu na
variete. Hladky atlas na topologickej variete X je subor hladko kompatibilnych stiradnicovych
systémov, ktorych definicné obory pokryvaji X. K danému atlasu na X moZeme pridavat
dalSie hladko kompatibilné suradnicové systémy az kym neziskame maximélny hladky atlas na
X. Hladka (alebo diferencovatelnd alebo C*°-) struktiira na topologickej n-variete je potom
definovand ako maximadlny hladky atlas na X. Hladkd varieta je dvojica (X, A), kde X je
topologicka varieta a A je hladka Struktira na X.

Vo vSeobecnosti mdéZzeme na tolopogickej variete X vybraf viac hladkych atlasov reprezentu-
jucich rovnakid hladkd Struktiru. Napriklad, na variete S' mdme hladky atlas pozostdvajuci
z dvoch stradnicovych systémov urcenych stereografickymi projekciami na prislusné mnozZiny,
alebo moZeme vziaf hladky atlas pozostavajtci zo Styroch stiradnicovych systémov, mnoZinami
ktorych st otvorené polkruZnice, a projekcie tychto mnoZin na prislusné stradnicové osi v R?
predstavuji homeomorfizmy na (—1,1) C R.
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Existuju priklady topologickych priestorov umoziujicich definovat viac nekompatibilnych hlad-
kych Struktir; medzi ne patri napriklad aj R so Standardnou topoldgiou. Na druhej strane,
existuju topologické priestory, na ktorych neexistuje hladka Struktira (pozri napriklad [13]).

Teraz rozsirime definiciu hladkého zobrazenia medzi otvorenymi podmnozinami Euklidovskych
priestorov na definiciu hladkej funkcie na hladkej variete a hladkého zobrazenia medzi dvoma
hladkymi varietami. Ak X je hladka varieta, funkcia f : X — R sa nazyva hladkd ak pre
kazdé z € X existuje taky stradnicovy systém (U, ) na X, ze x € U a kompozicia f o ¢! je
hladké zobrazenie Euklidovskych priestorov. Nech X, Y su hladké variety anech F': X — Y je
zobrazenie. Hovorime, Ze F' je hladké zobrazenie ak pre kazdé x € X existuje taky siradnicovy
systém (U, ) obsahujici x a taky sdradnicovy systém (V1) obsahujici F'(x), ze F(U) C V
a kompozicia ) o Flo o™ : o(U) — (V) je hladké zobrazenie Euklidovskych priestorov.

Pod pojmom Struktiira fibrovanej variety rozumieme hladku varietu Y, hladku varietu X a hladka
surjektivnusubmerzium : Y — X. Varieta Y so Struktdrou fibrovanej variety sa nazyva (hladka)
fibrovand varieta. X sa nazyva bdza a m sa nazyva projekcia fibrovanej variety Y. MnoZina
7~ !(z) sanazyva fiber nad .

Trividlnym prikladom fibrovanej variety je m; : R x R®™ — R. VSeobecnejSie, kazda varieta
v tvare kartézskeho sicinu bazovej variety X a dalSej hladkej variety je fibrovana varieta. Na
druhej strane, netrividlnymi prikladmi fibrovanych variet si mp : M — S*, kde M je Mébiov
pdsik (obr. 3), alebo 73 : S* — S2, tieZ nazyvana Hopfova fibrdcia, kde S™ oznaduje n-rozmernt
sféru (zovieobecnenie S'; pozri Cast 3). Pre vizualizdciu Hopfovej fibracie pozri, napriklad,
Zamboj [16].

Obr. 3. Mobiov pdsik (zdroj: internet)

Nech 7 : Y — X je fibrovand varieta, nech dim X = n, dim Y = n + m. Priamo z definicie
fibrovanej variety mdme, Ze ku kazdému bodu y € Y existuje stradnicovy systém (Vi) ),
YV = (ui, y?), vbode y, kde 1 <i <n,1 <o <m,snasledovnymi vlastnosfami:

(a) Existuje siradnicovy systém (U, ), ¢ = (z'), v bode x = 7(y), kde 1 < i < n, pomocou
ktorého je projekcia 7 vyjadrend rovnicami x% o ™ = u’.

(b) U = n(V).

Sdradnicovy systém (V1)) s takymito vlastnostami sa nazyva fibrovany siradnicovy systém na
Y. Sdradnicovy systém (U, ¢) je potom jednoznacne definovany a nazyva sa asociovany so
sdradnicovym systémom (V,¢)). Zvycajne piSeme (V, ), v = (2%,47), teda piSeme x’ miesto

uZ

Rez fibrovanej variety 7 : ¥ — X je také zobrazenie v : U — Y, kde U C X je otvorend
mnoZina, 7e 7 oy = idy. Vo fibrovanom stradnicovom systéme (V, 1), ¢ = (2%, y°), na Y,

atoy=ua', yoy=f(a').

10 G - slovensky Casopis pre geometriu a grafiku, rocnik 21 (2024), Cislo 41-42, s. 5 - 18



Problémy globalnej variatnej geometrie

Na ilustriciu fibrovanej variety sa casto pouZiva priklad fibrovanej variety 7 : R x R" — R
pre n = 1 (obr. 4).

Obr. 4. Fibrovand varieta a jej rez

4 Jety

Cielom v tejto Casti je zaviest pojem jetového predlZenia fibrovanej variety. Pre tento téel najprv
opiSeme pojem jetu zobrazenia.

Uvazujme najskor nasledujuci priklad. Nech f : R — R je zobrazenie a nech zy € D(f). 2-jet
zobrazenia f v bode x je usporiadand Stvorica redlnych Cisel

(Ig, f(IO)v Df(x())? DQf(xO))

™

a oznaCuje sa J2 f. Pre pripad f(x) = sinzaxo = 5 je J2 f = (5,1,0,—1). MbZeme ndjst
aj iné zobrazenie g : R — R tak, ze J f = J2 g. Stai vziaf Cast Taylorovho radu funkcie sin

s prislusnymi koeficientami, napriklad g(z) = 1 — 3 (z — %)

Nech 7 : Y — X je fibrovand varieta, nech y € Y, x = 7(y). Nech r je kladné celé ¢islo. Oz-
na¢me I}, mnoZinu vietkych takych C"-rezov ~y variety Y definovanych v bode z, Ze v(z) = y.
Uvazujme bindrnu relaciu ~na I} @ ,,y1 ~ 7o prave vtedy, ak existuje taky suradnicovy systém
(Vi) i = (2',y7),na Y, Ze

D; D

i -+ Di (y7me™)((2)) = Dy, Dyy ... Dy, (y7 12071 ) (o)

11

pre vetky k = 1,2,...,r, avSetky 1 <13 <ip < ... <1 < n'.

Reldcia ~ je reldciou ekvivalencie na I,

systému. Trieda ekvivalencie, ktorej reprezentantom je v € I’
s pociatkom v bode x a koncom v bode y; oznacuje sa J) .

ktord nezévisi od volby fibrovaného suradnicového

T 1 ’ 1
7y S8 NAZYVa r-jet zobrazenia vy
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J'Y oznaluje mnoZinu vietkych r-jetov s po¢iatkom v X a koncom v Y. Struktira fibrovanej
variety Y indukuje hladki Struktiru na J"Y a 7" : J"Y — X s touto Struktirou je fibrovana
varieta. J"Y sa potom nazyva r-té jetové predlZenie variety Y .

Ak v je hladky rez variety Y, potom hladké zobrazenie
Jy e Jy(x) = Jiy

sa nazyva r-té jetové predlzenie zobrazenia v (ide o rez fibrovanej variety 7" : JY — X).

5 Variacné Struktiry na fibrovanej variete

Objekt, ktory nahrddza Lagrangeovu funkciu vo variatnom funkciondli (1) je diferencidlna
forma. Nech X je n-rozmernd hladka varieta a nech 7, X oznacuje dotykovy priestor variety X
v bode z € X. Na vektorovom priestore 7, X uvaZujme vektorovy priestor A*T,, X k-foriem,
teda tenzorov typu (0, k). Priestor

ANTX =, AMTLX

nazyvame priestorom k-foriem na X. Diferencidlna k-forma na U C X je potom hladké zo-
brazenie

n:U— ANFTX,

Lagrangidn (rddu r) pre fibrovand varietu 7 : Y — X, dim X = n, je n"-horizontdlna n-forma
definovana na otvorenej podmnozine J"Y. PoZziadavka horizontdlnosti vzhladom k projekcii
7" . J'Y — X znamend, Ze vo fibrovanom stradnicovom systéme (V, ), ¢ = (z',y%), na Y,
je Lagrangian \ vyjadreny v tvare

A= Lwy, wo=dazAdz®A---Ada",

kde £ : J'Y — R je Lagrangeova funkcia asociovand so suradnicovym systémom (V).
Variacnd Struktiira je potom dvojica (Y, ), kde Y je fibrovand varieta nad n-rozmernou bazou
X s projekciou 7 a A je Lagrangian pre Y.

Uvazujme variaénu $truktdiru (Y, A). Nech € je n-rozmernd kompaktnd podvarieta variety X
s hranicou (takéto €2 nazyvame tiez kisok variety X). Oznaéme I'g(7) mnozinu hladkych
rezov variety Y definovanych nad kdskom 2. Dostdvame funkciu I'g(7) 3 v — Aq(7) € R
definovanu predpisom

kde pull-back J"~* zobrazenia J"vy zobrazi Lagrangidn A\ na n-formu na baze X. Funkcia A\
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sa nazyva variacny funkciondl, asociovany s varia¢nou Struktdrou (Y \) (nad ).

Pomocou geometrickych operdtorov akymi sd vonkajSia derivacia diferencidlnej formy a rozklad
diferencidlnej formy na kontaktné komponenty priradujeme Lagrangidnu A\ jeho Eulerovu-
Lagrangeovu formu E). Zobrazenie A\ — F)\ sa nazyva Eulerovo-Lagrangeovo zobrazenie. Ak
A je n-forma rddu r, potom E) je (n + 1)-forma rddu 2r. Ak zvolime fibrovany sdradnicovy
systém (V,1)), ¢ = (x%,y”) na variete Y, potom komponenty E, (L) Eulerovej-Lagrangeovej
formy E) v asociovanom suradnicovom systéme na J"Y sa nazyvaja Eulerove-Lagrangeove
vyrazy.

Jedna z dloh globdlnej varianej geometrie je Stidium extremalnych hodndt, extremdl, daného

varia¢ného funkciondlu. Extremély hfaddme s vyuZitim nasledovného tvrdenia.

Veta 5.1. Nech ) je Lagrangidn r-tého radu pre fibrovand varietu Y. Nech v : U — Y je rez
Y. Nasledujice podmienky st ekvivalentné.

(a) v je extremdla variacného funkciondlu .

(b) Pre kazdy taky fibrovany stiradnicovy systém (V, 1)), ¢ = (a*,y%), ze n(V) = U, + spliia
systém parcidlnych diferencidlnych rovnic v tvare

E,(L)oJ"y=0, 1<o<m. 5)

Rovnice (5) sa nazyvaju Eulerove-Lagrangeove rovnice. Podrobnejsi prehladu o variaénych
Struktdrach na fibrovanych varietich mozno ndjst v [10].

Ak, napriklad, uvaZzujeme variacny problém definovany Lagrangidnom prvého radu
AZLWO: £:£($i7y07y?)7

Eulerove-Lagrangeove rovnice su v tvare

v

dy”  widy; Oy dy?" T Dyioy

2 2 2
(a,c 92L 0°L 0%L >OJ27:O7 ©

kde 1 < o < m, pricom m je dimenzia kazdého fibra variety Y (v tomto aj nasledujicich
vzorcoch uplatiiujeme Einsteinovu sumacnd konvenciu). Rovnice (6) sa pre n = m = 1
redukuju na jedinu rovnicu, ktord koreSponduje s rovnicou (2).

6 Vybrané problémy

V tejto Casti uvedieme problémy, v rieSeni ktorych su pouZzité pojmy a metddy globdlnej variacne;j
geometrie.

Riesenia Einsteinovych rovnic vo vSeobecnej tedrii relativity

Prvy z nich sa tyka charakteristiky extremal Hilbertovho variacného funkciondlu, ktory bol
formulovany D. Hilbertom (1915) v [8]. Ide o variany funkciondl pre metrické polia na
Tubovolnej n-rozmernej variete X. Vo vSeobecnej tedrii relativity sa pre n = 4 prislusné
Eulerove-Lagrangeove rovnice nazyvaju Einsteinovymi rovnicami vo vdkuu.
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Nech X je n-rozmernd hladka varieta, nech 73X je priestor tenzorov typu (0,2) nad X.
Uvazujme Met X ako otvorend podmnoZinu T9X symmetrickych, reguldrnych bilinedrnych
foriem na T, X, kde z € X. Rezy fibrovanej variety 7 : Met X — X su metrické polia na X.
Integralne varia¢né funkciondly pre metrické polia su definované n-formami na J"Met X.
Siradnicovy systém (U, ¢), ¢ = (z'), na X, indukuje siradnicovy systém (V, ), ¢ = (2%, gi;),
na Met X, kde V = 771(U) a g,; st funkcie na V definované vzfahom

g=gide' @dz?, g = g, det(gi;) #0.

Funkcie

k _ 1 Kkl (399 99, 0gi;
Ui =39 (%Jfa#—amf)v
kde ¢g" st prvky inverznej matice k matici g;;, sa nazyvaji Christoffelove symboly. Vyrazy

1 l
— arik 8Fil

Ry =

Ox! Oxk

+ L rm — 1l T R = g"*Ry,,

km= il »

definuju Ricciho tenzor s komponentmi Ry, resp. funkciu R : J?Met X — R, nazyvand
skaldrna krivost. Hilbertov Lagrangidn je dany vztahom

A = Ry/|det(gi;)] - wo

a prislusny varia¢ny funkcional
To(1) 3 9= Aalg) = [, S9N €R

sanazyva Hilbertov variacny funkciondl pre metrické poliana X . Prislu§né Eulerove-Lagrangeove
rovnice (Einsteinove rovnice vo vakuu) su uréené formulou

1
(Rij — 5Rgij> o J%g =0. (7)

Zname rieSenie rovnic (7) je Schwarzschildova metrika (1916), v sférickych sdradniciach
(t,7,,1) na prislusnej podmnozine R x R3\{(0,0,0)} uréend ako

C, Co\ !
g=— (1 — —0) dt@dt+ (1 — —0) dr@dr+1r%(sin® 9dp@dp+ddedd), (8)
r r
kde konstanta C je uréena fyzikalnymi vlastnostami hmotného telesa, v okoli ktorého je defi-
nované riesenie.

Uplnou charakteristikou rieSeni rovnic (7) sa v praci [12] zaoberali Krupka a Brajeréik. Ziskand
mnozina rieSeni je parametrizovand rydzomonoténnymi funkciami ¢ = ¢(r), kde r je radidlna
stradnica, a redlnymi parametrami C' a C’, ktoré majd vyznam integra¢nych konstant. V sirad-
niciach (¢, ¢, ¢, ), analogickych sférickym siradniciam (¢, 7, p,9) na R x R3\{(0,0,0)}, su
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rieSenia g rovnic (7) zapisané v tvare

~1
g=c7<1—§)dm®dr+<1—§> dg ® dg + ¢*(sin? 9dyp © dg + dd © do).

Mnozina rieSeni je odvodend bez poZiadavky na signatiru hladanej metriky g, ¢im sa liSi od
Standardného pristupu pri odvodeni Schwarzschildovej metriky, ked sa predpokladd signatira
metriky Lorentzovského typu.

Pre Specidlnu volbu ¢ = r, C = Cy, C' = —1 dostdvame Schwarzschildovu metriku (8).

Hrladanie rieSeni Einsteinovych rovnic nezdvislych na volbe bazovej variety X daného vari-
acného problému a hladanie rieSeni zovSeobecnenych rovnic (7) patri medzi otvorené otizky
vSeobecnej tedrie relativity.

Inverzny variacny problém

Dalsi zndmy problém globdlnej variatnej geometrie je inverzny problém variacného poctu.
Zhruba povedané, tento problém spociva v ndjdeni podmienok zarucujicich existenciu La-
grangianu, ktorého Eulerove-Lagrangeove rovnice inciduji s danym systémom diferencidlnych
rovnic. Ak su tieto podmienky splnené, ndslednou tlohou je ndjst vsetky Lagrangiany pre dany
systém rovnic.

Uvazujme systém m obycajnych diferencidlnych rovnic druhého rddu v implicitnej forme
g2, 27, 59) =0, 4,7=1,2,...,m,

pre m funkcif redlnej premennej ¢ — z7(t). Hovorime, Ze systém funkcii ¢ = {g;(27, 27, 47)}
je variacny, ak existuje funkcia £ = £(z7, 17) tak, Ze

_oc doc -
& =57 —diss =L2,...,m.

Veta 6.1. Nasledujice dve podmienky sui ekvivalentné.
(a) Systém e = {&;(a?,27,47)} je varialny.

(b) Funkcie ¢; spliiajii rovnice

Os; B g 0

oil  9F

%+@_i(% @)_o ©)
ozt ozt dt \oxl 01t ’

oxl  Oxt 2dt

il 9ii)

% g, 1d (852- 851)

Systém (9) sa nazyva Helmholtzove podmienky (Helmholtz, 1887). Ak systém funkcif ¢ spliia
tieto podmienky, pre hladany Lagrangian mozeme vziaf Vainbergov-Tontiho Lagrangidn (pozri,
napriklad, [17]).
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Tato tedria je aplikovateInd na mnohé variacné problémy. Ako priklad mdzeme uviest zndmy
mechanicky systém, inverzné kyvadlo na voziku (obr. 5).

@ O ’

Obr. 5. Inverzné kyvadlo na voziku

Systém pozostdva z kyvadla, zloZeného z nehmotnej ty&e s dizkou [, na konci ktorej je hmotny
bod s hmotnostou ms, upevneného na voziku s hmotnostou m;. Konfigura¢na varieta systému
je @ = R x S!, pricom stiradnica x oznaduje poziciu vozika a ¢ oznacuje velkost uhla medzi
kyvadlom a vertikélou.

Lagrangeova funkcia pre systém pohybujici sa po horizontdlnej osi x je
L = 1(my +ma)i? + mol cos pip + 3mal?p? — magl cos p.
Eulerove-Lagrangeove rovnice pre volny pohyb systému su dané formulami

malp? sin — (my + ma)i — mal@cosp = 0,
mal(gsing — Zcosp —I1p) = 0.
Bez vonkajsej intervencie zrejme kyvadlo pada dole. NaSim cielom je riadif vozik tak, aby

sme stabilizovali kyvadlo v okoli vertikdlnej pozicie pomocou variacnych sil. Vo vSeobecnosti
hladdme funkcie ¢4, ¢, zdvisiace na x, , x, ¢ tak, aby systém rovnic

malp? sin — (my + ma)i — mal@cosp = ¢,
mol(gsing —Zcosp — @) = ¢

bol variacny a zdroven stabilizoval kyvadlo v okoli vertikdlnej pozicie. Niektoré vysledky
rieSenia tohto problému mozZno ndjst, napriklad v [1] a [4]. Stidium pripustnych variacnych sil
stabilizujicich tento a jemu podobné mechanické systémy je objektom aktudlneho vyskumu.

Zermelov naviga¢ny problém

Tento klasicky problém formuloval E. Zermelo (1931) vo svojej praci [18]. Zermelov navigacny
problém patri medzi najviac skiimané problémy optimalneho riadenia v matematike. Zaobera sa
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g T e Ridgae
ae

e Catbare oL
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Obr. 6. Zermelov navigacny problém (zdroj: internet)

navigaciou lodky pohybujticej sa na vodnej ploche pod vyplyvom (¢asovo premennych) vodnych
prudov a vetra, ktort je potrebné dostaf z vychodiskového bodu do ciela za ¢o najkratsi Cas. Je
zrejmé, Ze bez vonkajSich vplyvov je trajektoriou zarucujicou dosiahnutie minimalneho ¢asu
usecka spdjajica pociatocny a cielovy bod. Pri uvazovani vonkajsich vplyvov je vo v§eobecnosti
optimélna trajektdria odlisna od dsecky (napriklad ako ¢ervena krivka na obr. 6).

Problém bol pre pripady R? a R® vyrieSeny samotnym Zermelom. Dalie vysledky boli
ziskané pre Specidlne pripady, napriklad pre konStantny vplyv vetra. Optimélnu trajektoriu
pohybu na vSeobecnejSich hladkych plochéch ziskal P. Kopacz [9]. V stii€asnosti sd formulované
vSeobecnejSie verzie tohto problému a snahou je hladaf metddy ich rieSenia.
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The Equivalence of Side-Angle-Side
and Side-Side-Angle in the Absolute Plane

John Donnelly

Abstrakt

Tvrdenie o zhodnosti trojuholnikov, Veta ssu
(strana-strana-uhol), nie je vo vSeobecnosti
kritériom pre dokaz zhodnosti trojuholnikov.
Pomocou kritéria o zhodnosti Veta sus (strana-
uhol-strana) vSak moZno dokazaf niekolko
tvrdeni v geometrii trojuholnika vratane Vety
ssu. V tomto ¢lanku ukdzeme, Ze aj opak
je pravdivy. Konkrétne, ak predpokladame
platnost tvrdeni, ktoré zahffiaji Vetu ssu,
potom mozZzno dokdzaf kritérium Veta sus
ako ich dosledok. V dokazoch sa neuvadzaji
Ziadne predpoklady o eliptickych alebo
hyperbolickych vlastnostiach rovnobeZnosti.

Kracové slova: ssu (strana-strana-uhol),
trojuholnik, sdivisla absolitna rovina

1 Introduction

Abstract

In general, Side-Side-Angle is not a criterion
for congruence of triangles. However, one
can use Side-Angle-Side to prove several
statements in triangle geometry which involve
Side-Side-Angle. We prove that the converse
holds as well. Namely, we show that if we
assume the statements which involve Side-
Side-Angle, then we can prove Side-Angle-
Side as a consequence of these assumptions. In
these proofs, no assumptions about euclidean
or hyperbolic parallel properties are made.

Keywords: Side-Side-Angle, Triangle,
Continuous Absolute Plane

In plane geometry, there are various criteria that one can use to show that two triangles are
congruent. Specifically, one can use Side-Angle-Side, Angle-Side-Angle, Side-Angle-Angle,
and Side-Side-Side to show congruence of triangles. In addition, in hyperbolic geometry one
can also use the Angle-Angle-Angle criterion to show that two triangles are congruent.

One can also use Hypotenuse-Leg to show that two right triangles are congruent. This is a
special case of Side-Side-Angle. In general, Side-Side-Angle is not a criterion for congruence
of triangles. It is easy to construct an example of a pair of triangles that satisfy the hypotheses
of Side-Side-Angle, but which are not congruent to each other. However, if we add the extra
hypothesis that the angles which are congruent to each other are not opposite the shortest sides
in the respective triangles, then Side-Side-Angle can be used to show that the triangles are
congruent. Although Side-Side-Angle is not a criterion for congruence of triangles, it has
attracted the interest of various mathematicians [3].

G — slovensky Casopis pre geometriu a grafiku, rocnik 21 (2024), cislo 41-42,s.19-33 19



John Donnelly

When working in plane geometry, one can choose to use either the euclidean parallel postulate
or the hyperbolic parallel postulate. Absolute geometry is plane geometry in which we assume
no parallel postulate. Absolute geometry can be thought of as being a common ground between
Euclidean Geometry and Hyperbolic Geometry, and the properties of Absolute Geometry are
satisfied by both Euclidean and Hyperbolic Geometry [8], [13]. Absolute geometry is also
referred to as neutral geometry [8], [9], [16]. Once we assume axioms of continuity, then we
can define the notions of distance and angle measure in the plane (see pages 122-124 in [8]).
The result is called a continuous absolute plane.

One way to define a continuous absolute plane is to use the synthetic approach given by David
Hilbert in Grundlagen der Geometrie [10]. In this approach, Hilbert refrains from introducing
distance and angle measure until the very end through the use of axioms of continuity [8], [9].
This approach is also used by M. J. Greenberg in Euclidean and Non-Euclidean Geometries:
Development and History, and by R. Hartshorne in Geometry: Euclid and Beyond [8], [9].

Another way to define a continuous absolute plane is to use the metric approach given by G.D.
Birkhoff in A Set of Postulates for Plane Geometry Based on Scale and Protractor. The approach
given by Birkhoff incorporates the notions of distance and angle measure from the start [1]. This
approach is also used by G. E. Martin in The Foundations of Geometry and the Non-Euclidean
Plane, by R. S. Millman and G. D. Parker in Geometry: A Metric Approach with Models, by
E. E. Moise in Elementary Geometry from an Advanced Standpoint, and by G. A. Venema in
Foundations of Geometry [13], [14], [15], [16].

It can be shown that the continuous absolute plane that one gets from the approach of Hilbert
is the same as the continuous absolute plane that one gets from the approach of Birkhoff
[2], [8], [13]. In both of these approaches, the Side-Angle-Side criterion for congruence
of triangles is assumed. After assuming Side-Angle-Side, then one can prove the Angle-
Side-Angle, Side-Angle-Angle, Side-Side-Side, and Hypotenuse-Leg criteria for congruence of
triangles as theorems [8], [11], [13], [15].

It is well known that in absolute geometry, the Side-Angle-Side and Angle-Side-Angle criteria
are equivalent. In particular, one can assume Angle-Side-Angle and prove that Side-Angle-Side
still holds [13].

In [4],[5], and [6], it is shown that if we use the approach of Birkhoff to define a continuous
absolute plane, then the Side-Angle-Side and Side-Angle-Angle criteria are equivalent, and the
Side-Angle-Side and Side-Side-Side criteria are equivalent. More specifically, if we assume
exactly one of either Side-Angle-Angle or Side-Side-Side, then we can prove that Side-Angle-
Side still holds.

In [7], a model is constructed showing that if we use the approach of Hilbert to define a non-
continuous absolute plane (using the axioms given in [9]), and replace Side-Angle-Side with
Angle-Angle-Angle, then in general we cannot prove Side-Angle-Side as a theorem.

In this paper, we show that if we use the approach of Birkhoff to define a continuous absolute
plane, then Side-Angle-Side and Side-Side-Angle are equivalent. In particular, if we assume
Side-Side-Angle instead of Side-Angle-Side, then we can prove that Side-Angle-Side still holds.
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2 Initial Assumptions and Basic Definitions

In this section we state our initial assumptions as well as several definitions that we use throughout
the paper.

The Incidence Axioms:

(1) There exist sets P and £ such that each element of L is a subset of P.

(2) If P and () are distinct elements of P, then there exists a unique element of £ which contains
both P and ().

(3) There exist three elements P, (), and R in P such that no element of £ contains all three of
P, @, and R.

An element of P is called a point, and an element of L is called a line. Given P € P and [ € L,
then we say that P is on [ and that [ passes through P if P € [. Given two distinct points P and

@, we denote the unique line containing P and () by w

The Ruler Postulate:
There exists a function d : P x P — R such that for each line [ € L, there exists a bijection
f : 1 — R with the property that for all P,Q € [, d(P,Q) = |f(P) — f(Q)].

For all P,Q € P, we denote d(P, Q) by PQ, and we call P() the distance from P to (). If for
a line [, a bijection f : [ — R is such that for all P,Q € [, d(P,Q) = |f(P) — f(Q)], then f is
called a coordinate system for [.

We say that a point B is between points A and C, and we write A — B — C'if: (1) A, B, and
C' are three distinct points, (2) A, B, and C' are collinear, and (3) AB + BC' = AC'. If P and
@ are two distinct points, then PQ = {D ¢ m |D=P,D=@Q,or P—D — Q} and 1@
={D € % |D=P,D=Q,P—D—Q,or P—Q— D}. We call PQ the segment with
endpoints P and (), and we call 1@ a ray with vertex P. Two segments PQ and W Z are said to
be congruent if PQ) =W Z, in which case we write PQ) = W Z. We define the interior of P()
to be the set of all points D such that P — D — (). We denote the interior of PQ by int(PQ).

The Plane Separation Postulate:

For each [ € L, there exist convex sets H; and H, such that
(1) P\l = Hl U HQ

(2)If P € Hi,Q € Ho,and P # Q, then PQ N1 # 2.

The sets H; and H are called halfplanes (or sides) of the line [, and [ is called an edge of each
of the halfplanes ; and Hs. It is proven in [13] that the halfplanes #; and H are disjoint and
nonempty. When quoting the Plane Separation Postulate, we will abbreviate it by P.SP.

—
Given three distinct noncollinear poiitg A,V ,and B, then ZAVB=V AU ﬁ We call ZAV B
the angle with vertex V' and sides V' A and ﬁ The interior of ZAV B is the intersection of

the halfplane of WX that contains B and the halfplane of (@ that contains A. We denote the
interior of ZAV B by int(£LAV B).
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The following theorem is a consequence of the Plane Separation Postulate, and will be used
several times throughout the paper. A proof of this theorem can be found in [8], [13], [14].

Theorem 2.1. (Crossbar) If point P is in the interior of an angle ZAV B, then ray ﬁ intersects
segment AB at a point 7" such that A — T — B.

The Protractor Postulate:
There exists a function m from the set of all angles to the open interval (0, 7) such that

(1) For each ray 1?65 on the edge of halfplane # (where H is a halfplane of line ﬁ)), and for

each r € (0, ), there exists a unique ray ]?I-?, with R € H, such that m(ZQPR) =r.
(2) If T'is a point in the interior of ZQ PR, then m(ZQPT) + m(LTPR) =m(LQPR).

Given an angle ZABC, then m(ZABC) is called the measure of angle ZABC, and is denote
by mZABC. Two angles ZABC and ZDFEF are said to be congruent it mZ/ABC' =m/DEF,
in which case we write ZABC =2 /DEF'.

3 Side-Angle-Side and Side-Side-Angle

In this section, we give the statements of Side-Angle-Side and Side-Side-Angle.

Given three noncollinear points A, B, and C, then AABC' = ABU BC UCA. We call AABC
a triangle with vertices A, B, and C'. Given two triangles AABC and ADEF, we write NABC'
~ANDEFifAB= DE, BC=2FEF,CA=FD, /ABC =2 /DFEF, /BCA= /EFD, and
/CAB = /FDE.

Note that when using the notation AABC = ADFEF defined above, the order of the vertices
for the triangles AABC and ADFEF is important.

Side-Angle-Side: Given triangles AABC and ADEF, it AB = DE, BC' = EF, and
mZABC = m/ZDEF, then AABC = ADFEF. When referring to Side-Angle-Side, we will
abbreviate it as SAS.

Side-Side-Angle: Let triangles AABC and ADEF be such that AB = DFE, BC = EF, and
mZBCA =m/ZEFD. Then at least one of the following statements is true:

(i) AABC = ADEF
(i1) angles ZBAC and ZEDF are supplementary

Furthermore, if AB > B(C), then statement (i) is true. When referring to Side-Side-Angle, we
will use the abbreviation SSA.

The case where AB > B('is often refered to as Side-side-Angle, with the middle “’side” not
capitalized. For the remainder of this paper, we consider both cases (i) and (ii) in Side-Side-
Angle, and therefore simply refer to it as Side-Side-Angle. The next theorem examines the case
when both statements (i) and (ii) are true simultaneously.
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Theorem 3.1. Given triangles AABC and ADFEF, assume that AB = DE, BC = EF, and
m/BCA = m/ZFEFD. Then both statements (i) and (ii) are true in SS A if and only if angles
/ZBAC and ZEDF are right angles.

Proof. First assume that both statements (i) and (ii) are true. Since (i) is true, then AABC
~ ANDEF, which implies that m/BAC = m/ZEDF. Since (ii) is true, then mZ/BAC +
m/EDF = w. Thus, nZBAC = m/ZEDF = 5. Hence, m/BAC and mZEDF are right
angles.

Conversely, assume that mZBAC and mZEDF are right angles. It follows immediately that
statement (ii) holds. We need only show that statement (i) holds. If AB > BC, then we
apply SS A to triangles AABC and ADFEF using angles /BCA and ZEFD to get AABC
= ADEF. If AB < BC, then we apply SSA to triangles AABC and ADFEF using angles
ZBAC and ZEDF to again get AABC = ADFEF. In either case, we have that AABC' =
ADFEF. Hence, both statements (i) and (ii) are true. OJ

Note that in the case when AB < BC, we are essentially using Hypotenuse-Leg to show that
ANABC = ADEF.

We refer the reader to definitions, notation, lemmas, propositions, theorems, and corollaries
stated in pages 65 through 194 of [13] which are used throughout this paper. The results proven
in pages 65 through 194 of [13] are based only on our initial assumptions and definitions. Also,
we refer the reader to definitions and notation introduced in pages 195 through 268 of [13].
There are certain results in pages 195 through 268 of [13] whose proofs are based on our initial
assumptions together with Side-Angle-Side. We give alternate proofs of some of these results,
with our proofs being based on our initial assumptions together with Side-Side-Angle. In order
to state and discuss these results, we need to use definitions and notation stated in pages 195
through 268 of [13]. However, no result from pages 195 through 268 of [13] will be used until
it is first proven using Side-Side-Angle.

4 Side-Angle-Side Implies Side-Side-Angle

In this section we show that if we assume Side-Angle-Side, then we can prove Side-Side-Angle.
The results in this section are well-known, and are included here for the sake of completeness.
In the proof of the following theorem we use several results that depend on S AS, the proofs of
which can be found in [13] and [14]. However, in later sections we give proofs of these results
that do not depend on S'AS, but instead depend on SSA.

Theorem 4.1. Assume that Side-Angle-Side holds. Then Side-Side-Angle holds as well.

Proof. Lettriangles AABC and ADEF be suchthat AB = DE, BC = EF,and m/BCA =
mZEFD. If AC = DF, then it follows by SAS that AABC = ADFEF, in which case
statement (i) of SSA is true.

Assume AC' > DF'. There exists a point 7" such that A — T — C' and CT = DF. Applying
SAS, we have that ABCT = AFEFD. This implies that BT = DE = BA and m/BTC =
mZ/EDF. By applying the Pons Asinorum to AABT, we have that m/BAT = m/BTA.
Since /BT A and ZBTC form a linear pair, then they are supplementary. Thus, mZ/BAC +
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mLEDF = m/BAT + m/BTC = m/ZBTA + m/ZBTC = w. Hence, in this case angles
/ZBAC and ZEDF are supplementary, and statement (ii) of SS'A is true.

We finally show that if AB > BC, then statement (i) of SSA is true. Assume AB > BC, and
suppose that AC' > DF'. As above, there exists a point 7" such that A —T'— C' and C'T' = DF.
Applying SAS, we have that ABCT = AEF D. This implies that BT = DE = BA. However,
since AB > BC, then it must be the case that BT < AB. Hence, we have a contradiction and
it follows that statement (i) of SS A is true. ]

5 Side-Side-Angle Implies Side-Angle-Side

For the remainder of this paper, we show that if we assume Side-Side-Angle, then we can prove
Side-Angle-Side. We start by first giving alternate proofs of various results using only 5SS A.
These proofs are independent of SAS.

Theorem 5.1. (Pons Asinorum) Given triangle AABC, if AB = BC, then m/BAC =
m/BCA.

Proof. By applying SSA to triangles AAC'B and ACAB, we have that either AACB =
ACAB or angles Z/BAC and ZBC A are supplementary. If AAC'B = AC'AB, then it follows
that mZBAC = mZBCA.

Suppose that ZBAC' and ZBC'A are supplementary. Let D be a point such that A — C' — D.
Since Z/BC'A and ZBC'D form a linear pair of angles, then they are supplementary. Thus,
we have that m/BAD = m/BAC = m/ZBCD. If BD > BC, then using angles Z/BAD
and ZBCD, we have by SSA that ADBA = ADBC. This implies that DC = DA, a
contradiction since A — C' — D. If BD < BC, then using angle Z/BDC', we have by SSA
that AABD = ACBD, again implying that DC' = DA, a contradiction. In either case, we
get a contradiction, and it follows that /BAC and Z/BC'A are not supplementary. Hence,
m/BAC = m/BCA. [

Let A and B denote distinct points. Let C' and D denote points on opposite sides of line 1@
"lEgn we say that angles ZABC and ZABD form an adjacent pair of angles with common side

BA.

Lemma 5.1. Assume that angles ZABC and ZABD form an adjacent pair of angles. If ZABC
and ZABD are supplementary, then C' — B — D. In particular, C, B, and D are collinear.

Proof. Let E be a point on the same side of line Zﬁ as D such that K — B — C'. Since ZABC
and ZABFE form a linear pair of angles, then they are supplementary. Thus, mZABE =
T —mZABC. Since ZABC and ZABD are supplementary, then mnZABD =1 —m/ZABC.
Therefore, we see that mZABE = 7 — mZABC = mZABD. It follow by the uniqueness of
ray ﬁ in part (1) of the Protractor Postulate that ﬁ = Ef) Therefore, since C' — B — F, then
C—-B-D. O
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Theorem 5.2. (Converse of the Pons Asinorum) Given triangle AABC, if m/BAC =
m/BCA, then AB = BC.

Proof. Let M denote the midpoint of segment AC'. If M B > M A, then it follows by SS A that
ABMA = ABMC. In this case, AB = BC. If MA > M B, then it follows by SSA that
either ABMA = ABMC or else that ZM BA and ZM BC' are supplementary.

Suppose that /M BA and ZM BC' are supplementary. This implies that /M BA and ZM BC
form an adjacent pair of supplementary angles. Thus, it follows by Lemma 5.1 that A — B — C.
This contradicts the fact that A, B and C' are not collinear. Hence, it follows that ABM A =
ABMC, and consequently that AB = BC. [

Theorem 5.3. Given distinct points A and B, then a point P is on the perpendicular bisector of
segment AB if and only if P is equidistant from A and B.

Proof. First assume that PA = PB. Let M denote the midpoint of segment AB. If P = M,
then P is on the perpendicular bisector of AB.

Assume that P # M, and consequently that A, B, and P are not collinear. By the Pons
Asinorum applied to APADB, we have that mZ/PAB = m/ZPBA. By SSA, either APMA =
APMB orelse ZBPM and ZAP M are supplementary. Suppose that /BPM and ZAPM are
supplementary. This implies that /B PM and ZAP M form an adjacent pair of supplementary
angles. Thus, it follows by Lemma 5.1 that A — P — B. This contradicts the fact that A, B and
P are not collinear. Thus, APM A = APM B. This implies that /PM A and ZPM B form a
linear pair of congruent angles. Thus, ZPM A and ZPM B are right angles. Therefore, m is
the perpendicular bisector of AB.

Conversely, assume that P is a point on the perpendicular bisector of segment AB. Again,
let M denote the midpoint of AB. If P = M, then it follows immediately that PA = PB.
Assume that P # M, and consequently that the points P, A, and M are not collinear. Suppose
that mZPBM > m/PAM. Let D be the unique point on PA such that A — D — P and
m/DAB = m/ZDBA. By the converse of the Pons Asinorum applied to triangle AABD, we
have that DA = DB. Using an argument similar to the one given above, we have that W
is the perpendicular bisector of AB. Since W/[ is the perpendicular bisector of AB, then it
follows that m = W = W Since A — D — P, then W = m This implies that the
points P, A, and M are on line W, a contradiction since they are not collinear. Thus, it
cannot be the case that mZ/PBM > m/PAM. A similar argument shows that we cannot have
m/PBM < m/PAM. The only remaining possibility is thatm/PBM = m/PAM. Hence,
it follows by the converse of the Pons Asinorum applied to triangle APAB, that PA = PB. []

Lemma 5.2. Let A, B and P be distinct ngcollinear points such that PA = PB, and let M be
the midpoint of segment AB. Then ray PM is the angle bisector of ZAPB.

Proof. By the Pons Asinorum applied to APAB, we have that m/PAB = m/PBA. By
SSA, either APMA = APMB or else ZBPM and ZAPM are supplementary. Suppose
that Z/ZBPM and ZAPM are supplementary. This implies that /BPM and ZAPM form
an adjacent pair of supplementary angles. Thus, it follows by Lemma 5.1 that A — P — B.
This contradicts the fact that A, B and P are not collinear. Thus, APMA = APMB. This
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-
implies that m/BPM = m/APM, which in turn implies that ray P M is the angle bisector of
/APB. [

Theorem 5.4. Given a point P and a line /, then there exists a unique line m passing through P
such that m is perpendicular to /.

Proof. If P ison [, then the existence and uniqueness of m follows immediately by the Protractor
Postulate. Assume that P is noton [. Let ; and H, denote the halfplanes of [. We may assume
without loss of generality that P is in ;. Let A and B denote distinct points on [. If

m/PAB = 7, then jD—/)l is a line through P that is perpendicular to /.

Assume that mZPAB # 7. Let () be the unique point in H; such that AQ = AP and
m/BAQ = m/ZBAP. Since AQ = AP, then it follows by Theorem 5.3 that A is on the
perpendicular bisector of PQ). Let M denote the midpoint of P(). We assume that B is in the
interior of angle Z/PA(Q). The case where B is 1_13‘[_>in the interior of angle ZPA() is similar,
and is left to the reader. By Lemma 5.2, ray AM is the angle bisector of ZPA(Q). Since
méPAﬁ)z mZQAB, then ray ﬁ is the angle bisector of ZPAQ. Thus, W = 1@ =1l
Since AM is perpendicular to PQ, then % is a line through P that is perpendicular to /.

Next we show that the line through P that is perpendicular to [ is unique. Suppose that there
exist two distinct lines ¢; and ¢, passing through P such that ¢; | [ and ¢, 1 [. Let F} and
F5 denote the feet of the perpendiculars ¢; and ¢o, resectively. By the converse of the pons
asinorum applied to APF} F5, we have that PF; = PF;,. Let D be a fixed point on [ such
that F; — F, — D. If PD > PF3, then using angles Z/PF,D and ZPF,D, we see by SSA
that ADPF, = ADPF,. This implies that DF; = DF3, a contradiction since F; — Fy — D.
If PD < PF, then using angle Z/PDF}, we see by SSA that ADPF, = ADPF,, again a
contradiction. In either case, we get a contradiction and it follows that the line through P that
is perpendicular to [ is unique. ]

Theorem 5.5. Given a point P and a line [ not passing through P, then there do not exist distinct
points A and B on [ such that both angles /PAB and /P B A are obtuse.

Proof. Let H denote the halfplane of [ containing P. Suppose that there exist distinct points A
and B on [ such that both angles ZPAB and Z/PBA are obtuse. By the Protractor Postulate

there exists a unique ray ﬁ in H such that ZABT is aright angle. Since mZABT < m/ABP,
then 7' is in the interior of ZABP. Thus, by Crossbar ﬁ crosses AP at a point K such that

A — K — P [8], [13], [14]. Similarly, by the Protractor Postulate there exists a unique ray 1@
in ‘H such that ZBAG is a right angle. Since m/BAG < m/BAP = m/BAK, then G is in

the interior of ZBAK. Therefore, it follows by Crossbar 1@ crosses BK at a point J such that

<
B —J — K. Thus, JA and f]? are two distinct lines through .J that are perpendicular to [, a
contradiction. Hence, no such points A and B can exist. ]

Theorem 5.6. (The Triangle Inequality) Given AABC, then AB + BC' > AC.

Proof. Suppose that AC' > AB + BC'. First assume that AC > AB + BC. Let D and F
be distinct points on AC suchthat A— D — E —C, AD = AB, and CE = CB. By the
Pons Asinorum, mZABD = m/ADB and mZCBE = m/ZCEB. 1t follows by Theorem
5.4 and Theorem 5.5 that all of the angles ZABD, ZADB, Z/CBE, and ZC'EB are acute.
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Since ZADB is acute, then ZBDF is obtuse. Similarly, since ZC'E' B is acute, then ZBFED is
obtuse. Thus, applying Theorem 5.5 to A B D E we have a contradiction since both /B D E and
/ BED are obtuse. Therefore, it cannot be the case that AC > AB + BC.

Now assume that AC' = AB + BC. Let K be the unique point on segment AC' such that
A— K —C,AK = AB, and CK = CB. By the Pons Asinorum, we have that m/ABK =
m/AKB and mZ/CBK = m/ZCKB. Since ZAKB and ZCKB form a linear pair of
angles, then ZAK B and ZC K B are supplementary. This implies that ZABK and ZCBK
are supplementary. Thus, ZABK and ZC BK form an adjacent pair of supplementary angles,
which implies that A — B — C, a contradiction since A, B and C' are noncollinear.

In either case, we have a contradiction, and it follows that AB + BC > AC. ]

In the following two theorems, we let Rt = {x € R | x > 0}.

Theorem 5.7. Let A, B, and C' denote three distinct non-collinear points. For each P on ray
/@, let zp = AP. Define f : RT™ — R* by f(xp) = BP. Then f is continuous.

Proof. Lete > 0. Let P; and P; be points on ray AC such that |xp, —xp,| < €. We may assume
without loss of generality that A— P, — P;. Thus, AP, = AP,+ P, P,. Thisimplies that P, P, =
AP, — AP, > 0. Therefore, |xp, — xp,| = |AP, — APy| = AP, — AP, = P, P5, which implies
that P, P, < €. By the Triangle Inequality applied to A B P, P», we have that BP, + P, P, > BP,
and BP, + PP, > BP,. This implies that BP, — PP, < BP, < BP,+ P, P, or equivalently
that — PP, < BP, — BP, < P, P,. Thus, |f($p1) — f($p2)| = |BP1 — BP2| < PP <e
Hence, f is continuous. [

Let () denote a point, and let » € R be such that » > 0. We define the circle S with center ()
and radius r to be the set of all points P such that Q P = r. We say that a point [ is an interior
point of § it QI < r, and we say that a point F is an exterior point of S if QF > r.

The following theorem is referred to as The Line-Circle Theorem in [8], [13], [14] and is
referred to as The Secant Theorem in [12]. A proof of the theorem is given in [12], [13], [14].
We include a proof here to show that the theorem depends only on the Triangle Inequality and
the Intermediate Value Theorem, not on Side-Angle-Side. When using the theorem, we will
refer to it as The Line-Circle Theorem.

Theorem 5.8. (The Line-Circle Theorem) Let S denote a circle. Assume that a line [ passes
through an interior point of P of §. Then [ intersects S at exactly two distinct points D; and
Dy such that D; — P — Ds. More specifically, assume [ passes through both an interior point P
of § and an exterior point G of §. Then there exists a unique point R satisfying the following
conditions

i) P-R-G
(i) R is a point of intersection of [ and S

Proof. Let () and r denote the center and radius of S, respectively. Since P is an interior point
of S, then QP < r.
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We first prove the existence of the points Dy and D,. Let B be a point on [ such that P # B.
For each point Y on ray ﬁ, let 2y = PY. Define f : Rt — R* by f(xy) = QY. It follows

immediately from Theorem 5.7 that f is continuous. We also see that P is a point on ray P
such that f(0) = f(PP) = f(xp) = QP < r. By the Ruler Postulate, there exists a point £

on ray PB such that xtyp = PE = 2r. By the Triangle Inequality applied to APQFE, we see
that PQ) + QE > PE = 2r. Thus, f(2r) = f(zg) = QE > 2r — PQ > 2r —r = r. Since
f is continuous, f(0) < r, and f(2r) > r, then it follows by the Intermediate Value Theorem
that there exists zp, € (0,2r) such that f(zp,) = r. Let D; be the point on ray ﬁ such that

xp, = PDy. Thus, QD = f(xp,) = r. This implies that D; is a point of intersection of / and
S.

Let 7" be a point such that 7' — P — B. An argument similar to the one just given shows that
there exists a point Dy on S such that Dy — P — Ds.

We next show that there cannot be distinct points Y7 and Y5 on both [ and S such that P —Y; —Y5.
Suppose that there exist two distinct points Y; and Y5 on both [ and S such that P — Y] — Y5.
Again, since P is an interior point of S, then QP < QY; = QY; = r. Using angle ZQPY,
we see by SSA that AY,QP = AY,QP. This implies that PY; = PY5, a contradiction since
P —Y; — Y;. Thus, there cannot exist distinct points Y; and Y5 on both [ and S such that
P-Y —Y,.

Assume that [ passes through both an interior point P of S and an exterior point G of S. An
argument similar to the one just given, with 2r replaced by the value x, shows the existence of
the unique point 2 satisfying conditions (7) and (7i). 0

Theorem 5.9. (The Exterior Angle Theorem) Given AABC, let D be a point such that
A—C—D. Then mZBCD > m/BAC and mZBCD > m/ABC.

Proof. Suppose that mZ/BCD < m/ZBAC. If m/BCD < m/ZBAC, then we can choose
a point G such that B — G — C and mZGCD = m/ZGAC. Thus, we may assume that
m/BCD = m/ZBAC. Let K be the unique point on ray @ such that CK = AB. Using
angles Z/BAC and ZBCK, we see by S.S A applied to triangles A K BA and A BK C that either
ABKC = AKBAorelse /ZBKC and ZK BC' are supplementary angles.

First assume that ABKC = AK BA. This implies that mn/KBC = m/BKA = m/ZBKC
and mZABK = m/ZBKC. Putting these equations together, we get that mZABK =
m/KBC. Since A — C — K, then C is in the interior of ZABK, which implies that
m/ABK > m/KBC. Thus, we have a contradiction, and it cannot be the case that ABKC
~ AKBA.

Next assume that /BKC and ZK BC' are supplementary angles. Let T be a point such that
A—C—K —T. Since ZBKC and ZK BC' are supplementary angles, and since /B K C' and
ZBKT are supplementary angles, then mZK BC' = mZBK'T. From the argument above, we
have that ABKC' and A K BA are not congruent triangles. If BK > BA, then it would follow
by SSA that ABKC = AKBA. Therefore, it must be the case that BK < BA. Thus, line
ﬁ( passes through the interior point K of the circle S with center B and radius BA. By the

<
Line-Circle Theorem, there exists a point .J such that J is on both AK and S, and such that
A—C—K —J.Since Jison S, then BJ = AB = CK.

Using /BKJ and /K BC, we see by SSA applied to triangles AJBK and ACK B that
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AJBK = ACK B. This implies that mZ/JBK = m/ZCKB. Since ZC'K B and ZBK J form
a linear pair of angles, then they are supplementary. However, since A — C' — K — J, then
7w >m/lABJ = m/ABC +m/CBK +m/ZKBJ > m/CBK + m/ZKBJ =m/BKJ +

m/C K B, a contradiction. Thus, in either case we have a contradiction and it follows that
m/BCD > m/BAC.

If we let () be a point such that B — C' — @, then /BCD and ZAC(Q are vertical angles
and therefore congruent. Applying the above argument to ZABC and ZAC(Q), then we get
m/ZABC < m/ZACQ =m/BCD. ]

The following two theorems are well-known. We include proofs to show that they depend only
on the Pons Asinorum and Exterior Angle Theorem, not on Side-Angle-Side.

Theorem 5.10. Given AABC, if AB < BC,then m/BCA < m/BAC.

Proof. Let D be the unique point on segment BC' such that B — D — C and AB = BD. By the
Pons Asinorum applied to AABD, we see that m/BAD = m/BDA. By the Exterior Angle
Theorem applied to AADC, we have thatm/BDA > m/DCA = m/BCA. Since B—D—C,
then it follows that D is in the interior of ZBAC. Thus, m/BAD < m/BAC. Combining
the above inequalities, we have that mZBAC > m/BAD = m/BDA > m/BCA. O

Theorem 5.11. Given AABC, if m/BCA < m/ZBAC, then AB < BC.

Proof. If AB = BC, then it follows by the Pons Asinorum that m/BCA = m/BAC, a
contradiction. If AB > BC, then it follows by Theorem 5.10 that mZ/BCA > m/BAC, again
a contradiction. The only remaining possibility is that AB < BC. U

Theorem 5.12. Given AABC, assume BC' > BA. Let D be a point such that A — B — D.
Let K be a point in the interior of ZDBC such that BK = BC. Then segment AK crosses
segment BC at a point 7" such that A — T — K and B — T — C. Consequently, C'is a point in
the interior of ZABK.

Proof. Since K is in the interior of /D BC/, then K and D are on the same side of % Since
A — B — D, then A and D are on opposite sides of % Thus, A and K are on opposite sides
of BC. By PSP, AK crosses BC ata point 7" such that A — T — K.

First suppose that 7" = C'. By the Pons Asinorum applied to AC' BK, we have that m/BC'K =
m/BKC. By the Exterior Angle Theorem applied to AABC, we have that m/BAC <
m/BCK = m/ZBKC. By applying Theorem 5.10 to AABK, we have that since BK =
BC > BA, then m/BAC > m/BKC. Thus, we have a contradiction and it cannot be the
case that 7' = C.

Next suppose that 7' = B. This implies that A — B — K. However, since K is in the interior of
/ZDBC, then A, B, and K are not collinear, a contradiction. Thus, 7" # B.

Suppose that 7' — B — C. In this case, 7" and K are on opposite sides of jﬁ By PSP, there
exists apoint W suchthat 7' — W — K. If W = A, then we havebothT — A— K and A—T — K,
which cannot happen simultaneously. Thus, W # A. However, this implies that distinct lines

f@ and AK have the two distinct points A and W in common, a contradiction.
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Suppose that B —C —T'. In this case, we have that BT > BC' = BK. Since K is in the interior
of ZDBC, then B, K, and T are not collinear. By applying Theorem 5.10 to ABKT', we have
that m/BKT > m/BTK. By the Exterior Angle Theorem applied to AABT, we have that
m/BTK > m/BAT. Thus, n/BKT > m/BTK > m/BAT. Since BK = BC' > BA,
then it follows by Theorem 5.10 applied to AABK that mZBAT > m/BKA = m/BKT.
Thus, we have a contradiction, and it cannot be the case that B — C' — T

The only remaining possibility is that B — 7" — C'. It follows immediately that both points 7’
and C' are in the interior of ZABK. [

Theorem 5.13. Given isosceles triangle AABC such that AB = BC, let D be a point such
that A— D — C. Then BD < AB.

Proof. Suppose that BD > AB. First assume that BD = AB. In this case, we have the three
isosceles triangles AABC, AABD, and ADBC'. By the Pons Asinorum applied to AABC
and ADBC, we have that mZ/BAC = m/ZBCA = m/ZBDC. However, this violates the
Exterior Angle Theorem applied to AABD. Thus, we cannot have BD = AB.

Next assume that BD > AB. By the Pons Asinorum applied to AABC, we have that
m/BAC = m/BCA. Since BD > AB = BC, then it follows by Lemma 5.10 that
m/BCD > m/BDC. Thus, mZ/BAD = m/BCD > m/BDC. This violates the Ex-
terior Angle Theorem applied to AABD. Thus, we cannot have BD > AB. In either case, we
get a contradiction, and the only remaining possibilty is that BD < AB. ]

Assume that AABC' is such that BC' > AB. Let D be a point such that A — B — D. Let S
denote the circle with center B and radius BC'. Let K be a point such that K € int(ZDBC),
and such that BK = BC. By Theorem 5.12, there exists a point 7" such that A — 7" — K and
B —T — C. Let Q be a point such that B — K — (), and such that K () is sufficiently small so
that mAKA<Q_>< m/KAC. Since B—T —Cand A —T — K, then B and C are gopposite
side of line AK. Since B — K — (), then B and () are on opposite sides of line AK. Thus,

C and () are on the same side of line AK. Since C' and () are on the same side of line jﬁ( ,
and since m/KAQ < m/ZKAC, then it follows by part (ii) of the Protractor Postulate that
Q € int(LCAK). Thus, it follows by Crossbar that ray /@ crosses segment C'K at point J
such that C — J — K. Since B — K — @, then BK < BQ. Since ACBK is an isosceles
triangle and since C' — J — K, then it follows by Theorem 5.13 that BJ < BC = BK < BQ.
Thus, it follows by the Line-Circle Theorem applied to S that there exists a point P such that
J— P —Qand BP = BC'. In the next theorem, we prove that any point 12 such that P — R — ()
is an exterior point of the circle S.

Theorem 5.14. Given triangle AABC, assume that BC' > AB. Let D be a point such that
A — B — D. Let S denote the circle with center B and radius BC'. Let K be a point such that
K € int(£DBC), and such that BK = BC'. Let () be a point such that B — K — (), and such
that K@) is sufficiently small so that m/K AQ < mZKAC. Let J be the point of intersection
of ray AQ) with segment C'K, and let P be the point given by the Line-Circle Theorem on S
such that J — P — (). Then for each point R such that P — R — (), we have that BR > BC.
That is, R is an exterior point of S.
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Proof. Suppose that BR < BC'. First assume that BR = BC. In this case, R is a point on

line JO) distinct from P such that BR = BC = BP. Since J — P — Q and P — R — @, then
J—P—R—Q. Since BJ < BC and B(@) > BC, then this contradicts the uniqueness of the
point P guaranteed by the Line-Circle Theorem. Thus, it cannot be the case that BR = BC'.

Next assume that BR < BC'. Since BR < BC and BQ > BC, then it follows by the Line-

Circle Theorem applied to S that there exists a point H on line f@ such that R — H — () and
BH=BC=BP.SinceJ—P—-Q,P—R—Q,and R— H—(Q,thenJ—P—R—H — Q.
This again contradicts the uniqueness of the point P guaranteed by the Line-Circle Theorem.

In either case, we have a contradiction and it follows that BR > BC.

]

Theorem 5.15. Given triangle AABC, assume that BC' > AB. Let D be a point such that
A—B—D. Letm/ZBAC =6 € (0,7), and let mZDBC = ¢ € (0, ). For each o € (0, ¢],

let K, be the unique point on the same side of line jﬁ as C such that mZDBK, = o and
BK, = BC. Define f : (0,¢] — (0,0] by f(0) = mZBAK,. Then

(i) The function f is continuous.

(ii) For each o € (0,0), there exists ¢ € (0, ¢) such that mZ/BAK, = «. That is, given
a € (0,0), there exists a point K € int(£DBC) suchthatm/BAK = cwand BK = BC.

(iii) Foreach o € (0,¢), C € int(LABK,).
Note that in Theorem 5.15, K, = C'if 0 = ¢, and K, € int(£DBC) if 0 < ¢.

Proof. We first prove (i). Let e > 0. Let A € (0, ¢]. We may assume that 0 < ¢ < mZCAK,.
Let F' be a point on EI—(_; such that B— K, — Fand m/FAK), < ¢ < mZCAK,. By Theorem
5.12, there exists a point 7" such that <B_—>T —(Cand A—T — K,. Since B — K, — F, then
B and F’ are on opposite side<s_gf_)line AK). Since A—T — Kyand B—T — C, then B and C
are on opposite sides of line AK . Thus, F' and C' are on the same side of line AK,. Since F'

—
and C are on the same side of line AK, and since m/F AK), < m/ZCAK), then it follows by
part (ii) of the Protractor Postulate that F' € int(ZCAK)).

Let ) be a point such that K, — ) — F'. This implies that () is a point on line m such that
Q € int(LOAK)). We also see that mZQAK, < m/ZFAK, < ¢,and that BQ > BK, = BC.
Since @) € int(LCAK)), then it follows by Crossbar that ray fTCﬁ crosses segment C'K, at a
point J such that C' — J — K.

Since ABC K, is isosceles, then it follows by Theorem 5.13 that B.J < BC'. Let S denote the
circle with center B and radius BC. Applying the Line-Circle Theorem to S, we see that there
exists a point PP such that / — P — () and BP = BC. Since J is on ray A—Ci and since J — P — (@),
then all three points J, P, and () are on ray 1@ This implies that m/PAK, = m/ZQAK, <
e. Letd = mLPBK,.

Let W be a point in the interior of £/ D BC which is on the same side of line gK A as P such that
BW = BC and such that mZW BK) < 0 = mZPBK,. It follows by part (ii) of the Protractor
Postulate that W € int(£LPBK)) = int(£PBQ). By Crossbar, there exists a point R on ray
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e
BW such that P — R — (). By Theorem 5.14, we have that BR > BC = BW, which implies
that B — W — R. Since W € int(£PBK)), then there exists a point Z such that P — Z — K,
and B — Z — W. In particular, Z € int(£LPAK)). Since B—Z — W and B — W — R, then

B — 7 — W — R. Since all three points P, (), and R are on ray 1@ since Z — W — R, and
since Z € int(£LPAK)), then W € int(£PAK)). This implies that m/W AK, < mZPAK,

< €. Thus, if IV is a point in the interior of £ D BC' which is on the same side of line E Ky as P
such that BW = B(' and such that mZW BK, < 0§, then m/W AK, < e.

By the argument just given, we have that for any € > 0, there exists a ¢ > (0 with the property
that for each 0,09 € (0, ¢] such that oy > o9, if |0y — 03| = |mLDBK,, — mZDBK,,| =
|K,, BK,,| < d,then |f(01)— f(o2)| = |mLBAK,, —m/{BAK,,|=|K,, AK,,| < ¢. Hence,
f is continuous.

We next prove (ii). Let a € (0,6), and let 6 = %a. By the Exterior Angle Theorem applied to
AABK;, we have that f(6) = m{BAK; < m/ZDBKs; =6 = %04 < «. By definition of f,
we have that f(¢) = 6 > «. Since f is continuous, then it follows by the Intermediate Value
Theorem that there exists o € (¢, ¢) C (0, ¢) such that mZBAK, = f(o) = a.

Finally, we prove (iii). Let o € (0, ¢). Then C and K, are on the same side of line j@ Since
A— B — D, then angles ZABC and /D BC' are supplementary. Similarly, angles ZABK, and
/DBK, are supplementary. Since o € (0,¢), then 1 — mZ/ABK, =m/DBK, =0 < ¢ =
m/DBC =nm—m/ABC. Thus, n/ABK, >m/ABC. Since C and K, are on the same side
of line f@ then it follows by part (ii) of the Protractor Postulate that C' € int(£LABK,). O

We are now ready to prove Side-Angle-Side.

Theorem 5.16. (Side-Angle-Side) Given triangles AABC and ADEF,if AB = DFE, BC =
EF, and mZABC = mZDFEF, then ANABC = ANDFEF.

Proof. We may assume without loss of generality that BC' > AB. It m/BAC = mZEDF,
then it follows by SSA that AABC = ADEF. Suppose that mZBAC < mZEDF. By
Theorem 5.15 applied to triangle ADFEF, there exists a point K such that EK = FF = BC,
m/BAC = m/ZEDK, and F € int(£DEK). Thus, it follows by SSA that AABC =
ADEK. This implies that m/ABC = mZDEK. Since F' € int(£DEK), then it follows
by the Protractor Postulate that mZ/ABC = m/DFEF < m/ZDFEK, a contradiction. A similar
argument shows that it cannot be the case that mZ/BAC > m/ZEDF'. Therefore, it must be
that case that m/BAC = m/ZEDF. Hence, NABC = ADEF. O
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A Mathematical Taorist in Gottingen

Abstrakt

Matematické centra,

kvitnt a blednq,

matematika samotna

nikdy nebude sluzit” twitteru.
Algebra, analyza a geometria,
Svita Trojica,

bozska podstata matematiky.

Vratit’ sa v ¢ase ako matematicky taorista.

Ustanovit', ¢o je zakorenené v jazyku,

Vv aoristovi.

Kracové slova: dejiny matematiky,
geometria, zov§eobecnené Mdobiove-
Listingove telesa, aorista

Johan Gielis

Abstract

Mathematical centers,

they bloom and they whither,
Mathematics itself

will never be servant to twitter.
Algebra, calculus & geometry,

A Holy Trinity

Mathematics’ own Divinity

Going back in time as a Mathematical Taorist
To establish it is rooted in language,
in the Aorist

Keywords: history of mathematics,
geometry, generalized Mobius-Listing
bodies, aorist

1 Walking on sacred soil

In November 2018 I drove to the University of Gottingen in Lower Saxony, Germany for a Vvisit
I had long looked forward to. In the 19th century up to 1933, Gottingen was one of the foremost
mathematical powerhouses in the world. Illustrious mathematicians like Carl-Friedrich Gauss,
a.k.a. the Prince of Mathematics, Bernhard Riemann, Gustave Dirichlet, Felix Klein, Emmy
Noether, David Hilbert, Hermann Minkowski, and many others who walked the streets of
Gottingen, were members of the Gottingen Academy or spent their lives in the Gottingen
observatory.

The purpose of my visit was twofold; first, to attend a workshop on Sparse Approximation with
Exponential Sums and Applications, organized by Gerlind Plonka-Hoch of the Institute for
Numerical and Applied Mathematics, and secondly, to visit a colleague in the Department of
Ecology and Evolution, both at the University of Goéttingen (in German the Georg-August-
Universitit Gottingen).

During the workshop I discussed my generalization of Lamé curves, which in this sense allows
for extremely sparse shape descriptors, in comparison with finite or infinite series expansions
[1]. I took this opportunity to highlight the great mathematical tradition of Géttingen; my work
is in many ways both a continuation and a tribute to this legacy. Mathematics in Gottingen was,
while pure in the purest sense, often motivated by natural sciences and natural philosophy,
mainly physics and astronomy (Fig. 1). My background in botany and my research in plants
allowed me to generalize Pythagoras’ Theorem to what are now called Gielis curves, surfaces
and transformations, providing a unifying description of natural shapes, at all levels [2]. This
generalization might have been known already in the early 1800’s, in Gottingen or Paris, but it
was only published in the last years of the 20th century. This unifying description for a wide
variety of natural shapes is based on observations in plants, and for this | was called
“A botanical Kepler, awaiting his Newton” [3].
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Fig. 1. Mobius band in front of the Gottingen Observatory

My journey in mathematics took off after my initial publications, and led to a variety of
collaborations. Coming from the world of botany, | soon learned about the extended networks,
the historical lineages and the strong oral tradition in geometry. What one finds only
sporadically in writing are the big open challenges, and these are not necessarily the Millenium
Prize ones or Hilbert’s 23 problems. What ends up in journals, books and textbooks are
“finished products”, the theorems and proofs, the exercises with answers. Many of the open
questions however, are transmitted in oral tradition mainly, from master to student, through
generations.

Another important lesson was that progress is only slow in mathematics and science. Between
important steps, decades, centuries or eons may pass. What is considered progress for some has
by no means the same meaning for others. As Sir Michael Atiyah recounts [4], Arnold’s “view
of mechanics, in fact of physics, is fundamentally geometrical, going back to Newton.
Everything in between, with the exception of a few people like Riemann, who was a bit of
a digression, was a mistake”. What Gauss and Riemann, among all the fantastic work they
published, were really looking for was a unifying description of nature, in the sense of Kepler
and Newton. This was also the dream of many of their predecessors and their descendants.
Despite the many applications of mathematics in biology, no mathematical model or system
can describe the evolution of individual lives and feelings. We are only at the beginning of
understanding nature.

One example of the oral tradition is non-Euclidean geometry, famously discovered
independently by Nikolaj Lobachevsky, Farkas Bolyai and Carl Friedrich Gauss. The
motivations trace back to Gottingen, with leading roles for Martin Bartels, Johann Pfaff and
perhaps Abraham Kistner. Lobachevsky graduated at the University of Kazan under
supervision of Bartels, but when he was young, Bartels was also the tutor of young Gauss. Pfaff
was Gauss’ mentor, and Gauss and Farkas Bolyai, father of Janos Bolyai, were close friends in
Gottingen. The idea to dismiss the parallel postulate in Euclidean geometry was out in the open
in Gottingen.

Many of the developments in contemporary mathematics can be traced back to the 19" century,
to Gottingen. To name only one: twentieth century geometry was dominated by Riemannian
geometry, while twenty first century geometry will be dominated by Riemann-Finsler geometry
[5]. This originates in a side remark of Riemann on using other than quadratic forms in his
famous Habilitationsvortrag. Only half a century later Paul Finsler, in his thesis with Constantin
Carathéodory, started the study of the more general ways of measuring. One of the simplest
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Riemann-Finsler geometries is based on the unit circle of Lamé type, i.e. x™ +y™ = R",
geometrical equivalent of the Last Theorem of Fermat, and the starting point of my own work

[2].

Numerous genealogies show the connection of Goéttingen to many of the most important
mathematical centres of the world today. Saint-Petersburg is one example, and a famous
mathematician in Saint-Petersburg was Pafnuty Chebyshev, who graduated with Lobachevsky.
This led to lineages with the Markov brothers, Aleksandr Lyapunov, Alexander Friedmann,
A.N. Alexandrov and G. Perelman. Another lineage is the Moscow school, founded by Egorov
and Bugaev, with mathematical offsprings like Kolmogorov, Gelfand, Arnold, Petrovski and
Oleinik. The mathematical great-grandfather of John Nash is Felix Klein. The role of Gottingen
as mathematical centre abruptly stopped in 1933 when the Nazi’s came to power, but its legacy
was secured. Gottingen’s best mathematicians were welcomed in the USA.

2 Torsion of prisms

One of the highlights of my visit was the mathematical models collection at the Georg-August-
Universitét. It consists of a vast collection of cardboard, plaster, metal and wooden models, to
aid students and mathematicians in understanding concepts and functions. The first models in
the collection were cardboard models developed under the supervision of Abraham Késtner
from 1780 onwards. Various models were featured in Hilbert and Cohn-Vossen’s Anschauliche
Geometrie [6], translated in English as Geometry and the Imagination.

A virtual tour of the collection is possible via
https://www.math.uni-goettingen.de/historisches/modelcollection.html

During the guided tour, I encountered some ‘unknown’ gypsum models (Fig. 2). These were
unlabeled and their origin and meaning were unknown, according to our guide professor Samuel
Patterson, who has been curator of the collection from 1982 to 2011. | have recognized these
models immediately: they were models of Saint-Venant’s research on torsion of prisms.
Adhémar Jean Claude Barré de Saint-Venant (1797-1886) was a contemporary of Gabriel Lamé
(1795-1860).

Fig. 2. Unlabelled models in Géottingen collection

If a cylinder is subjected to torsion, the circular cross sections will remain flat. The research of
Saint-Venant on the torsion of prisms showed how the internal body is subjected to stress
resulting in distorted cross sections, when the cross sections are not circular, as in prisms or
non-circular rods. In Isaac Todhunter’s The history of elasticity [7] Saint-Venant’s derivations
are described in detail with pictures that are 2D versions of the gypsum models in the Goéttingen
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collection. In Fig. 3 the results are shown for prisms with square and triangular cross sections.
The plaster models show the real three-dimensional deformations. | could not observe all the
numbers, but in the collection the square one is N°595, the ellipse is N°596, the triangle is
N°597 and the star with four rounded points is N°598.
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Fig. 3. Torsion of prisms with square and triangular cross-sections.
Dotted lines are depressed regions and full lines are elevated parts of the cross sections [7]

In the exposition there were a few special shapes, which | had not seen before, such as the
central one N°598 in Fig. 2. However, these can be found in Isaac Todhunter’s A History of the
Theory of Elasticity, and they are solutions for prisms with special cross sections studied by
Saint-Venant. In Fig. 4 the star with four rounded points is model N°598 in the collection. The
square with acute angles in Fig. 4 may also be present, but through the glass windows of the
cabinets | could not distinguish whether the model was a square or a square with acute angles.

Fig. 4. From left to right: square with rounded angle, square with acute angle (both fourth order),
and star with four rounded points (eighth order) [7]

The next question is when and where the models were made and by whom. Interestingly,
models N°846 and N°847 in the collection, displaying 3D effects of vibrations, were actually
made by Saint-Venant. The notes with N°846 and N°847 state that Saint-Venant provided both
models in 1852 to the Société Philomathique de Paris, established in 1788. Given the fact that
Saint-Venant was a model maker for mathematical models with gypsum plaster or plaster of
Paris, a reasonable hypothesis is that models in Fig. 2 could also be attributed directly to him.

It would be interesting to investigate how they ended up in the Gottingen. They may share
a common history with N°846 and N°847: manufactured by Saint-Venant, donated to the
Société, then to Gottingen. An inquiry with the Société might clarify this, but a more direct and
conclusive evidence of a common origin could be obtained by a simple comparative chemical
analysis of one of the models N°s 595-598 and of the models N°846 and N°847.
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3 Saint-Venant’s Legacy

The importance of the research of Saint-Venant cannot be overestimated, and his results

inspired many in the past 150 years. In D’ Arcy Thompson’s 1917 On Growth and Form [8],
a wonderful book applying many fundamental 19th century results in geometry and
mathematical physics to living organisms, one can find a discussion of Saint-Venant’s results
in relation to the formation of horns. After remarking that natural shapes are not accurate
triangles, in the section The shape of horns of sheep and goats he writes:

“The better to illustrate this phenomenon, the nature of which is indeed obvious enough from
a superficial examination of the horn, I made a plaster cast of one of the horny rings in a horn
of Ovis Ammon, so as to get an accurate pattern of its sinuous edges and then, filling the mould
up with wet clay, I modelled an anticlastic surface, such as to correspond as nearly as possible
with the sinuous outline. Finally, after making a plaster cast of this sectional surface, | drew its
contour-lines (as shown in Fig. 322), with the help of a simple form of spherometer. It will be
seen that in great part this diagram is precisely similar to Saint-Venant’s diagram of the cross
section of a twisted triangular prism”.

A Fig. 437.
Fig. 5. Figs 321 and 322 from [8]. Fig. 321 is Saint-Venant’s triangular cross section

Our own research is related to Saint-Venant and to mathematical research in Gottingen, in
particular to Mobius and Listing’s non-orientable surfaces [9]. In the 1950 and 1960’s, Olga
Oleinik in Moscow observed that the solution of boundary value problems would greatly benefit
from the knowledge of the domain. My colleague Ilia Tavkhelidze from Thbilisi, then a doctoral
student of Oleinik, started to generalize Mobius-Listing bodies and surfaces, and studied the
result of their cutting [10]. Hitherto, mainly the classical Mobius ribbons with cross section
a line were studied, but in our joint work the generalization allows for cross sections of different
planar curves or disks, leading to surfaces or bodies, respectively. Their cutting leads to a direct
link with the theory of knots and links [10].

Fig. 6 displays a Generalized Mdbius-Listing body with basic line, a circle, and a regular
pentagon as cross section; the toroidal structure is twisted a certain number of times. If a cut is
made from side 1 to side 3 (counting clockwise) and the knife follows the path until it returns
to its original position, the structure will result in four different complex, but yet coherent
structures. The different bodies will have cross sectional shapes according to the coloured zones
(indicated in yellow, brown, grey or blue), whereby the number of twists of each of the resulting
bodies is determined by the original number of twists. The resulting bodies are intricately
intertwined (Fig. 6 shows only one of the bodies on the right).
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When the knife cuts the center of the polygon, only one body may result, displaying the Mobius
phenomenon, depending on the type of cutting [11], [12]. Obviously, in Generalized Mdbius-
Listing bodies with regular-polygons as cross section, the whole structure is subject to torsion
and bending. Combining and generalizing the work of M6bius, Listing and of Saint-Venant will
contribute to understand the heart and its action, twisted fiber bundles, DNA and RNA and their
operations, among others [13].

a)

<>

\ " ///////II

N ““lllmml////({////l ¥

Fig. 6. Generalized Mobius-Listing body and one result after cutting from side to side.

4 An Indo-European origin for mathematics

Another highlight of the collection are the metal wireframes used by Richard Courant. These
frames are designed for dipping into soap solutions. Soap films are physical examples of
solutions to Plateau’s problem. This is a fantastic way to understand minimal surfaces, and
crucial mathematical concepts [14]. How subjects are taught is part of mathematics’ great oral
tradition, based on language, both visual and verbal. In On Proof and Progress [15], William
Thurston describes how people develop “understanding of mathematics”: “Human language is
a pivotal part to understanding mathematics. Intuition, associations, logic, deduction, spatial
awareness and communication play important roles. The mathematical language of symbols is
closely tied to our human language facility.”.

Then my mind drifts off to the origin of mathematics. I am of the opinion that language is of
primordial importance to understand anything in human culture, including mathematics. Since
| started with mathematics (and that was only in my thirties) | have always wondered why
language and mathematics are completely separated in thought and teaching, even in our high
school system with Latin and Greek. The fundamental contributions of the Greeks to
mathematics and natural philosophy on the one hand, and to literature, philosophy, logic, drama
and poetry on the other, are clear and unchallenged. In ancient Greece these subjects were
strongly intertwined, with Pythagoras’ teaching that All is number and Plato’s Timaeus and
Theaetetus. Building a convincing argument in mathematics or before a court relies on the same
structure of reasoning and in both cases language is crucial. It is often said that Greek
mathematics lacked symbols, which is not true. On the contrary, an additional advantage of
Greek mathematicians was that they mastered language. This leads us to the older origin of
mathematics.

Besides advancing mathematics and the natural sciences, in Gottingen there was a great interest
both in the foundations and the history of mathematics. One of the most important historians of
mathematics and astronomy in the first half of the 20th century was Otto Neugebauer, a student
of Courant and Hilbert, who focused mainly on Babylonian and Egyptian astronomy. Another
student of Courant was Bartelt Leendert VVan der Waerden, with great interest in the history and
origin of mathematics. After his doctorate in 1926 at the University of Amsterdam, he passed
his Habilitation at Gottingen University under the wings of Richard Courant in 1927.
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He became Courant’s assistant and Privatdozent at Gottingen and later made fundamental
contributions to the understanding of Greek mathematics.

In Geometry and Algebra in Ancient Civilizations [16], the main thesis is that the origin of
mathematics is found in Indo-European history. Van der Waerden noted many similarities
between the mathematical and religious ideas present in the Neolithic age, in Greece, India,
China, England,...., including the knowledge of Pythagorean triples. Moreover, “The Indo-
European languages are connected with a perfect decimal counting system, including a method
for fractions. The religions of ancient Indo-European populations have so much in common
that the existence of an Indo-European religion can hardly be doubted. Hence, if we find quite
similar ideas about the ritual importance of geometrical constructions in Greece and India,
and the same set of Pythagorean triangles with ritual applications in England and India, and
the same geometrical constructions in Greece and India, the conclusion that these religious
and mathematical ideas have a common Indo-European origin is highly probable” [16].

As Van der Waerden argues, the mathematical sciences were already well developed by 500
BC, but the Pythagoreans transformed puadnuata (mathemata) into an ordered system with
statements and proofs, making it a purely deductive science. He showed that Greek mathematics
was indeed advanced in symbols.

5 Beyond space and time: the aorist

This intersects with my own investigations. Whereas language is considered the opposite of
mathematics with respect to clarity (think poetry, theatre and storytelling versus axioms,
theorems and proofs), mathematics definitely originated in language. The origin of mathematics
is tied to the transition from oral traditions to writing and to the simplification of language. This
simplification probably happened because of the migrations of Indo-European people to West
and East, as far as India and China (extinct Tocharian is of Indo-European origin [16]). One of
these simplifications was the transition of different notions of time, to linear time. In my opinion
it is precisely this loss in language that became crucial to the development of mathematics as
a deductive science.

Time and how it is perceived is a key concept to understanding ancient writings, including
Homer or Genesis. In our current science and linear time we distinguish between past, present
and future, and in language we add perfect and imperfect forms. While we are convinced of the
correctness of our views, Ancient Greek tourists visiting our era might consider us as prisoners
of time, since the notion of (linear) time was of only secondary importance to the Greeks. For
them it was not important when an action took place, but how. In ancient Indo-European
languages and in ancient Greek this is expressed with the aorist.

The aorist form indicates the actions, simple and pure, as if it was a singular point, with
beginning and end into one. Neither the space nor time where and when the action took place
IS important, but the action or process has a definite endpoint. If the imperfect is an indefinite
line along which the action unfolds, the aorist is a point or a definite line. For modern scientific
human beings, fully accustomed to clocks and the linear time scale, it is almost impossible to
understand this. It is however impossible to understand ancient texts such as Genesis, Homer
or even Euclid, without understanding the aorist aspect. There are nuances: the complexive
aorist concentrates on the whole action and how the action develops into one singular point,
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with beginning and end. The ingressive aorist focuses more on the starting point, whereas the
resultative aorist gives more weight to the end point [17]).

In the oral tradition, the narrator tells a story, placing what occurred before the actual story (and
is necessary to understand the story) in aorist aspect. For example in Genesis the creation of the
world (the action) is in six days (the aorist is used with definite numbers [17]), with basically
the correct sequence of how it unfolds. The narrator places the genesis of the universe outside
space and time. Likewise, what was before the Big Bang is not relevant, since everything (past-
present-future) was already there in Lemaitre’s Atome primitif or cosmic egg [2]. It is all there,
at once, as a given, providing for a strong foundation of what is to come. In mathematics: Think
axioms and definitions. The aorist states that something happened, and leaves it to the reader to
draw consequences of this, in the understanding that what happens once is typical of what
happens often (Is mathematics not the science of patterns?) The gnomic aorist speaks of general
truths, about main facts that happened. In mathematics: Think theorems and constructing
proofs.

Moreover, aoptotog (aoristos) means undefined. What is true for one rectangular triangle is
true for all rectangular triangles, anywhere, anytime, not for one particular rectangular triangle
only. The root of mathematics is the Proto-Indo-European uav8avw (manthano), which means
learning, knowledge. In Ancient Greek manthano related to searching, seeking, investigating
(respectively, ‘I learn’, ‘I seek’ I inquire’) but in the aorist aspect it means “I see”,
“I understand”, “It is now clear to me”. From the many proofs of the Pythagorean Theorem to
the Proofs without Words in the Mathematical Intelligencer: once a proof is given, there is
insight, understanding. Theorems and proofs take us beyond real space or linear time, into the
mathematical realm. This mathematical realm is closely related, in my opinion, to the notion of
time, held by ancient Indo-European (and other) people.

The aorist and the perfect are widely used in Euclid. Recent research [18] suggests that Euclid
uses the aorist for key verbs to denote the finalization of steps within the proof of a proposition.
The aorist emphasizes the performed action and marks a new step in a proof. The perfect, on
the other hand, stresses the attained result of an action and is therefore used to refer to a finished
proof or a completed construction of figures. The perfect is also used to refer to earlier, already
proven propositions [18]. Certainly, for Ancient Greek readers this improved the readability
and intelligibility of The Elements.

Hence, interpreting the aorist as “perfect”, The Elements cannot be appreciated by more modern
readers. This is no surprise. In the transition from the oral to written traditions, the aorist has
disappeared in almost all languages of Indo-European descent, including in Koine Greek,
spoken by ancient Greek mathematicians. Together with the ascent of mathematics in Ancient
Greece, languages became simpler, perhaps with purer definitions. Unfortunately, the aorist
became synonym to the perfect and the aorist aspect, rooted in the notion of time and what was
and what will always be, was lost.

6 Mathematics, Mushrooms and Mycelium

My paper started in well-defined space and time (visit to Gottingen, November 26-28, 2018)
and wandered off into the aspect realm where space and time in itself, although unified by
Minkowski at Gottingen in 1908, ceased to exist as it were.
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What is always key to human culture, which includes mathematics, are deep questions and
challenges, which are addressed and answered differently, in different eras and geographical
locations. One recurring theme is the erasure of the past, or of other ways of doing mathematics.
This is often bound up with narrowing our brain, and simplifying our language. That is how the
aorist lost its original meaning, and simplifications present a continuous threat to mathematics.
The geometer Radu Miron wrote: “If Mathematics would be torn from its foundations, it would
become a series of formulae, recipes and tautologies that could not be applied any longer to
the objective reality, but only to some rigid, mortified scheme of this reality” [19].

Mathematics is a lively activity, a human endeavor, and real progress is slow, when measured
in solutions of problems and in theorems. In Arnold’s view: progress is visible as the
mushrooms, the fruiting bodies of the fungi with their spores [20]. Real and living mathematical
activity however is at least equally important. For Arnold this was the mycelium of fungi, living
underground. From a botanical perspective: in forests the mycelium is a crucial part of the
ecosystem, providing communication channels and even distribution of nutrients for trees and
plants. The underground mathematical mycelium activity generates challenges and problems,
ideas, mistakes, conjectures, discoveries, as well as failure and learning from failure (Fig. 7). It
is by no means simply linear. This is the legacy of Ancient Greek mathematics to this very day.
To understand this legacy, we need not only to understand mathematics, but also language and

human culture.
% theorems

problems

conjectures
mistakes

ideas

Fig. 7. Arnold’s Mathematical Mushroom
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Weberian Surfaces with Foci and Directorial Planes

Maja Petrovic

Abstract

The subject of this paper are algebraic
surfaces named Weberian surfaces which
represent loci of points with a constant sum
of distances to foci and directorial planes.
Algebraic equations are given for two types
of these surfaces, as well as their graphical
representations.

Keywords: foci, directorial planes, locus of
points, algebraic 3D surfaces

Abstrakt

Predmetom tohto clanku st algebrické
plochy nazyvané Weberovské plochy, ktoré
su mnozinou vsetkych bodov s konStantnym
suctom vzdialenosti od ohnisk a riadiacich
rovin.

Pre dva typy tychto ploch st uvedené
algebrické rovnice, ako aj ich grafické
Znazornenie

KrPacové slova: ohniska, riadiace roviny,
mnozina bodov, algebrické plochy v 3D

1 Introduction

Owing to modern tools and the rapid development of technology in the XXI century, the number
of newly generated algebraic surfaces with complex geometries is rising, [1], [3], [5], and their
applications in various areas of engineering are expanding, [2], [4], [6]. Precisely for this
reason, the subject of this paper are algebraic surfaces with predetermined 3D elements (foci
and directorial planes), in regard to which they have been generated. These surfaces are called
Weberian surfaces.

Weberian surfaces are defined as loci of points in space with a constant sum of scaled distances
to foci, directorial lines and directorial planes, [4]. In this paper, only Weberian surfaces (WS)
which represent loci of points with a constant sum of scaled distances to foci and scaled
distances to directorial planes are considered. That is, Weberian surfaces with m foci and k
directorial planes are analysed, which are in turn given by the following equation:

YRR+ X pid;j=S, 5=0, (1)

where R; is the distance of a point of the Weberian surface from the i-th focus F;
(i = 1..m)and d; is the distance of a point of the Weberian surface from the j-th directorial
plane D; (j = 1... k), while the coefficients a;, §; and S are real numbers.

2 Determination of the basic elements of Weberian surfaces

2.1 3D elements (foci and directorial planes) for surface generation

In this section of the paper, some restrictions are introduced into the equation (1). In other
words, the geometric structure of the surface is defined i.e., the numbers and spatial
arrangements of 3D elements (foci and directorial planes) used for generating the WS are set.
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The first restriction is related to the number of foci m and the number of directorial planes k,
insofar as their counts are equalized i.e., m = k.

The second restriction is related to the spatial arrangements of foci and directorial planes. Let
the foci F; coincide with the vertices of an equilateral triangle, a square or a regular pentagon;
that is, it holds that: 3 < m = k < 5; and let the directorial planes D; used for generating the

WS coincide with the sides of the upright prism the base of which is given by the previously
defined foci, see Fig. 1.

aym=k = 3; bym =k =4;

com=k=5

Fig. 1. The spatial arrangements of foci F; and directorial planes D; (i = 1...m,j = 1...k)

3D elements with such spatial arrangements (Fig. 1) are the foundational starting point for
forming new algebraic surfaces.
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2.2 The parameter S and the Weberian coefficients a;, B; for surface generation

The following restrictions are related to the numeric value of the parameter S as well as to the
numeric values of the Weberian coefficients. The constant sum i.e., the parameter S is a real
number necessary for the generation of WS, as are the scaled distances i.e., the Weberian
coefficients a;, B; (i=1..m,j =1..k) which are also real numbers. Based on these
parameters, two groups of WS are introduced, for which it respectively holds that: 1) S = 0 and
I1) S > 0. The definitions of these WS are as follows:

)] The WS represents a locus of points with its sum of distances to foci equal to two
and a half times its sum of distances to directorial planes. This means that the
parameter S for this surface is equal to zero in Eq. (1). The foci coefficients of the
WS are mutually equal and it holds that «; = 1, while the directorial plane
coefficients have the numeric value §; = —2.5. This algebraic surface given by the
equation (2) is called the Weberian Surface type I:

m R =25 z;;ldj; 2)

i) A WS represented as a locus of points with a constant sum (S > 0) of unit distances
to foci (a; = 1) and negative distances to directorial planes (8; = —1) has the name
Weberian Surface type Il and its equation is as follows:

LiRi— Xf.d =S @)

3 Generation of Weberian surfaces

The geometric structure of surfaces defined using equations (2) and (3) is the same, but with
slight variations of initial parameters (S or Weberian coefficients), the form of the generated
algebraic surfaces varies significantly. Hence, in this section of the paper, all the necessary
numeric values for the aforementioned equations are given, followed by graphical displays of
the newly generated surfaces.

3.1 WS with three foci and three directorial planes

The first WS to be defined has foci which coincide with the vertices of an equilateral triangle:
F;(—1,0,0), F,(1,0,0), F5(0,/3,0), while the directorial planes of this surface coincide with
the sides of the upright prism with the base F, F,F;, see Fig. la.

The functions of the distances of a point of the WS to foci F; (i = 1, ...,3) are as follows:

2
R, =\/(x+1)2+y2+zz; R, =\/(x—1)2+y2+zz; R, =\/x2+(y—\/§) + z2.
The functions of the distances of a point of the WS to directorial planes D; (j = 1, ...,3) are:

y+\/§x—\/§‘
> .

p _|—y+\/§x+\/§‘_
1= )
2

dy = |yl; d3:‘
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Right view Front view

Axonometric view Top view

Fig. 2. WS with three foci and three directorial planes (type 1)

Right view Front view

Axonometric view Top view

Fig. 3. WS with three foci and three directorial planes (type 1)
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Fig. 2 shows a newly generated surface given by R, + R, + R; = 2.5(d; + d, + d3) in all
three orthogonal projections, as well as its axonometric view; while Fig. 3 shows a WS type I,
the equation for whichis Ry + R, + R; — (d; + d, + d3) = 3.

3.2 WS with four foci and four directorial planes

By increasing the number of 3D elements of the Weberian surface to four, and positioning the
foci in such a way that they coincide with the vertices of a square: F;(—1,0,0), F,(1,0,0),
F5(1,2,0), F,(—1,2,0) and the directorial planes coincide with the sides of the upright prism
with the base F, F,F;F,, see Fig. 1b, the following functions of distances of a point of the WS
to foci F; (i = 1, ...,4) are obtained:

Ry =+ 12 +y2 +22% Ry = /(x = D2 +y% + 2%

Ry=(x—1)2+ (@ —2)2+2% Ry =+J(x+ 12+ (y — 2)% + z2.

A _ 4
A

Right view Front view

Axonometric view Top view

Fig. 4. WS with four foci and four directorial planes (type I)
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The functions of distances of a point of the WS to directorial planes D; (j = 1, ...,4) are:
di=|x+1; dy=1|yl; ds = |x—1]; dy = |y — 2|.

Fig. 4 shows the newly generated WS type | given by R; + R, + R; + R, = 2.5(d, + d, +
+ d5 + d,) in all three orthogonal projections, as well as its axonometric view.

A graphical display (top, front, right and axonometric views) of the Weberian surface type Il
given by the equation Ry + R, + R; + R, — (dy + d, + d5 + d,) = 4 isshown in Fig. 5.

Right view Front view

Axonometric view Top view

Fig. 5. WS with four foci and four directorial planes (type 1)

The work [5] considers Weberian surfaces with four foci and four directorial planes with the
same spatial arrangement of 3D elements as given in Fig. 1b) and the same Eq. (1), but with
different values for the Weberian coefficients and the parameter S compared to the ones given
in this section of this paper.

3.3 WS with five foci and five directorial planes

In this subsection of the paper, a third group of WS has been generated which has foci
coinciding with the vertices of a regular pentagon: F,;(—1,0,0), F,(1,0,0), F5;(¢,q,0),

F,(0,h,0), Fs(—¢,q,0), where ¢ = ”f ~1.618, g =2+ ¢ ~1.902; h=v54+2V5 =
3.077, while the directorial planes of this surface coincide with the sides of the upright prism
with the base F, F,F;F,Fs, see Fig. 1c. The functions of distances of a point of the WS to foci

F; (i =1,...,5) are as follows:

Ry =/ (x+ D2 +y2 +22 Ry = /(x = 1)2 +y? + 2%

Ry =y(x =) + 7 — 2 + 2% Ry = /2% + (y — h)? + 2%
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Rs = (x+ @)%+ (y — q)? + 22

The functions of distances of a point of the WS to directorial planes D; (j = 1, ...,5) are:

d, = |(¢> — Dy

+ gqx + —(p—1)y +qx—
q q|;d2:|y|;d3:|(¢ )y +q q|;

2 2

d4:

2

|¢y +th-q@x—(h+q)
2

‘ ‘—dw +(h—q)x+h+q|

; ds = .

A graphical display (top, front, right and axonometric views) of the Weberian surface type |
defined by the equation R; + R, + R; + R, + Ry = 2.5(dy + d, + d5 + d, + ds) is given in
Fig. 6.

p——— %

Right view

Axonometric view Top view

Fig. 6. WS with five foci and five directorial planes (type I)
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The WS given by the equation Ry + R, + Rs + R, + Rs — (dy +d, +d; +d, +ds) =5 is
shown in Fig. 7.

Right view Front view

Axonometric view Top view

Fig. 7. WS with five foci and five directorial planes (type I1)

The modelling of the surfaces shown in this paper (Fig. 2 - Fig. 7) was done using the free
software package VisuMath 3.0. “VisuMath 3.0 is a mathematics visualization tool. It can be
used to visualize curves in a plane and surfaces in the three dimensional Euclidean space®, as
stated by the author of this software package Ignace Van de Woestyne, [7].

4 Conclusion and future research

Based on the previous section, the following conclusions can be drawn: WS type | surfaces are
open surfaces with an “umbrella” shape and could belong to the group of hyperbolic surfaces,
while type II surfaces are closed surfaces with a “pillow” shape. Furthermore, because of the
spatial arrangement of their foci and directorial planes (Fig.1), these surfaces have the same
symmetry as their initial 3D elements. Moreover, types of surfaces defined thusly with Eg. (2)
and Eq. (3) have great adaptability and flexibility with respect to variations in the initial 3D
elements (changing the spatial arrangement of foci which can coincide with the vertices of
irregular polygons or changing the spatial arrangement of directorial planes in such a way, so
they coincide with the sides of an oblique prism).

Modern technology and materials used in design and engineering have contributed to the
possibility of realizing different, complex, mathematically-defined 3D structures. Therefore,
the newly generated surfaces (Fig. 2 - Fig. 7), in part or whole, could find wide application as
standalone architecturally constructed objects, and so our further research could be tied to their
static structural analysis, adaptability for pneumatic purposes (for type Il surfaces), ....
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Abstracts

J. Brajercik: Problems of global variational geometry

We introduce the global variational geometry as a modern mathematical discipline
integrating the knowledge of many areas of mathematics. It generalizes classical calculus of
variations, and its subject is a geometric structure consisting of a smooth manifold endowed
with a differential form. In this contribution, basic concepts of the global variational
geometry are characterized. We also discuss some problems solved by methods of the global
variational geometry.

J. Donnelly: The Equivalence of Side-Angle-Side and Side-Side-Angle

in the Absolute Plane
In general, Side-Side-Angle is not a criterion for congruence of triangles. However, one can
use Side-Angle-Side to prove several statements in triangle geometry which involve Side-
Side-Angle. We prove that the converse holds as well. Namely, we show that if we assume
the statements which involve Side-Side-Angle, then we can prove Side-Angle-Side as
a consequence of these assumptions. In these proofs, no assumptions about Euclidean or
hyperbolic parallel properties are made.

J. Gielis: A Mathematical Taorist in Gottingen
Mathematical centers, they bloom and they whither,
Mathematics itself will never be servant to twitter.
Algebra, calculus & geometry, A Holy Trinity
Mathematics’ own Divinity

Going back in time as a Mathematical Taorist

To establish it is rooted in language, in the Aorist

M. Petrovi¢: Weberian Surfaces with Foci and Directorial Planes

The subject of this paper are algebraic surfaces named Weberian surfaces which represent
loci of points with a constant sum of distances to foci and directorial planes. Algebraic
equations are given for two types of these surfaces, as well as their graphical
representations.
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